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Abstract: The intracardiac electrical activation maps are commonly used as a guide in the ablation
of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if
the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM).
Although threshold criteria on force signals are often used to determine the catheter contact, this may
be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present
paper is devoted to determining the criteria and force signal profiles that guarantee the contact of
the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM
recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to
establish a contact pattern by first visually examining and classifying the signals, according to their
likely-contact joint profile and following the suggestions from experts in the doubtful cases. First,
we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main
eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter
contact. Second, we used two different linear classifiers (Fisher discriminant and support vector
machines) to identify the most relevant components of the previous signal models. We obtained
three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant
components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the
curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed
us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact
profiles in force recordings are complex and do not depend only on the signal intensity being above
a threshold at a single time instant, but also on time pulsatility and trends. These findings pave the
way towards a subsystem which can be included in current intracardiac navigation systems assisted
by force contact sensors, and it can provide the clinician with an estimate of the reliability on the
tissue-catheter contact in the point-by-point EGM acquisition procedure.
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1. Introduction

Arrhythmias are prevalent in humans, and globally 2.5% of the population suffers from this
disease [1–4]. This pathology produces a variation in the heart rate, and it can be mostly due to
three causes, namely, automatism alteration, triggered activity, and reentry [5–7]. The most widely
used arrhythmia treatment is cardiac ablation, which consists of determining the diseased area of the
heart that originates the arrhythmia, and then canceling the mechanism by using low temperatures
or radio frequency [8,9]. The diagnosis and treatment are made in an electrophysiological study,
which is an intervention on the patient consisting of the insertion of electrocatheters through the
neck or legs veins, and then recording the electrical activity of the heart. This procedure allows the
clinician to identify the arrhythmia mechanism and to supply an adequate therapy [10,11]. Systems
LocaLisa and Carto R© 3 are widely used examples of this type of equipment, and they basically
consist of a positioning subsystem, a set of advanced catheters, and data storage and processing
equipment [12,13].

These intracardiac navigation systems are constantly evolving today, and the use of catheters
incorporating force sensors is one of the most recent developments. This innovation improves the
recording of the heart electrical activity by verifying that the catheter is in contact with the heart
surface. In [14], a system of contact force measurements was presented using optical fiber detection
technology, which improved the precision of force measurement, and it was benchmarked in terms of
the catheter angle and catheter deflection, the fluid irrigation, and the use of a sheath, among other
conditions. Another recent study delivered a contact-force control system using a portable catheter
controller that can be coupled to any combination of ablation catheters with adjustable sheath and
force detection [15]. Neither of the studies reported the use of those systems when applied for clinical
data. Other recent works use real patient data, for instance, a comparison was presented in [16]
among contact force ablation, manual ablation, and Remote Magnetic Navigation (RMN) ablation,
analyzing their safety and efficiency in acute and long-term outcomes. They demonstrated that RMN
was superior with regard to acute success, reduction of major complications, and recurrence rate
using an intention-to-treat analysis. Another study compared the procedural profiles and outcomes of
persistent atrial fibrillation ablation with and without using contact-force sensing catheters. The use
of contact-force sensing catheters in this setting was associated with shorter procedures, shorter
fluoroscopy time, and reduction in arrhythmia recurrences [17]. Therefore, this has recently been
a field in intense technological evolution with respect to the hardware acquisition system and its use.

Studies to date in this setting are based on the use of force thresholds, in such a way that if force
sensor registers a reading greater than 5 gr, then the catheter is considered to be well positioned and
yielding correct voltage readings [13]. The justification to use this threshold is based on the catheter
being surrounded by blood, which usually produces a force lower than 5 gr when interacting with the
sensor. However, no study has clearly established that this value can be considered as a consistent
and suitable threshold. Moreover, the dynamic nature of the heart functioning presents several
challenges when we want to ensure the application of this type of examinations, and one of them is the
determination and identification of the time intervals when the catheter is in stable contact with the
heart surface to be examined. In a previous study, electroanatomical maps of the electrophysiological
examinations were analyzed in a group of patients with arrythmias [13]. These electroanatomical maps
were performed with a cardiac navigation system that included a force-sensing catheter. Authors
considered healthy tissue when a greater than 5 gr force signal was recorded at the time of the
maximum EGM voltage, assumed that its peak-to-peak value was greater than 1.5 mV, and the area
was identified as diseased tissue or a scar.

