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Background High-throughput approaches are increasingly
being used to identify genetic associations across multiple
phenotypes simultaneously. Here, we describe a pilot
analysis that considered multiple on-treatment laboratory
phenotypes from antiretroviral therapy-naive patients who
were randomized to initiate antiretroviral regimens in a
prospective clinical trial, AIDS Clinical Trials Group
protocol A5202.

Participants and methods From among 5 9545 294
polymorphisms imputed genome-wide, we analyzed 2544,
including 2124 annotated in the PharmGKB, and 420
previously associated with traits in the GWAS Catalog. We
derived 774 phenotypes on the basis of context from six
variables: plasma atazanavir (ATV) pharmacokinetics,
plasma efavirenz (EFV) pharmacokinetics, change in the
CD4+ T-cell count, HIV-1 RNA suppression, fasting low-
density lipoprotein-cholesterol, and fasting triglycerides.
Permutation testing assessed the likelihood of associations
being by chance alone. Pleiotropy was assessed for
polymorphisms with the lowest P-values.

Results This analysis included 1181 patients. At P less than
1.5× 10− 4, most associations were not by chance alone.
Polymorphisms with the lowest P-values for EFV
pharmacokinetics (CYPB26 rs3745274), low-density
lipoprotein -cholesterol (APOE rs7412), and triglyceride
(APOA5 rs651821) phenotypes had been associated
previously with those traits in previous studies. The
association between triglycerides and rs651821 was

present with ATV-containing regimens, but not with EFV-
containing regimens. Polymorphisms with the lowest
P-values for ATV pharmacokinetics, CD4 T-cell count, and
HIV-1 RNA phenotypes had not been reported previously to
be associated with that trait.

Conclusion Using data from a prospective HIV clinical trial,
we identified expected genetic associations, potentially novel
associations, and at least one context-dependent
association. This study supports high-throughput strategies
that simultaneously explore multiple phenotypes from
clinical trials’ datasets for genetic associations.
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Introduction
Access to safe and effective antiretroviral therapy (ART)

is critical in the global response to the AIDS pandemic.

Genetic polymorphisms in drug absorption, distribution,

metabolism, and elimination (ADME) genes and off-

target genes have convincingly been shown to be asso-

ciated with adverse effects and/or pharmacokinetics of

antiretroviral drugs including abacavir (ABC) [1], ataza-

navir (ATV) [2], dolutegravir [3], efavirenz (EFV) [4],

etravirine [5], lopinavir [6], and nevirapine [7], and

genetic screening to avoid ABC hypersensitivity reaction

is now the standard of care in many resource-abundant

countries.

Genome-wide association studies (GWAS) explore whe-

ther an individual trait (i.e. phenotype) associates with

single-nucleotide polymorphisms (SNPs) across the

genome. Only one phenotype is typically considered in a
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GWAS. The term ‘phenome’ describes the aggregate of

many phenotypes in a given dataset. Phenome-wide

association studies (PheWAS) complement GWAS by

testing for genotype–phenotype associations across

numerous phenotypes [8–12]. A PheWAS may inter-

rogate a single SNP against the phenome or may inter-

rogate numerous SNPs simultaneously. Also unique to

PheWAS is the ability to identify pleiotropy, whereby

one SNP is found to be associated with multiple see-

mingly unrelated phenotypes [13,14].

Context-dependent genetic associations with anti-

retroviral drugs are well described. Failure to consider

context may miss or underestimate important genetic

associations. For EFV, some individuals with CYP2B6
slow metabolizer genotypes experience extremely high

plasma EFV exposure only in the context of concomitant

isoniazid [15–17]. Among individuals with CYP2B6 slow

metabolizer genotypes, the likelihood of EFV dis-

continuation for central nervous system side effects

appears to be greater in the context of European versus

African ancestry [18,19]. For ATV, among individuals

with UGT1A1 low expressor genotypes, the likelihood of

bilirubin-related drug discontinuation is considerably

greater in the context of European versus African

ancestry [20]. With nevirapine, among individuals with

HLA risk alleles, severe cutaneous reactions occur largely

when nevirapine is initiated in the context of higher CD4

T-cell counts [21].

