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Abstract: Thin-film transistors (TFTs) made of metal oxide semiconductors are now increasingly
used in flat-panel displays. Metal oxides are mainly fabricated via vacuum-based technologies, but
solution approaches are of great interest due to the advantages of low-cost and high-throughput
manufacturing. Unfortunately, solution-processed oxide TFTs suffer from relatively poor electrical
performance, hindering further development. Recent studies suggest that this issue could be
solved by introducing a novel heterojunction strategy. This article reviews the recent advances
in solution-processed heterojunction oxide TFTs, with a specific focus on the latest developments
over the past five years. Two of the most prominent advantages of heterostructure oxide TFTs are
discussed, namely electrical-property modulation and mobility enhancement by forming 2D electron
gas. It is expected that this review will manifest the strong potential of solution-based heterojunction
oxide TFTs towards high performance and large-scale electronics.
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1. Introduction

Today, there is a growing demand for flat-panel displays with higher resolution, larger screen
sizes, better viewing, and lower power consumption, pushing traditional amorphous silicon thin-film
transistor (TFT) technology to its limits [1–3]. TFTs made of metal oxide semiconductors hold
great promise in future display technology, owing to their high mobility, good transparency,
and scalability [4–7]. Commercial metal oxides are grown via physical vapor deposition technologies, but
solution-based approaches have been attracting particular attention recently [5,8–11]. Compared with
conventional vacuum-based technologies, the solution approaches have additional advantages,
including cost effectiveness, atmospheric fabrication, higher throughput, and material composition that
is easy to tune [12–15]. Ways to reduce defect states and improve electrical performance and stability
are an urgent challenge for solution-based metal oxide TFTs [16,17]. Various approaches have been
taken to solve the above challenge, such as doping, modification of components, addition of additives,
and novel post-treatments [9,18–20]. However, electron transport properties are still hindered by these
defect-prone oxides [21–25].

A notable strategy has been recently developed to enhance the electrical performance of
solution-derived oxide TFTs by utilizing heterojunction channels [26]. The schematic of the
heterojunction oxide TFTs is demonstrated in Figure 1. It is revealed that heterostructures could
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modulate electrical performance by taking advantage of both the front channel (providing high
mobility) and the back channel (maintaining low off current) [27,28]. More importantly, some recent
studies argue that the presence of a 2D electron gas system formed at the carefully engineered oxide
heterointerface can greatly improve device mobility [24,29–33]. In this review, we summarize the recent
progress of solution-processed heterostructure oxide TFTs. The heterojunction channel strategy could
address the shortcomings of single-layer devices, providing a new route for future TFT technology
development [34–36].
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2. Heterojunction Oxide TFTs

2.1. Vacuum-Processed Heterojunction Oxide TFTs

Before reviewing solution-processed heterojunction oxide TFTs, we would like to make a
short introduction on vacuum-based heterojunction oxide devices. In 2008, Kim et al. produced
InSnO/GaInZnO (ITO/GIZO) heterojunction TFTs by magnetron sputtering, with a high mobility of
104 cm2/Vs, a suitable threshold voltage (Vth) of 0.5 V, and a low Vth shift of 0.75 V for 4 h under
10 V bias voltage [37]. They found that the lower layer of highly conductive oxides could provide
high mobility for the TFTs, while the upper layer of oxides with lower carrier concentration could
adjust the threshold voltage. This new structure provides a new way to adjust the performance of
TFTs. Subsequently, a number of scientists have studied and produced various excellent heterojunction
oxide TFTs. In 2014, Chen et al. prepared InSnO/SnZnO (ITO/TZO) TFT on a glass substrate by taking
advantage of ITO’s higher carrier concentration and TZO’s ability to control the charge conductance,
and they obtained a high mobility of 105 cm2/Vs [38]. In 2016, Cong et al. built quasi-double-channel
(QDC) AlSnZnO (ATZO) TFTs with a superior mobility of 108 cm2/Vs and an on/off ratio of 109 [36].
In 2019, He et al. prepared InGaZnO/In2O3 (IGZO/In2O3) TFTs by magnetron sputtering at room
temperature, exhibiting high mobility (64.4 cm2/Vs) and high on/off ratio (107), with large enhancement
compared with single-layer IGZO and In2O3 TFTs [39]. They attributed this improvement to the defect
self-compensation mechanism between the two layers. In 2019, Furuta et al. prepared IGZO/IGZO
TFTs with a mobility of 24.7 cm2/Vs and an on/off ratio of 107 [40]. Table 1 summarizes the recent
progress in vacuum-processed heterojunction oxide TFTs. It can be observed that heterojunction
oxide TFTs show excellent electrical properties, which are much better than those of the traditional
single-layer device.