The vorticity produced by the blood and the systole and diastole movements can produce
disturbances in the electrical activity measurements, making it difficult to determine diseased areas
on the surface of the heart, especially if the criterion of a static threshold is considered as a reference
for decision making. In the present work, data exploration was carried out with the purpose of
constructing contact models based on the force signal, as a criterion to determine if the catheter is in



Sensors 2018, 18, 1399 3 of 17

contact with the tissue. We scrutinize patterns such as pulsatility or trends in the force signals recorded
during the electrophysiological examination of a patient, by considering a time window around the
EGM maximum peak used for the static force threshold. The Principal Component Analysis (PCA)
techniques are used to provide us with a multivariate decomposition of the most characteristic force
signal profiles, and linear classification is used to determine their relevance. The patient database used
for this purpose consists of 1391 force signals and their corresponding EGM, which were recorded
during 2 and 8 s, respectively, from 17 patients (82± 60 points per patient) at electrophysiological study.

The outline of the document maintains the following structure. In Section 2, the characteristics
of the patient base, the PCA fundamentals, and the used linear classifiers are summarized. Section 3
describes the experimental methods carried out and the obtained results. Section 4 deals with the
discussion, future work, and conclusions of our findings.

2. Methods

2.1. Database and Patients

The patient data used in this work comes from a previous clinical study [13], carried out at
the Arrhythmia Unit in University Hospital Virgen de la Arrixaca (Murcia, Spain). That study was
approved by the Ethics Committee of the hospital, and recorded in the clinicaltrials.gov register of
clinical trials under identification number NCT01639365. It involved the acquisition in each patient of
a left ventricular voltage map, during sinus rhythm and using the Carto R© 3 navigation system and the
Navistar Thermocool catheter (Biosense-Webster, Diamond Bar, CA, United States). The population
consisted of 17 patients (8 men, mean age 62, range 38–80 years) with ventricular arrhythmias due
to ischemic cardiomyopathy or dilated cardiomyopathy, who underwent ventricular tachycardia
ablation by clinical indications, and their clinical description is included in Table 1. For each patient,
a voltage map was first generated without accounting for the force signal. Then, the map was corrected
by discarding those points with force below threshold, which yielded more compact voltage maps
allowing to better identify arrhythmia channels and ablation targets.

Table 1. Demographic and clinical characteristics.

Patient ICD Heart Number of Location LVEF LVEDD LVESD Septum Spontaneous Induced
Disease Infarctions VT Morphology VT Morphology