Prospective clinical trials that randomized HIV-infected

patients to initiate different antiretroviral regimens, and

that involve extensive data collection, offer a special

opportunity to apply a multiphenotype analytical approach

focused on pharmacogenomics. We previously applied

PheWAS to pretreatment (i.e. baseline) laboratory data

National Institute of Health-funded AIDS Clinical Trials

Group (ACTG) protocols [22]. That analysis established

that our analysis pipeline for studying multiple phenotypes

is robust, with 20 polymorphisms replicating associations

with identical or related phenotypes reported in the

National Human Genome Research Institute – European

Bioinformatics Institute GWAS Catalog [23], including

several not reported previously in HIV-positive cohorts.

The present analyses explored associations with multiple

on-treatment phenotypes from ACTG protocol A5202

[24,25]. We considered a total of 774 phenotypes repre-

senting ATV pharmacokinetics, CD4 T-cell count, EFV

pharmacokinetics, fasting low-density lipoprotein (LDL)

cholesterol, HIV-1 RNA, and fasting triglycerides, and that

were derived by considering various contexts including

sex, race/ethnicity, baseline age, baseline body mass index,

baseline CD4+ T-cell count, baseline plasma HIV-1

RNA, randomized antiretroviral regimen, and component

antiretroviral drug. These context-dependent phenotypes

are useful in interpreting genome–phenome association

results and highlight relationships of potential interest

between these polymorphisms and phenotypes.

Participants and methods
Study participants

AIDS Clinical Trials Group protocol A5202 (ClinTrials.gov

NCT00118898) was a phase IIIb equivalence study of four

once-daily regimens for the initial treatment of HIV-1

infection. The primary results of A5202 have been reported

previously [24,25]. Patients enrolled from 2005 to 2007

were randomized to open-label ATV (300mg) plus rito-

navir (RTV, 100mg) or EFV (600mg) with either placebo-

controlled ABC/lamivudine (3TC) (600mg/300mg) or

tenofovir disoproxil fumarate/emtricitabine (TDF/FTC,

300mg/200mg). Study evaluations included laboratory

testing at entry, at weeks 4, 8, 16, and 24, and every

12 weeks thereafter until the last enrolled patient was

followed for 96 weeks. Analyses included A5202 partici-

pants who consented to provide DNA for genetic research

under ACTG protocol A5128.

Phenotypes

For this analysis, we considered laboratory data from

A5202 at entry and subsequent on-study weeks, and

representing immunologic, virologic, metabolic, and

pharmacologic domains. Immunologic phenotypes were

derived from CD4+ T-cell count data, which are known

to correlate with mortality on ART [26–30]. Virologic

phenotypes were derived from data on plasma HIV-1

RNA suppression to less than 200 copies/ml, which

decreases transmission [31]. Metabolic phenotypes were

derived from data on fasting LDL cholesterol and fasting

triglyceride levels, which are in the causal pathway to

myocardial infarction [32,33]. Pharmacologic phenotypes

were derived from data on EFV and ATV pharmacoki-

netics, which relate to drug efficacy and toxicity [34–41].

We define the terms variable, primary phenotype, and

subphenotype as follows: variables represent data with-

out regard to study week or context (e.g. among all study

patients, all fasting triglyceride data). Primary pheno-

types are derived from variables while also considering

study week but without regard to context (e.g. among all

study patients, fasting triglycerides at baseline, at study

weeks 24, 48, and 96, and change in fasting triglycerides

from baseline to week 24, to 48, and to 96).

Subphenotypes are derived from primary phenotypes

while considering context (e.g. the fasting triglyceride

primary phenotype noted above, but only among patients

randomized to receive ATV/RTV).

Contexts for subphenotypes were defined as follows:

categorical context included sex (male or female), self-

identified race/ethnicity (White, Black, or Hispanic),

randomized antiretroviral regimen (ATV+RTV+ABC/

3TC, EFV+ABC/3TC, ATV+RTV+TDF/FTC, or

EFV+TDF/FTC), and component antiretroviral drug

(ATV+RTV, ABC/3TC, EFV, or TDF/FTC). Because
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ATV/RTV, ABC/3TC, and TDF/FTC were always

prescribed as two-drug combinations, the component

drugs could not be analyzed individually. For continuous

baseline parameters, continuous context was derived on

the basis of percentile cut-offs for age, BMI, CD4+
T-cell count, and plasma HIV-1 RNA (10, 25, 33, 50, 67,

75, and 90 percentile for each). With this approach, we

generated a total of 774 primary phenotypes and sub-

phenotypes for analysis, as listed in Supplemental

Table 1 (Supplemental digital content 1, http://links.lww.
com/FPC/B148).