Nanomaterials 2020, 10, 965 3 of 12

Table 1. Recent advances in vacuum-processed heterojunction oxide TFTs and representative
single-layer devices.

Channel Mobility
(cm2

·V−1·s−1)
Ion/Ioff

Subthreshold
Swing Dielectric Year Reference

ITO/GIZO 104 108 0.25 PECVD SiO2 2008 [37]
ZTO/ITO 52 108 - PECVD SiO2 2010 [7]

IZO/IGZO 30 108 - PECVD SiO2 2010 [11]
HxIZO/HyIZO 15 1010 - Thermal SiO2 2010 [3]

IGZO/GZO 10 107 0.93 Thermal SiO2 2011 [6]
IGZO/ZIO 18 1010 - PECVD SiO2 2011 [10]
ZTO/ITO 43 107 0.18 PECVD SiO2 2011 [41]

HIZO/IZO 41.4 107 1.45 Thermal SiO2 2011 [42]
IZO/GIZO 48 1010 - PECVD SiO2 2012 [27]
HIZO/IZO 48 107 0.28 PECVD SiO2 2012 [13]

IGZO/IGZO:Ti 63 106 0.73 HfO2 2014 [22]
ZTO/IZO 32 108 0.20 PECVD SiO2 2014 [23]
ITO/TZO 105 107 0.33 PECVD SiO2 2014 [38]

In2O3/IZO 38 109 0.12 ZrO2 2014 [24]
High-O-IGZO/Low-O-IGZO 60 108 0.2 Thermal SiO2 2014 [34]

IZO/AZTO 53.2 1010 0.15 PECVD SiO2 2016 [12]
ZnO-H/ZnO 43 108 0.13 Thermal SiO2 2016 [35]

L-AZTO/H-ATZO 108 109 0.15 PECVD SiO2 2016 [36]
IGXO/IGYO 53.2 107 0.19 PECVD SiO2 2017 [25]
AIZTO/IZO 53 1010 0.15 PECVD SiO2 2018 [32]
In2O3/IGZO 64.4 107 0.20 Thermal SiO2 2019 [39]
In2O3/IGZO 67.5 107 0.08 HfO2 2019 [39]
In2O3/IGZO 79.1 107 0.09 Si3N4 2019 [39]

ZnO(DEZ+O3)/ZnO(DEZ+H2O) 31.1 107 0.21 Al2O3 2019 [33]
IGZO/IGZO 24.7 107 0.1 Thermal SiO2 2019 [40]

SnO2 35.4 107 - Thermal SiO2 2015 [43]
ZnO 20 105 0.38 TiO2/Al2O3 2015 [44]

2.2. Solution-Processed Heterojunction Oxide TFTs

Compared with conventional vapor-based techniques, solution processing (such as spin-coating,
spraying, and printing) allows for the design and fabrication of novel oxide TFTs in a low-cost and
straightforward fashion [43–45]. Many researchers have begun to study solution-grown heterojunction
oxide TFTs. Table 2 and Figure 2 summarize the recent advances in solution-processed heterojunction
oxide TFTs. For heterojunction oxide TFTs, we discuss two of the most prominent advantages, namely
electrical-property modulation and mobility enhancement by forming 2D electron gas.

Table 2. Recent advances in solution-processed heterojunction oxide TFTs and representative
single-layer devices.

Channel
Processing

Temperature
(◦C)

Mobility
(cm2

·V−1·s−1)
Ion/Ioff

Subthreshold
Swing Dielectric Year Reference

AIZO/IZO 350 1.57 107 0.59 SiO2 2011 [26]
AIZO/IZO 350 5.62 106 0.53 SiO2 2012 [46]

IGZO/IGZO 450 2.4 107 0.69 SiO2 2013 [47]
ZTO/IGZO 450 2.09 107 0.49 SiO2 2013 [48]
In2O3/IGO 250 2.6 108 - SiO2 2013 [49]
AIZO/IZO 350 23.4 107 0.27 SiO2 2014 [50]

ITZO/IGZO 450 22.16 107 0.51 SiO2 2014 [51]
ITZO/IGZO 450 40.03 105 0.12 ZrO2 2014 [51]

QSL-III 1 200 40 104 0.27 AlOx/ZrOx 2015 [52]
ZnO/SnO2 300 15.4 107 - SiO2 2016 [53]
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Table 2. Cont.