1 Yes Ischemic 1 Inferior 40 60 52 11 2 ECG ICD No

2 Yes Ischemic 1 Inferior 45 44 31 13 No 1 RBBB SUP

3 Yes Ischemic 1 Anteroapical 25 52 36 13 1 ECG ICD No

4 Yes Ischemic 2 Anterior/inferior 31 78 59 6 2 ECG ICD No

5 No Ischemic 1 Inferior 51 52 36 13 1 RBBB SUP 1 RBBB SUP

6 No Ischemic 2 Inferior/septal 43 54 48 10 1 VES: RBBB SUP No

7 No Dilated 0 NA 20 67 63 11 1 LBBB SUP 1 LBBB SUP

8 Yes Ischemic 0 NA 20 60 40 9 1 ECG ICD No

9 No Dilated 0 NA 20 59 54 8 4 VES: RBBB INF No

10 No Ischemic 1 Septal 28 51 35 9 1 RBBB SUP 1 RBBB SUP

11 No Ischemic 1 Posteroinferior 45 50 37 12 RBBB SUP 2 polymorphic

12 Yes Ischemic 1 Anterolateral 37 59 47 10 ECG ICD LBBB INF

13 Yes Ischemic 1 Anterior 30 56 47 11 ECG ICD No

14 No NC 0 NA 62 53 42 12 LBBB INF RBBB INF

15 No Ischemic 1 Inferolateral 50 NA NA NA LBBB SUP No

16 No Ischemic 1 Anteroapical 32 NA NA 16 RBBB SUP No

17 No Ischemic 1 Inferolateral 45 NA NA NA RBBB SUP RBBB SUP

RBBB, Right Bundle Branch Block; LBBB, Left Bundle Branch Block; ICD, Implantable Cardioverter
Defibrillator; ECG, Electrocardiogram; LVEF, Left; Ventricular Ejection Fraction; LVESD, Left Ventricle
End-Systolic Diameter; INF, Inferior Frontal Axis; NA, Not Applicable; SUP, Superior Frontal Axis;
VT, Ventricular Tachycardia; VES, Ventricular Extrasystole; NC, Non Compaction Cardiomyopathy.
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The same set of patients and signals was used in this work. The Carto R© 3 System records
the electrophysiological examination data in plain text format. Extract, Transformation, and Load
techniques were used on these files [18,19], allowing the construction of a database in which
anonymized patient identification, case identification, EMG data, and force sensor data were stored.
This database facilitated the processing of the acquired signals with a custom-developed computer tool,
as well as a subsequent manual data classification, called labeling, where the doctor-issued criteria
were followed. This labeling aimed to determine the presence or absence of catheter contact with
the tissue not only in terms of the force at a single time instant (EGM peak), but rather taking into
account the force signal evolution on a time window around this instant, as well as the simultaneously
observed EGM signal. It was evident that sometimes it is complicated to establish the contact with high
confidence, hence, the labels allowed two possible levels for the confidence on contact, as considered
by the observer. Therefore, four labels were used for this classification. On the one hand, those cases in
which the expert observer was confident that there was (not) tissue-catheter contact were given label 0
(label 3). On the other hand, those cases in which there was some reasonable doubt whether there was
contact were assigned label 1 (label 2).

The developed computer tool consists of a dashboard with 3 panels, as shown in Figure 1. The first
panel plots two signals on a shared axis, namely, the 2 s of EGM signal (in blue), and the peak heartbeat
selected within a window of ±80 ms (in red). The second panel represents the force sensor signal,
which lasts 8 s, and it is synchronized with the EGM signal after 6 s, as seen in the figure. A dashed
line represents the 5-gr threshold to be used as a reference by the observer. The third panel provides
an additional view of the force signal after filtering and rectification, aiming to better support the
labeling in some doubtful cases. Control buttons allowed the label selection, as well as the step forward
(») and step back («) to review the cases. The result of this process was stored in a new label field in the
database, which was specific to each case.

2.2. PCA Fundamentals

The catheter used for the electrophysiological examination acquires data within a dynamic
environment, which exhibit a variety of patterns due to the heartbeat movement and to the blood
vorticity. We want to group the different patterns present in a population of force measurements
according to their contact labels and label confidence. For this reason, a multivariate technique is
required in order to statistically extract the existing patterns and their relevance in that population.
For this purpose, in this work we propose to use PCA, a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated vector observations into a set
of linearly uncorrelated vector components. These new vectors and variables are characterized by
their mutual uncorrelation. The amount of information conveyed in a component is measured by its
variance, which can be used as an indicator to sort them in terms of their relevance, this is, the larger
the variance associated to a component, the larger the amount of information in that component.

In statistics, PCA is often used to reduce the dimensionality of a data set, which makes it possible
in our case to distinguish among the most relevant dynamic changes in the system, the redundant
information, and the noise in the signal [20]. This analysis defines a new coordinate space where the
variance is maximized and the correlation among the variables is minimized. In our case, we measure
a force signal during 8 s at a given anatomical location of the heart, which is represented by a signal
vector xm ∈ RM, where M is the total number of signal samples in 8 s. Given a set of training data that
contains N observation vectors (corresponding to the aggregation of all the cases for every patient in the
database), the array X ∈ RN×M is constructed with the observed vectors by rows, which represents the
original data matrix. The covariance matrix CXX ∈ RM×M can be calculated from X in the following
way, CXX = 1

N−1 X>X. By decomposing this matrix in its eigenvalues and eigenvectors, the correlation
structure of the variables is obtained,

CXX = VΛV>, (1)
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where Λ ∈ RM×M is a diagonal matrix which contains the non-negative real eigenvalues of CXX,
this is, λm, m = 1, 2, · · · , M, and they are sorted in decreasing order; and matrix V ∈ RM×M conveys
the sorted eigenvectors in columns. By holding only the a eigenvectors (a < M) corresponding to
the a largest eigenvalues, we can build the so-called reduced principal component matrix P ∈ RM×a,
which projects the observation vector x ∈ RM into a smaller space Ra, and it can be denoted by ta = xP.
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Figure 1. The computer tool dashboard displays the EGM signal, the simultaneously recorded force
signal, its filtered and rectified version, and several selection and control buttons.