For each primary phenotype, we examined frequency

distribution plots and reviewed summary information,

identified phenotypes requiring transformation to

approximate normality to fulfill assumptions for linear

regression, assured consistent units of measurement, and

censored outliers judged to be biologically implausible.

Imputation and QC of genetic data

Patients from A5202 were genotyped with the Illumina

1M duo array as part of a previous immunogenomics

project [42]. The PLINK program and R statistical pro-

gramming language were used for QC procedures [43,44].

Polymorphisms were censored for call rates below 98%.

After excluding 10 samples where genetically inferred

sex differed from clinical data, or missing sex status that

could not be inferred, 26 samples with overall genotyping

call rates below 98%, and one sample with cryptic relat-

edness on the basis of identity-by-descent estimates of

more than 0.3 from ~ 100 000 pruned SNPs, there were

1221 samples for imputation.

Post-QC data were imputed to 1000 genomes [45] after

converting into genome build 37 using liftOver [46] and

stratifying by chromosome to parallelize imputation pro-

cessing. ShapeIt2 [47] was used to check strand align-

ment and to phase data. The IMPUTE2 algorithm [48]

was used to impute additional genotypes that were

available in the 1000 genomes reference panel, but not

directly genotyped. Each chromosome was segmented

into 6Mb regions with at least 3500 reference variants in

each region. Imputed genotypes were included if pos-

terior probabilities exceeded 0.9.

The quality of imputed data was assessed following the

Electronic Medical Records and Genomics protocol [49].

Each chromosome from each phase was checked for

100% concordance with genotyped data. We excluded

imputed SNPs with imputation scores less than 0.3,

genotyping call rates below 98%, and minor allele fre-

quencies (MAF) less than 0.01.

Candidate polymorphisms for analysis

From the set of imputed SNPs, we included in this

analysis only SNPs for which there was some a priori

evidence of a pharmacogenetic association with any drug

and phenotype on the basis of data from PharmGKB

(Pharmacogenomics Knowledgebase [50]). There were

2622 such SNPs in 761 genes that were annotated for a

possible drug–phenotype association. Of these 2622

SNPs, we included in this analysis only a subset of 2124

SNPs that were also represented in the imputed, post-

QC genome-wide data.

In addition to PharmGKB SNPs, from the set of imputed

SNPs, we also included SNPs for which previous GWAS

had shown evidence of association with any lipid-related

trait with a P-value of less than 10− 8, as represented in

the GWAS Catalog SNPs [23], which includes results

from published GWAS fulfilling catalog criteria [51].

There were 447 such SNPs, of which we included in this

analysis only a subset of 420 SNPs that were also repre-

sented in the imputed, post-QC genome-wide data. A

total of 2544 SNPs were included in the analysis (listed in

Supplemental Table 2, Supplemental digital content 2,

http://links.lww.com/FPC/B149).

Statistical analysis

When linked with available laboratory phenotypes, the

final analysis dataset included 1181 patients, 2124

PharmGKB SNPs, and 420 GWAS Catalog SNPs. Using

the R statistical package, continuous phenotypes were

modeled with linear regression and the dichotomous

phenotype with logistic regression [44]. The first three

principal components, calculated using EIGENSOFT

[52], were used to adjust for global ancestry. Each ana-

lysis was also adjusted for sex and age. Consideration of

context resulted in models of varying sample sizes. For

models with at least 100 patients, we excluded SNPs

with MAF of less than 0.05. For models with fewer than

100 patients, we excluded SNPs with MAF of less than

0.10. We did not infer or impute missing laboratory data.

Permutation testing was used to empirically derive

P-value cut-offs (PPT) [53]. Briefly, within the analysis

dataset, we permuted the connection between genotype

and phenotype data. This randomly matches each

patient’s genotypes to another patient’s phenotypes,

while preserving relationships between genotypes (e.g.