Channel
Processing

Temperature
(◦C)

Mobility
(cm2

·V−1·s−1)
Ion/Ioff

Subthreshold
Swing Dielectric Year Reference

In2O3/ZnO 400 48 104 SiO2 2016 [54]
In2O3/ZnO 250 45 107 - SiO2 2017 [55]

In2O3/Li-ZnO 350 11.4 105 - SiO2 2017 [29]
ITZO/IGZO 350 38 108 0.41 SiO2 2018 [30]

In2O3/PEI-In2O3
2 250 10 106 - SiO2 2018 [56]

In2O3/PEI-In2O3
2 250 30 106 - ZrO2 2018 [56]

In2O3/IGZO 400 14.5 106 - SiO2 2019 [17]
In2O3/ZnO-NPS/PS/ZnO 200 50.7 106 2.71 SiO2 2019 [31]

IZIZ 3 200 11.4 107 - SiO2 2019 [57]
Li-IZIZ 4 200 25 108 - AlOx/ZrO2 2019 [57]

AlInO/In2O3 300 40 107 0.7 SiO2 2019 [58]
In2O3/In2O3 250 50 106 - SiO2 2019 [28]

IGZO 150 14 108 0.17 Al2O3 2012 [14]
InSmO 350 21.5 108 0.66 SiO2 2020 [15]

1 In2O3/Ga2O3/ZnO/Ga2O3/In2O3 (QSL-III). 2 Polyethylenimine-doped In2O3 (PEI-In2O3). 3 In2O3/ZnO/In2O3/ZnO
(IZIZ). 4 In2O3/ZnO-Li/In2O3/ZnO-Li (Li-IZIZ).
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Figure 2. Mobility vs. processing temperature for solution-processed heterojunction oxide TFTs
from Table 2 or high-k dielectrics. (QSL-III denotes In2O3/Ga2O3/ZnO/Ga2O3/In2O3; PEI-In2O3
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2.2.1. Electrical-Property Modulation

As a product of structural engineering technology, heterojunction oxide TFTs can take advantage of
the excellent electrical properties of each layer [30,37]. As the front-channel layer has good conductivity,
it can provide higher carrier concentration, thus forming maximum charge accumulation and finally
achieving high mobility [10,41,42]. The carrier concentration in the back-channel layer is much
lower than that of the front-channel layer, which leads to the difference in electron activation energy
between the conduction band minimum and the Fermi energy level, forming an energy barrier at the
interface [51]. Due to the existence of an energy barrier, the back-channel layer can effectively control
the electron flow, thus reducing off current (Ioff) and adjusting threshold voltage (Vth) [46]. A series
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of representative papers show that heterojunction TFTs can achieve both high mobility and Ioff by
selecting suitable front- and back-channel materials.

In 2012, Jeong et al. adjusted the carrier concentration of the AlInZnO/InZnO (AIZO/IZO)
interface and barrier height by changing the ratio of In/Zn in the IZO layer and the thickness of the
IZO layer. The IZO layer could provide an enhanced mobility for the device due to its high electron
concentration. Compared with the IZO layer, the AIZO layer had a larger EC–EF due to its lower
carrier concentration, forming an energy barrier at the interface and reducing Ioff. As the thickness
of the conductive IZO layer decreased, the AIZO/IZO TFTs Vth shifted positive, and Ioff decreased
from 10−8 to 10−11 A. With a 12-nm-thick IZO layer, they obtained a device mobility of 5.63 cm2/Vs
and an on/off ratio of 106 [46]. For similar reports, refer to Kim et al. ZnSnO/InGaZnO (ZTO/IGZO),
Yu et al. In2O3/InGaO (In2O3/IGO), Kim et al. InGaZnO/InGaZnO (IGZO/IGZO), Seo et al. AIZO/IZO,
and Lee et al. In2O3/In2O3 (amorphous In2O3 and polycrystalline In2O3) [47–50].

Rim et al. boosted up the mobility of solution-processed oxide TFTs using an extremely thin layer
of conductive InSnZnO (ITZO) inserted between the dielectric layer and the InGaZnO (IGZO) active
layer [51]. The ITZO/IGZO TFTs have a high mobility (22.16 cm2/Vs) and an excellent on/off current
ratio (107). As shown in Figure 3a, the mobility of ITZO/IGZO is over ten times higher than that of
single-layer IGZO (from 1.56 to 22.16 cm2/Vs). At the front channel of ITZO, Sn4+ replaced In3+ to
provide additional electrons to increase electron concentration, forming a highly conductive channel
and providing high mobility for devices. Moreover, a barrier height (0.15 eV) between IGZO and ITZO
(Figure 3b) could effectively modulate off current and threshold voltage. Nadarajah et al. (2015) also
tried solution-processed ITZO/IGZO TFTs, showing a mobility of ~30 cm2/Vs and an Ion/Ioff of 106 [59].Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 13 
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Nam et al. prepared high-performance solution-processed indium-free ZnO/SnO2 TFTs at 300 ◦C
by UV annealing [53]. The ZnO/SnO2 TFTs exhibited a mobility of 15.4 cm2/Vs, an outstanding on/off