Note that ta represents the optimal projection of x onto the reduced dimensional subspace in
terms of the variance. By applying this transformation to the entire data matrix, we obtain Ta = XP,
where Ta ∈ RN×a represents the new data matrix for the dimension-reduced observation vectors.
To obtain an approximation to the original data from this matrix Ta, we perform the following matrix
product, X̂a

= TaP>, and then, we can calculate the residual matrix as the difference between the
original and the estimated data matrices, as follows, E = X − X̂a. In many practical applications,
a given observation vector is reconstructed with sufficient quality by using only a reduced number a
of principal components, as seen later in our case.
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2.3. Fisher and SVM Linear Classifiers

As shown in the experiments, the use of PCA provides us with a set of characteristic patterns on
the force signals. Nevertheless, a criterion is further needed to establish the relevance of the reduced
set of directions obtained from PCA. For this purpose, we used two linear classifiers, following
a similar methodology to the one proposed in [21]. The use of linear classifiers with the PCA projected
signals allows us to determine the relevance of each projection direction by scrutinizing their weights.
We selected the two linear classifier, namely, the Fisher Linear Discriminant (FLD), as it represents
a classic and well-known method, and the linear support vector classifier, which has been successfully
used in a number of applications during the last years [22,23].

On the one hand, the FLD is able to find a linear combination of features characterizing two
or more sets with classification purposes. The method looks for the projection that maximizes the
interclass variance and minimizes the intraclass variance [24,25]. In our case, we work with a set of
multivariate observations ta

n, with n = 1, . . . , N, which in general can belong to two possible classes,
with mean vectors m0 and m1 and covariance matrices Σ0 and Σ1. The between-class (within-class)
dispersion matrix is denoted as Sb (Sw), and they can be obtained by

Sb = (m1 −m0)
T(m1 + m0), (2)

Sw = ∑0 + ∑1. (3)

A linear combination of features tawT has mean miwT and variance wΣiwT , for i = 0, 1.
Our objective is to maximize the between-class dispersion while minimizing the within-class dispersion,
and for this purpose, the discrimination criterion is established as

J(w) =
wSbwT

wSwwT (4)

It can be shown that the maximum separation is obtained when

wT = c (Σ0 + Σ1)
−1 (m1 −m0)

T (5)

where c is a constant. In our case, the weights of Fisher projection vector w ∈ Ra are indicators of the
relevance of each of the considered eigenvectors.

On the other hand, the SVM is a supervised learning method that recognizes patterns for data
analysis, and it can perform both pattern classification and regression. Vapnik proposed the SVM
based on the Statistical Learning Theory, and it is considered one of the most effective classification
algorithms [26,27]. In brief, this method uses optimization techniques to determine the classification
function, and it consists of minimizing

1
2
‖w‖2 + C

N

∑
n=1

(ξ∗n + ξn) (6)

subject to 
yn −wTφ (ta

n)− b ≤ ε + ξ∗n
wTφ (ta

n) + b− yn ≤ ε + ξn

ξ∗n, ξn ≥ 0,
(7)

with n = 1, 2, ..., N, and where w is now the weight vector of the SVM; 1
2 ‖w‖

2 is called the margin
and it also accounts for the complexity of the model; C is the trade-off parameter between margin and
losses; ξ∗n and ξn are the slack variables; φ(ta) is a non-linear transformation that maps the input data
to a high dimensional space; and b is the interception. Lagrange multipliers αn and α∗n are introduced,
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and then the optimization problem described in the previous equations can be transformed into its
dual optimization problem, which consists of maximizing:

− 1
2

N

∑
n,l=1

(α∗n − αn) (α
∗
l − αl) ynylK (ta

n, ta
l ) +

N

∑
n=1

(α∗n − αn) (8)

where Mercer’s Theorem has been used to substitute K
(
ta

n, ta
l
)
= 〈φ(ta

n), φ(ta, l)〉, and it is subject to{
∑N

n=1(α
∗
n − αn)yn = 0

0 ≤ αn, α∗n ≤ C
(9)

for n = 1, 2, . . . , N. The classification function of this SVM is obtained by solving the previous problem,
and it can be shown to be

ŷ = f (ta) =
N

∑
n=1

(α∗n − αn) ynK (ta
n, ta) + b (10)

In our case, parameter C can be calculated by using out-of-sample techniques, such as cross
validation. In addition, several Mercer’s kernels can be used, but here we restrict ourselves to the
linear kernel, as follows,

K (ta, ua) = 〈ta, ua〉 (11)

i.e., it is just the dot product between the two vectors. With this linear kernel, it is possible to calculate
the weight vector of the SVM classifier, which is given by

w =
N

∑
n=1

yn(αn − α∗n)t
a
n. (12)

Again, the weights of SVM classification vector w ∈ Ra are indicators of the relevance of each of
the considered eigenvectors in our problem.