linkage disequilibrium) and between phenotypes (e.g.

correlations). Permutation was repeated 1000 times, each

generating a new dataset. We then carried out the asso-

ciation analysis on each of the 1000 datasets, from which

we determined, at various P-value cut-offs, the average

number of SNPs per analysis that pass that cut-off in the

permuted data (i.e. by chance alone). We compared this

average number with the actual number of SNPs that

passed that same cut-off in the unpermuted data. This

yields probabilities that SNP–phenotype associations at

any given P-value threshold in the unpermuted data were

by chance alone. Our approach differs from a more tra-

ditional permutation approach that would calculate per-

muted P-values for each association test, the latter

permutation approach being computationally prohibitive.
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Results
This multiphenotype analysis included data from 1181

patients from A5202, who had consented to provide DNA

for genetic research under ACTG protocol A5128. The

characteristics of the study patients are presented in

Table 1. The characteristics of patients included in the

analysis generally reflected the characteristics of all

A5202 study patients. From the available baseline and

subsequent on-study data, a total of 774 phenotypes were

derived for analysis as described under ‘participants and

methods’ section. These comprised 19 primary pheno-

types as well as 755 subphenotypes that were derived on

the basis of baseline age, sex, race/ethnicity, BMI,

CD4+ T-cell count, plasma HIV-1 RNA, randomized

antiretroviral regimen, and component antiretroviral

drug. This generated 68 phenotypes for ATV pharma-

cokinetics, 84 for CD4 T-cell count, 34 for EFV phar-

macokinetics, 252 for fasting LDL cholesterol, 84 for

HIV-1 RNA, and 252 for fasting triglycerides. Definitions

for each of the 774 phenotypes are provided in

Supplemental Table 2 (Supplemental digital content 2,

http://links.lww.com/FPC/B149).

From the imputed genome-wide genotype data on these

study patients, a total of 2501 SNPs (which were repre-

sented in either PharmGKB or the GWAS Catalog) pro-

vided at least one association result with at least one

phenotype in this analysis. As noted in ‘participants and

methods’ section, we excluded SNPs with MAF of less

than 0.05 from models with at least 100 patients and

SNPs with MAF of less than 0.10 from models with fewer

than 100 patients. A total of 1 773 707 SNP–phenotype

pairs provided P-values for association.

To assess the likelihood that associations were by chance

alone, permutation testing was used to empirically derive

PPT to determine the probability that SNP–phenotype

associations in the unpermuted data were by chance

alone, as described in ‘participants and methods’ section.

For example, at PPT less than 1.5× 10− 4, 50% of

SNP–phenotype pairs in this analysis are likely not by

chance alone (Fig. 1). Of the 1 773 707 SNP–phenotype

pairs noted above, P-values for 737 (0.04%) were less

than this PPT threshold. The number of patients inclu-

ded in each model ranged from 18 (e.g. for EFV con-

centrations in patients younger than 26 years of age) to

1080 (e.g. for HIV-1 RNA response at 48 weeks), with a

median of 242 patients per model.

Within each phenotype domain, association results for

the five SNPs with the lowest P-value with at least one

phenotype are presented in Table 2. For EFV pharma-

cokinetics, fasting LDL-cholesterol, and fasting trigly-

ceride phenotypes, the SNP with the lowest P-value had

previously been associated with that trait at P less than

5.0× 10− 8 in at least one GWAS [4,54]. For the five

SNPs with the lowest P-values in EFV pharmacokinetics,

fasting LDL-cholesterol, and fasting triglyceride domains

(15 SNPs total), Manhattan plots for associations between

each SNP and as many as 774 phenotypes across all six

domains are shown in Fig. 2.