ratio of 108, and superior bias stability. As shown in Figure 4a, ZnO/SnO2 bilayers are composed of a
Zn-rich layer, a Zn-Sn mixed zone, and an Sn-rich layer. The Sn-rich channel has high conductivity
and provides a path for rapid electronic transport. Meanwhile, Zn atoms can diffuse into the Zn-Sn
mixing zone to reduce Ioff by control carrier concentration. Furthermore, due to the suppression of
oxygen vacancy (Vo) defects in the bilayer film, the ZnO/SnO2 TFTs exhibited remarkable bias-stress
stability (Figure 4b).

2.2.2. Mobility Enhancement by Forming 2D Electron Gas

In addition to electrical-performance modulation, some recent studies suggest that well-designed
heterojunction oxides could greatly boost mobility by forming 2D electron gas at the interface [52].
Through careful interface engineering, electron transfer and confinement at the heterointerface can
occur because of a large conduction band offset between the two layers, resulting in the formation of 2D
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electron gas in the interface [55]. The formation of 2D electron gas enables the realization of TFTs with
mobilities close to the theoretical limit set by phonon scattering in the absence of impurity scattering [30].
In this situation, the mobility of the heterojunction device is often several times or even ten times higher
than that of the single-layer device. Additionally, the enhanced electron mobility is accompanied by a
marked change in the charge transport mechanism. Through fitting the transfer curves and analyzing
the temperature dependence of mobility, it was revealed that heterojunction TFTs exhibited band-like
electron transport, while the single-layer device showed trap-limited conduction [55]. It should be
mentioned that the transfer curve of the heterojunction TFTs shifted to the negative direction compared
with the single-layer device, due to the formation of 2D electron gas.
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Faber et al. demonstrated In2O3/ZnO TFTs with unprecedented electron mobility grown from
the solution [55]. The mobility of In2O3/ZnO TFTs (45 cm2/Vs) was 2 to 100 times greater than that of
single-layer In2O3 and ZnO devices. According to X-ray photoelectron spectroscopy, optical absorption,
and Kelvin probe measurements, the In2O3/ZnO interface has a large conduction band offset (0.36 eV),
which makes the electron transfer from the ZnO layer to In2O3 and forms 2D electron gas. 2D electron
gas greatly increases the concentration of free electrons in the In2O3 layer of the crystal. The electron
transport mechanism of In2O3/ZnO TFTs was changed from trap-limited conduction to percolation
conduction. This marked improvement originated from the presence of 2D electron gas formed at the
atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO.
The In2O3/ZnO TFTs developed in this work not only surpassed the performance of single-layer In2O3

and ZnO TFTs but also compared favorably to state-of-the-art vacuum-processed devices. Lin et al.
used solution-grown In2O3, Ga2O3, and ZnO to construct heterojunction and quasi-superlattice (QSL)
TFTs (Figure 5a) [52]. By carefully optimizing the structure, QSLs with smooth interfaces and surfaces
could be realized (Figure 5b). As shown in Figure 5c, it was proved that single-layer metal oxide TFTs
were dominated by trap-limited conduction (TLC), while QSL-I/III were dominated by percolation
conduction (PC). The change of electron transport mode led to a great increase in electron mobility
(from 4 to 30 cm2/Vs).
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In2O3/ZnO/In2O3 (QSL-I), In2O3/Ga2O3/ZnO (QSL-II), and In2O3/Ga2O3/ZnO/Ga2O3/In2O3 (QSL-III).
(b) Atomic force microscope (AFM) surface phase images of the different layered structures. (c) Arrhenius
plots of the temperature dependence of the electron mobility for different layered structures. Reproduced
with permission [52]. Copyright 2015, Wiley-VCH.