3. Experiments and Results

As previously described, our database consisted of 17 patients with a total of 1391 cases
(82 ± 60 points per patient). The points in each case were tagged by the expert cardiologists.
This database was randomly divided, in such a way that 80% (20%) of the data were in the training
(test) set. The PCA was applied to the training group, and the projected vectors resulting from this
analysis were used to train the Fisher and SVM classifiers. The trained classifiers were subsequently
tested with the test group. Each process is specifically described below.

3.1. Results with the Conventional Force Threshold

With respect to the labels established by the experts on the catheter-tissue contact, a nomenclature
was used to establish the vector groups according to the different confidence on the labels. On the one
hand, cases with label 0 were included in the high-confidence contact group, whereas cases with label 3
were in the high-confidence non-contact group. On the other hand, cases with label either 0 or 1 were
included in the likely contact group, whereas cases with labels 2 or 3 were in the likely non-contact group.
Note that the first group accounts for those cases that were more clearly identified in terms of contact
or not by the expert, whereas the second group also includes those doubtful cases in the analysis.

The histogram representation of the force signals as recorded at the peak time of each
corresponding EGM is shown in Figure 2. When analyzing each of the groups, it can be seen that the
high-confidence contact group has a range about −10 gr to 80 gr of force applied to the sensor, in most
cases above the 5-gr threshold. In the case of the likely contact group, it has a range between −25 gr to
60 gr, with the histogram bin around the threshold being about the distribution mode. In the case of



Sensors 2018, 18, 1399 8 of 17

the likely non-contact group, the force values present a range from −25 gr to 15 gr, and most of the
signal samples are below the threshold. Finally, in the case of the contact high-confidence non-contact
group, the force sample distributions are quite similar, though with a general amplitude decrease
in the second one. Note the presence of negative tails in all the groups, specially (but not only) in
the non-contact ones. Note also that discriminating between contact and non-contact by using the
threshold can produce some number of misclassifications, as an overlap zone exists among groups,
and the most likely error to happen is to establish that a point has no contact when it really represents
a tissue-catheter position.

Figure 2. Histograms of the force signal values at the time of the EGM peak, according to the
conventional criterion. The 5-gr threshold is depicted (vertical red line).

3.2. PCA on Force Signals

The PCA was used to scrutinize the data patterns of the force signals, first for each of the labels
separately, and then in the two described sets of grouped labels. The following three figures that are
next presented are related to the PCA of the different labels and label groups, and they follow the same
structure and use six panels for each analysis, see Figure 3. Panel (a) depicts the first 20 eigenvalues,
hence yielding an idea of the relevance of their corresponding eigendirections, and Panel (b) represents
the first six eigenvectors in order to be able to inspect their waveforms and to establish the characteristic
signal patterns for the analyzed groups. Panel (c) shows a representative force signal example in each
group, and then, the contributions of up to 10 eigendirections, as weighted by the projection of the
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example signal on them, are represented separately (Panel (d)) and accumulated (Panel (e)), in such
a way that the convergence to a quality estimation (reduced residual) of the example signal can be
readily scrutinized. Finally, Panel (f) shows the weights of the projected example signal on the first
10 eigenvectors, to give an idea of the relevance of each of the projected weights in that example.

0

0.5

1

1.5

2
10

7

0 5 10 15 20

(a)

0.5 1 1.5 2

0.06

0.08

0.5 1 1.5 2

-0.1

0

0.1

0.5 1 1.5 2

-0.1

0

0.1

0.5 1 1.5 2

-0.1

0

0.1

0.5 1 1.5 2

-0.1

0

0.1

0.5 1 1.5 2

-0.1

0

0.1

(b)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

20

25

30

35

40

45

50

55

60

(c)

2

0

-2

-4

0

2
4

-66

20

8
10

40

(d)

2

0

-2

-4
2

30

4 -66

40

8
10

50

60

(e)

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

(f)

0

2

4

6

8

10
5

0 5 10 15 20

(g)

0.5 1 1.5 2

0.05

0.1

0.5 1 1.5 2

-0.1

0

0.1

0.5 1 1.5 2

-0.1

0

0.1

0.2

0.3

0.5 1 1.5 2

-0.1

0

0.1

0.2

0.5 1 1.5 2

-0.2

-0.1

0

0.1

0.5 1 1.5 2

-0.1

0

0.1

0.2

(h)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-6

-4

-2

0

2

4

6

8

(i)