For EFV concentrations, the lowest P-value was with

rs3745274 (P= 1.1× 10− 28) among all 351 patients

with evaluable data, but rs3745274 was also associated with

numerous other context-derived EFV subphenotypes

(Fig. 2). Log10 P-values for association between rs3745274

and EFV concentrations correlated very strongly with

sample size in the model (Spearman’s ρ= 0.95, P< 0.0001),

suggesting that this genetic association was present irre-

spective of context (i.e. sex, race/ethnicity, randomized

antiretroviral regimen, component antiretroviral drug,

baseline age, BMI, CD4+ T-cell count, and plasma HIV-1

RNA). In contrast, an association between rs10871777 and

EFV concentration (P=2.0× 10−5) was only observed

Table 1 Baseline characteristics of study patients included in
phenome-wide association studies

Characteristics
PheWAS patients

(N=1181)
All A5202 patients

(n=1957)

Race/ethnicity [n (%)]
White 515 (44) 746 (40)
Black 378 (32) 615 (33)
Hispanic 244 (20) 429 (23)

Female [n (%)] 183 (15) 322 (17)
Median BMI in kg/m2 (IQR) 24.8 (22.1–27.9)
Median age in years (IQR) 38 (31–46) 38 (31–45)
Median baseline plasma HIV-1
RNA copies/ml (IQR)

4.7 (4.3–5.0) 4.7 (4.3–5.0)

Median baseline CD4+ T-cell
count in cells/mm3 (IQR)

232 (98–338) 230 (90–334)

IQR, interquartile range.

Fig. 1
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PPT =1.5x10-4

Empirically derived P-values on the basis of permutation testing.
Permutation testing was used to empirically derive P-value cut-offs
(PPT). Briefly, within the dataset used for association analysis, we
permuted the connection between genotype and phenotype data.
Permutation was repeated 1000 times, each generating a new dataset.
We then carried out analyses on each of the 1000 datasets, from which
we determined, at various P-value cut-offs, the average number of single
nucleotide polymorphisms (SNPs) per analysis that pass that cut-off in
the permuted data. We compared this average number with the actual
number of SNPs that passed that same cut-off in the unpermuted data,
providing an empiric determination of the probability that
SNP–phenotype associations in the unpermuted data were by
chance alone.
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among 34 individuals with baseline BMI in the lowest 10th

percentile, but not among 80 individuals with BMI in the

lowest 25th percentile (P= 0.01), nor among 108 indivi-

duals with BMI in the lowest 33rd percentile (P= 0.25)

(Fig. 2). Furthermore, there was no hint of association

between rs10871777 and EFV concentration within any

other decile of BMI (i.e. 10th to 20th decile, 20th to 30th

decile, etc.), considering both P-values and β coefficients

(data not shown).

For fasting LDL-cholesterol, the lowest P-value was

between rs7412 in APOE and week 96 LDL-cholesterol

among all 853 evaluable patients. As shown in Fig. 2,

rs7412 was associated with numerous context-derived

LDL-cholesterol phenotypes. Associations were only

with absolute values of LDL-cholesterol at individual

study weeks, not with LDL-cholesterol change from

baseline. Log10 P-values for association between rs7412

and LDL-cholesterol correlated directly with sample size

in the model (Spearman’s ρ= 0.64, P< 0.0001), without

strong evidence for context dependence. For example,

rs7412 was associated with week 96 LDL-cholesterol

among patients randomized to either ATV/RTV-con-

taining ART (n= 419, P= 2.0× 10− 7) or to EFV-

containing ART (n= 435, P= 2.7× 10− 4). In addition,

rs9644568 (near LPL) was associated with LDL-

cholesterol change to week 96 among 63 individuals

with baseline BMI in the lowest 10th percentile, but few

other LDL-cholesterol phenotypes, but was more broadly

associated with triglyceride phenotypes. In contrast, an

association between rs16998073 and LDL-cholesterol at

week 48 (P= 2.9× 10− 7) was only at week 48 among 416

individuals in the lower 50th percentile for age (less than

38 years), but less so among individuals in the lowest 33rd

percentile for age (n= 270; P= 3.6× 10− 3) or in the top

33rd percentile for age (n= 277; P= 0.042) (Fig. 2).

For fasting triglycerides, the lowest P-value was between

rs651821 in APOA5 and week 96 triglycerides among 439

individuals randomized to the ATV/RTV-containing ART.