Later studies showed that layer configuration and annealing temperature greatly affect
heterojunction device performance. Khim explored the effect of layer configuration on electron
transport in heterojunction transistors composed of ZnO and In2O3 [57]. They found that depositing
In2O3 first followed by ZnO resulted in a smooth interface, while reversing the layer order yielded
poor interface roughness. Tetzner et al. studied the influence of annealing temperature on morphology,
chemical state, and electrical performance of solution-based heterostructure In2O3/ZnO TFTs [54].
It was found that the annealing temperature changed surface roughness and atomic diffusion at the
interface of In2O3/ZnO. At the annealing temperature of 400 ◦C, the In2O3/ZnO TFTs showed an
optimized mobility of 48 cm2/Vs and an on/off current ratio of ~104.

The large conduction band offset between the two layers is one of the key points to induce
2D electron gas for mobility improvement. A doping strategy has been adopted to enlarge the
conduction band offset between the two layers. Khim and co-workers reported the controlled growth
of In2O3/Li-ZnO TFTs by modulation doping [29]. It was revealed that Li addition in ZnO led to n-type
doping and allowed for the accurate tuning of its Fermi energy. Therefore, doping of Li could precisely
regulate ∆EF between In2O3 and Li-ZnO and change the conduction band offset between the two
layers (Figure 6). When the doping amount of Li was 20%, the mobility of In2O3/Li-ZnO heterojunction
TFTs reached the maximum value of 11.4 cm2/Vs and the on/off current ratio of ~105. Chen et al.
demonstrated high performance In2O3/In2O3:polyethylenimine (PEI) heterostructure TFTs [56]. The 2D
electron gas was achieved by creating a band offset between In2O3 and In2O3:PEI via work function
tuning of the PEI-doping ratio. The resulting device exhibited a mobility of 10 cm2/Vs on SiO2 gate
dielectric. Similarly, Liu et al. took In2O3 as the front channel and combined it with the back-channel
AlInO to construct heterojunction transistors. By adjusting the thickness of AlInO and the doping
amount of Al, AlInO (30%)/In2O3 heterostructure TFTs with a high mobility of 40 cm2/Vs, a threshold
slope of 0.7 V/dec, and an on/off ratio of 107 could be realized [58].
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3. Conclusions and Outlooks

Great progress has been made in the past few years in solution-processed heterojunction oxide TFTs.
A detailed review of this topic has been presented, with special attention on the latest developments
over the past 5 years. It was revealed that heterojunction channels could overcome the disadvantages
of single-layer structures. By using this novel strategy, solution-based oxide transistors with high
mobility (~50 cm2/Vs) and operational stability could be realized, competing with or even surpassing
vacuum-grown counterparts.

In terms of future research directions, several key issues need to be addressed. First, the reported
high mobility heterojunction oxide TFTs often suffered from negative threshold voltages, high off-state
currents, or poor stability, which have a negative impact on commercial applications. The negative
threshold voltage and high off-state current of heterojunction oxide TFTs are closely related to the
formation of 2D electron gas. Lee et al. constructed corrugated structure ITZO/IGZO TFTs with both
high mobility (51 cm2/Vs) and low off-state current [30]. The thin ITZO/IGZO portion increased the
overall resistivity of the current path, effectively reducing the off-state current. The thick ITZO/IGZO
could provide free electrons to form a high-speed electronic channel, highly improving the electron
mobility. By using this new corrugated heterojunction, solution-based oxide TFTs with high mobility
and low off current could be realized. Unfortunately, this could increase the complexity of the
process. Lin et al. reported solution-processed ZnO/ZnO-NPs/PS/In2O3 multilayer TFTs with high
electron mobility (50 cm2/Vs) and prolonged operational stability [31]. Insertion of the ozone-treated
polystyrene interlayer could passivate electron traps in the channel, leading to high mobility and
excellent operational stability. However, continued work should be carried out. It should be mentioned
that well-optimized single-layer vacuum-based metal oxide TFTs show high performance and stability.
Secondly, previous studies argued that the mobility enhancement is attributed to the 2D electron gas
that formed at the heterogeneous interface. However, the traditional 2D electron gas usually exists in
high-quality epitaxial heterojunction systems (such as AlGaAs/GaAs heterojunctions). The oxide thin
films prepared by the solution method are usually polycrystalline or amorphous, and the 2D electron gas
formation mechanism is still unclear. Thirdly, the carrier transport properties in heterojunction oxide
need further investigation. A deep understanding of the heterojunction electron transport can promote
better design of high-performance heterojunction oxide devices. Fourthly, the previous research
mainly focused on the In2O3/ZnO system; it is necessary to extend this to other multicomponent oxide
semiconductor heterostructures (such as the IGZO system) for further device performance improvement.
We believe that by addressing the issues presented above, solution-processed heterojunction oxide
TFTs will show great promise in future large-area and high-performance electronics.
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