2

0

-2-2

-4
2

-1

4
-66

0

8
10

1

2

(j)

2

0

-2-2

-4
2

4

0

-66
8

2

10

4

(k)

-10

-5

0

5

1 2 3 4 5 6 7 8 9 10

(l)

Figure 3. PCA results for the high-confidence contact (a–f) and non-contact (g–l) groups, separately:
(a,g) First 20 eigenvalues; (b,h) Signal patterns for the first six eigenvectors of the decomposition;
(c,i) Examples of signals with clearly stable and loose contact; (d,j) Contributions of the first
10 eigendirections weighted by the example signal projection on them; (e,k) The same for the
accumulated contributions; (f,l) Weights of the projected example signal on those first 10 eigenvectors.

Figure 3 shows the results obtained by analyzing the high-confidence contact (non-contact) groups
from (a) to (f) (from (g) to (l)). The high-confidence contact group exhibits the following characteristics.
On the one hand, the first eigenvalue is clearly the most relevant one and it is associated both to visible
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pulsatility as well as an increasing trend. This trend is consistent with the observed increased force
values during the last two seconds when the EGM are recorded at each point. On the other hand,
the second eigenvalue shows a decreasing trend, again consistent with those cases when the local
average force is reduced at the end of the force recording period. Note that these patterns can be
present either as plotted or with negative sign, according to the sign given by the projection of each
specific force case. Additionally, the pulsatility is mostly related with the average cardiac rhythm cycle,
but there are changes in the pulsatile force waveforms for each specific case, and these differences are
provided by eigenvectors 3 and 5, which are associated to a moderately large eigenvector, but this is
enough to contribute with the relevant waveform information in this set of cases. It can be seen too that
eigenvector 4 provides an additional trend pattern (high, low, high again), whereas eigenvector 6 is
a mixed one, given by noisy activity followed by a pulsatile pattern in the end of the signal, i.e., in the
time interval where the EGM has been simultaneously recorded. Later, the following eigendirections
seem to provide few relevant contributions to the signal patterns. In order to verify this, a signal
example was chosen where the contact was clear and stable, in terms of pulsatility and average
value, as seen in Figure 3c. In this case, Panel (d) shows the eigendirections weighted by the example
projection weights in Panel (f). While weights 7 to 10 in the weight vector obtained for a = 10 seem to be
numerically relevant, it can be seen in Panel (e) that the accumulated signal reconstruction is very close
to the original one with the first six components; hence, this group exhibits high signal-to-noise ratio.

Figure 3 also shows in Panels (g) to (l) the results for the high-confidence non-contact group,
which has the following characteristics. The first eigenvalue is markedly smaller than in the case of the
high-confidence contact group, but still it is markedly larger than the other eigenvalues in its group.
In this case, this first eigendirection corresponds to a decreasing trend. It can be seen that the six first
eigendirections have some moderate pattern of pulsatility, but there is no specific pulsatile direction,
and instead it is at most mixed among random patterns. The example scrutinized in this group,
at Panel (i), is again built with enough quality with about the first eight eigendirections. Note that in
this case, the contribution of the first eigendirection is markedly smaller, as this example has a small
average value.

Figure 4 shows the results obtained when analyzing the likely-contact (likely non-contact) groups
separately, in Panels (a) (Panel (b)). The eigenvalue profile in the contact group is similar to the
high-confidence contact group, but now the most relevant profiles in Panel (b) often include mixed
pulsatility and trends (eigendirections 1, 2, 3, 4, and 5). In addition, a new type of pattern can be
seen, which consists of pulsatility that is modulated with its amplitude increasing to the end of the
time interval (eigendirections 1 and 4). Again, the signal is estimated with acceptable quality by
using 8 eigenvectors. A moderate signal-to-noise can be observed now in the force signals in this
group. The eigenvalue profile in the likely non-contact group is also similar to the high-confidence
non-contact group, though the first eigenvalue (corresponding to the group average) is in this case
larger. Now, the first relevant eigendirections also include mixed patterns of trends with some presence
of pulsatility (e.g., as in eigendirections 3 and 4).