As shown in Fig. 2, rs651821 was associated with numerous

context-derived triglyceride subphenotypes, including both

absolute values at individual study weeks and change from

baseline. Although log10 P-values for associations between

rs651821 and triglycerides tended to correlate with phenotype

sample size (Spearman’s ρ=0.42, P<0.0001), there was some

evidence for context dependence. For example, rs651821

was associated with week 96 triglycerides among patients

randomized to ATV/RTV-containing ART (n=439, P=
4.3×10−7), but not EFV-containing ART (n=543, P=0.24).

Furthermore, among patients randomized to ATV/RTV-

containing ART, this association between rs651821 and week

96 triglycerides was also observed with concomitant TDF/

FTC (n=219, P=2.3×10−4), with concomitant ABC/3TC

(n=221, P=2.5×10−4), and was also observed at week 48

(n=481, P=3.2×10−4). Among patients randomized to

Table 2 Association results for the five lowest P-value single nucleotide polymorphisms within each phenotype domain

Domains SNP Chromosome Genea Phenotype Baseline contextb Cases Controls MAF P-value

Atazanavir PK rs12683493 9 ABO, SURF6 Atazanavir clearance CD4<23 45 NA 0.20 7.54E−06
Atazanavir PK rs7671266 4 SLC2A9, WDR1 Atazanavir clearance Hispanic 115 NA 0.31 1.18E−05
Atazanavir PK rs1137101 1 LEPR Atazanavir exposure VL<3.93 38 NA 0.53 1.74E−05
Atazanavir PK rs57270423 13 ABCC4 Atazanavir clearance Age<26 59 NA 0.22 2.85E−05
Atazanavir PK rs2071427 17 NR1D1 Atazanavir exposure Age>52 41 NA 0.47 3.58E−05
CD4 T-cells rs2368393 10 MIR604 CD4 change to week 96 All patients 970 NA 0.29 1.67E−06
CD4 T-cells rs1799964 6 LTA, TNF CD4 change to week 48 ATV/r arm 529 NA 0.19 1.99E−06
CD4 T-cells rs112227868 6 HLA-DRA CD4 change to week 48 Black 337 NA 0.09 7.39E−06
CD4 T-cells rs1555543 1 PTBP2 CD4 change to week 96 VL>5.71 101 NA 0.43 8.47E−06
CD4 T-cells rs7941030 11 UBASH3B CD4 change to week 48 CD4 <23 102 NA 0.38 1.42E−05
Efavirenz PK rs3745274 19 CYP2B6 Efavirenz concentration All patients 351 NA 0.28 1.08E−28
Efavirenz PK rs8192719 19 CYP2B6 Efavirenz concentration All patients 359 NA 0.29 9.22E−28
Efavirenz PK rs2279345 19 CYP2B6 Efavirenz concentration All patients 359 NA 0.33 8.40E−22
Efavirenz PK rs7746993 6 GSTA5, GSTA10P Efavirenz concentration BMI<23 108 NA 0.06 7.35E−06
Efavirenz PK rs10871777 18 None Efavirenz concentration BMI<20.1 34 NA 0.20 2.00E−05
LDL-cholesterol rs7412 19 APOE LDL at week 96 All patients 853 NA 0.09 2.85E−10
LDL-cholesterol rs9644568 8 SLC18A1, LPL LDL change to week 96 BMI<20.1 63 NA 0.10 5.38E−08
LDL-cholesterol rs6731242 2 UGT1A10 LDL change to week 96 VL>5.71 69 NA 0.13 1.02E−07
LDL-cholesterol rs2725252 4 ABCG2 LDL change to week 96 BMI<20.1 63 NA 0.40 2.14E−07
LDL-cholesterol rs16998073 4 ABCG2 LDL at week 48 Age<38 416 NA 0.21 2.87E−07
HIV-1 RNA rs7865618 9 CDKN2B-AS1 HIV RNA <200 at week 96 VL>5.0 247 12 0.29 6.20E−07
HIV-1 RNA rs2270777 12 CDK4 HIV RNA <200 at week 96 BMI>31.9 93 6 0.34 9.86E−07
HIV-1 RNA rs1491850 11 BDNF, KIF18A HIV RNA <200 at week 48 CD4>302 326 20 0.39 2.16E−06
HIV-1 RNA rs324026 3 DRD3 HIV RNA <200 at week 96 VL>5.0 247 12 0.46 8.68E−06
HIV-1 RNA rs6280 3 DRD3 HIV RNA <200 at week 96 VL>5.0 247 12 0.46 8.68E−06
Triglycerides rs651821 11 APOA5 TG at week 96 ATV/r arm 439 NA 0.12 4.33E−07
Triglycerides rs6589566 11 ZPR1 TG at week 96 ATV/r arm 437 NA 0.07 6.18E−07
Triglycerides rs2302821 9 PTGES TG change to week 96 CD4>302 275 NA 0.17 7.82E−07
Triglycerides rs10790162 11 BUD13 TG at week 24 BMI>26.7 317 NA 0.07 8.21E−07
Triglycerides rs1558861 11 BUD13 TG at week 24 BMI>26.7 317 NA 0.06 8.21E−07