After analyzing the patterns of the different contact and non-contact groups separately, we
examined the patters of the complete database, as seen in Figure 4. On the one hand, the likely-contact
group (all cases together) shows an eigenvalue profile which is similar to the previous ones (and more
similar to the contact subgroups). Current relevant patters in this complete set include a mixture of
purely pulsatile waveforms (eigendirection 5), pulsatility with increasing amplitude (eigendirections 1
and 4), trends with some pulsatility (eigendirections 3 and 6), and just trends (eigendirection 2). On the
other hand, in the high-confidence contact group (cases with labels 0 and 3), eigendirections 1 and 2 are
very similar to the ones in the complete dataset, and the patterns include purely pulsatile waveforms
(eigendirections 3 and 5), pulsatility with increasing amplitude (eigendirection 1), trends with small
pulsatility or pulsatility at the end of the signal (eigendirections 2, 4, and 6). Overall, we can check in
all the examples that 8 to 10 components yield acceptable quality in the force signal reconstruction.
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Figure 4. PCA results and signal patterns for the first 6 eigenvectors of the decomposition in likely
contact (a), likely non-contact (b), likely (c), and high-confidence (d) groups, using all cases and both
contact and non-contact groups, separately.

3.3. Classification Using PCA Weights

The weights from the projection of each force signal on the eigenvectors of different groups were
shown for some examples in the previous section. These weights can be used to analyze which are the
most relevant eigendirections and also their corresponding patterns, when analyzed in the complete
data set.

This has been addressed in Figure 5 (upper panel), where the projection weights ts
m are represented

for a = 10 and both in the high-confidence contact and non-contact (blue and red) data matrices. It can
be seen that the weight of the first eigenvector is usually positive and notably larger in the contact
than in the non-contact cases, nevertheless, the greatest amount of information is concentrated on it.
The other weights (2 to 10) show a similar structure among them, given in the high-confidence contact
cases by usually small weights together with a few greater weights, though the feature number of the
prominent weights differ in each case. In addition, in general they are visibly smaller and distributed
around zero in the high-confidence non-contact cases. With respect to the likely-contact cases (lower
panel), the first weight is again prominent in the contact cases, but it is also noticeably higher than in
the non-contact cases. The other weights (2 to 10) consist both on small values together with some
larger positive and negative weights, but the number of larger weights seems to be higher in the
contact cases. Accordingly, differences exist in the weights of contact and non-contact cases, but they
cannot be immediately used quantitatively in order to discriminate if the catheter is in contact or not.
Moreover, it is desirable to quantify how relevant each of the eigendirections are in the database.
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!

!

Figure 5. Representation of the weights given by the projection of each force signal case on the first
10 eigenvectors, for the contact (blue) and non-contact (red) cases, for a = 10, in the high-confidence
(up) groups and on the complete database (down). The oval emphasizes that the differences are more
visually patent on the first four weights, in such a way that larger variance can be observed on them.
Nevertheless, the other components also exhibit statistical differences, which can be less present to the
naked eye, but can be exploited from statistical data processing techniques.

For this purpose, we used the projected vectors of the signal force cases (again with a = 10)
to build several linear classifiers, which were trained and tested with 80% and 20% of the database
cases, respectively. Note that only the training samples were used to perform the PCA projection
matrices. This procedure was repeated 10 times, which allowed us to scrutinize the distribution of the
estimations for each classifier weight.

The classification results for this experiment are shown in Table 2, where the Area Under the Curve
(AUC), is shown for the two classifiers applied to the different contact groups. Note the AUC can be
seen as a merit figure for the classifiers, in such a way that the closer to one, the lower overlap between
the two scrutinized classes. The likely-contact vs. likely non-contact classifiers exhibit greater overlap
between classes, although 0.85 is a sufficient AUC value to indicate that the features given by the
PCA projections in this case contain relevant information about the classification. The high-confidence
contact vs. high-confidence non-contact classifiers yielded AUC average of 0.95, which represents
a very good quality classifier and the features used for this classification can also be scrutinized to
identify the most relevant patterns. As shown in the table, the AUC medians are similar to the means
and the standard deviations are small in all the classifiers.

Further details on the classification performance can be seen in Figure 6, where the left panels
show the actual group and the estimated group for each classifier. Classification errors are more patent
in the low-AUC classifiers, at the likely contact vs. non-contact groups, and these errors in general
are similarly distributed between classes. However, in the high-AUC classifiers, the scarce errors
only (SVM) and mostly (FLD) correspond to actual contact cases which have been misclassified as
non-contact ones.
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Table 2. Results of FLD and SVM classifiers in terms of AUC, where mn, md, and sd denote the mean,
median, and standard deviation through all the cross-validation runs.