CD4, absolute CD4+ T-cell count; LDL, low-density lipoprotein; MAF, minor allele frequencies; NA, not available; PK, pharmacokinetics; SNP, single nucleotide
polymorphism; VL, plasma HIV-1 RNA (i.e. viral load).
aWhen there are two genes named, the SNP is in the intergenic region, or within overlapping genes.
bUnits are as follows: CD4, T-cells/mm3; BMI, kg/m2; VL, log10 HIV-1 RNA copies/ml; age, years.
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EFV-containing ART, an association between rs651821 and

week 96 triglycerides was also absent with concomitant TDF/

FTC (n=224, P=0.04), with concomitant ABC/3TC

(n=230, P=0.86), and at week 48 (n=488, P=0.02). In

contrast, among individuals with baseline CD4 count of more

than 302, there was an association between rs2302821 and

change in triglycerides at week 96 (n=275, P=7.8×10−7),

but not at week 48 (n=296, P=0.45).

For ATV pharmacokinetics, CD4 T-cell count, and HIV-1

RNA phenotypes, the SNP with the lowest P-value had

not been reported previously to be associated with that

trait (Table 2). For the five SNPs with the lowest P-values
in ATV pharmacokinetics, CD4 T-cell count, and HIV-1

RNA domains (15 SNPs total), Manhattan plots for asso-

ciations between each SNP and as many as 774 pheno-

types across all six domains are shown in Fig. 3. For ATV

pharmacokinetics, the lowest P-value was with ATV

clearance among patients with baseline CD4 T-cell count

of less than 23 cells/mm3 (n= 45), and was with

rs12683493, which is intergenic between ABO and SURF6
(P= 7.5× 10− 6). For CD4 T-cells, the lowest P-value was

with change in patients CD4 T-cell count from baseline to

week 96 among all patients (n= 970) and was with

rs2368393 in both MIR604 and SVIL (P= 1.7× 10− 6). For

HIV-1 RNA, the lowest P-value was with HIV-1 RNA

control at week 96 among patients with baseline HIV-1

RNA of more than 5.0 log10 copies/ml (n= 247) and was

with rs7865618 in CDKN2B-AS1 (P= 6.2× 10− 7).

Discussion
Phenome-wide association studies typically rely on obser-

vational data collected from electronic medical records,

which may be subject to variability in the timing and com-

pleteness of data collection. The present multiphenotype

analysis is unique in that it is the first to explore on-

treatment data from a prospective clinical trial. The

Fig. 2

Efavirenz LDL Triglycerides

rs7412 (APOE) 

rs2725252 (ABCG2) 

rs6731242 (UGT1A10) 
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rs3745274 (CYP2B6) 

rs7746993

rs8192719 (CYP2B6) 
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Manhattan plots representing all phenotype associations for the five single nucleotide polymorphisms (SNPs) with the lowest P-values for efavirenz
pharmacokinetic, fasting low-density lipoprotein (LDL) cholesterol, and fasting triglyceride phenotypes. We analyzed SNPs that were annotated
previously for any drug in the PharmGKB or associated previously with any trait in the GWAS Catalog, and that were also represented in the imputed,
post-QC genome-wide data. Each marker represents, for each phenotype, the –log10 P-value for association with the indicated SNP. Color-coded
phenotype categories are indicated at bottom left of figure. Note that the scale of the Y-axis differs between plots.
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collection of specific data elements at predetermined inter-

vals before and after initiation of therapy makes clinical trials

an attractive resource of structured longitudinal data to

evaluate pharmacogenomic associations.