Classifier Classified Groups mn md ss
FLD High-confidence contact vs High-confidence non-contact 0.95 0.96 0.02
FLD Likely contact vs Likely non-contact 0.84 0.83 0.02
SVM High-confidence contact vs High-confidence non-contact 0.94 0.94 0.02
SVM Likely contact vs Likely non-contact 0.85 0.85 0.01

After checking that the classifiers provide enough performance in terms of the AUC, it is possible
to study the relevance and significance of the weights in each classifier and to interpret the clinical
meaning of the trained machines. Recall that each classification weight is associated to a given
projection weight, so that by looking at its corresponding eigenvector it is possible to determine the
patterns that are actually relevant to the classification. In Figure 6 (right panels), the weights for the
different classifiers are represented. In the likely contact vs. likely non-contact group classifiers, we can
see that classifier weights 3 to 10 are in a rank which either overlaps zero or is very close to it, at least
in one of the two classifiers. Therefore, it can be inferred that weights 1 and 2 are the most relevant
to distinguish between these clearly differentiated classes, which corresponds to eigenvectors 1 and 2
in Figure 4a,b, and hence to a pulsatile with increasing amplitude pattern and to a biphasic trend
pattern. These patters convey enough information to distinguish between contact and non-contact
groups. Note that classification weight 1 is always positive, which is consistent with the positive and
larger mean in class y = 1 in the classifier (contact), and also, classification weight 2 is negative and
multiplying a decreasing trend, which is consistent with an increased trend value in the end of the
contact cases. In the high-confidence group classifiers, classifier weights 1 and 2 exhibit a similar
trend to the previous case, and they are very similar, which is consistent with the similarity found in
Figure 4c,d on the two first eigendirections for both contact and non-contact groups. In this case, several
other weights become relevant in both classifiers, namely, classifier weights 3, 4, 6, and 10. The patterns
in these eigendirections allow a better description of the details required in the easier cases.
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Figure 6. Cont.
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Figure 6. Classification results for FLD (a–d) and SVM (e–h), for high-confidence contact (a,b and
e,f) and likely contact (c,d and g,h) groups. Left panels show target classification (red points) and
machine-provided classification (in blue). Right panels depict the vector weights for the classifiers and
for the 10 repetitions.

4. Discussion and Conclusions

In this work, the determination of the catheter-tissue contact in electrophysiological studies for
arrhythmia therapy has been analyzed in terms of the force signals recorded in force sensors at the
EGM recording catheter. The conventional criterion of using a single-sample threshold of 5-gr as
measured at the EGM peak time has been shown to be limited for the clinical practice. A previous study
from our group aimed to use simple statistical features, such as the correlation coefficient, in order to
scrutinize the improvement of tissue-catheter contact, but these simple features were not enough to
give an operative system [28]. The use of PCA has allowed us to establish the relevant patterns that can
be found in this type of signal, and the use of linear classifiers has further allowed the establishment
of the suitability of these signals to identify the existence of contact or non-contact in an acceptable
number of cases.
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Several limitations to the presented study can be identified. The labeling of contact vs. non-contact
was done by experts, but still it can sometimes be subjective. An objective index would undoubtedly
improve the performance and quality of the proposed system. Nevertheless, the proposed methodology
would be readily and similarly used in that case. The use of linear classifiers could be improved by
nonlinear classifiers in terms of system accuracy; nevertheless, here we restricted ourselves to the first
ones because they allow to scrutinize the relevant patterns for the classification, and hence to provide
clinical understanding of the problem at hand and of the proposed solution. Nevertheless, both the
signal processing procedures and the implementation of the tuned machine learning classifiers require
a very moderate and acceptable computational burden.

We can conclude that the proposed system can be used to determine the presence of tissue-catheter
contact during arrhythmia procedures, which would improve the quality of the maps elaborated by
current intracardiac navigation systems, and in general the improvement of the functionality provided
by current force sensors at EGM catheters. The proposed method could be used as a subsystem for
current cardiac navigation systems supporting the clinical ablation procedures in two ways. On the
one hand, it can be used on-line while recording the EGM and creating the maps, so that the clinician
is advised of the likely good quality of the tissue-catheter contact, hence only those points which
are clearly in contact are accepted. This represents a similar concept to the use of thresholds in
current systems, but the use of signal processing profiles should improve this quality. On the other
hand, they could be used off-line, after taking the patient measurements, in order to discard those
points which were less-likely high-quality contact, and hence improving the final map. In both cases,
force-signal profiles should be taken into account and would be advantageous to the clinical procedure.
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