The present study characterized associations between

2544 SNPs from the PharmGKB and the GWAS Catalog

and 774 context-derived phenotypes among 1181 HIV-

infected participants from ACTG protocol A5202. Several

associations replicated previous reports. We readily

replicated the known association between CYP2B6 var-

iants and plasma EFV concentrations [4,55,56]. The

lowest P-value was with rs3745274, which was associated

with numerous context-derived EFV phenotypes. This

genetic association appeared to persist irrespective of

context (i.e. sex, race/ethnicity, randomized antiretroviral

regimen, component antiretroviral drug, baseline age,

BMI, CD4+ T-cell count, and plasma HIV-1 RNA). In

contrast, the association between EFV concentration and

rs10871777 (an SNP previously associated with obesity

[57]) is very likely spurious, as this was only observed

among individuals with baseline BMI in the lowest 10th

percentile.

For LDL-cholesterol, rs7412 in APOE has been asso-

ciated with LDL-cholesterol levels in previous GWAS

[54,58], and was associated with numerous context-

derived LDL-cholesterol phenotypes in this analysis.

However, it was only associated with absolute values of

LDL-cholesterol at individual study weeks, not with

LDL-cholesterol change from baseline. In addition,

there was no strong evidence for context dependence. An

advantage of PheWAS is the ability to detect pleiotropy.

In this respect, although rs9644568 (near LPL) was

associated with LDL-cholesterol change at week 96

among 63 individuals with baseline BMI in the lowest

Fig. 3

Atazanavir CD4 T-cells HIV-1 RNA

rs1137101 (LEPR) 

rs2071427 (NR1D1)
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Manhattan plots representing all phenotype associations for the five single nucleotide polymorphisms (SNPs) with the lowest P-values for atazanavir
pharmacokinetic, HIV-1 RNA, and CD4 T-cell phenotypes. We analyzed SNPs that were annotated previously for any drug in the PharmGKB or
previously associated with any trait in the GWAS Catalog, and that were also represented in the imputed, post-QC genome-wide data. Each marker
represents, for each phenotype, the –log10 P-value for association with the indicated SNP. Color-coded phenotype categories are indicated at the
bottom left of the figure. Note that the scale of the Y-axis differs between plots.
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10th percentile, but very few other LDL-cholesterol

phenotypes, it was associated more with numerous tri-

glyceride phenotypes, consistent with its previously

reported association with triglycerides in GWAS [59]. In

contrast, an association between LDL-cholesterol and

rs16998073 (an SNP associated previously with diastolic

blood pressure [60]) is very likely spurious as an asso-

ciation was observed only at week 48 among individuals

in the lower 50th percentile for age.

For triglycerides, rs651821 in APOA5 has been associated

with triglycerides in previous GWAS [61], as have three

of our other top five SNPs (rs6589566 [62]; rs10790162

[63]; and rs1558861 [64]). The SNP rs651821 was asso-

ciated with numerous context-derived triglyceride phe-

notypes, representing both absolute values at individual

study weeks and change from baseline. In addition, there

was some evidence that this association was context

dependent, with rs651821 associated with week 96 LDL-

cholesterol among patients randomized to ATV/RTV-

containing ART, but not EFV-containing ART. An

association between and change in triglycerides and

rs2302821 (an SNP associated weakly with cardiovascular

toxicity in patients treated with celecoxib [60]) is very

likely spurious, as this was observed in a phenotype at

week 96, but not at week 48.

In contrast to the above findings, SNPs with the lowest

P-values for association with ATV pharmacokinetics, CD4

T-cell count, and HIV-1 RNA phenotypes had not been

reported previously to be associated with that trait. The

validity of multiple other associations, such as those

between ATV pharmacokinetics and rs12683493 (inter-

genic between ABO and SURF6, in a haplotype impli-

cated in cough with enalapril [65]), change in CD4 T-cell

count from baseline and rs2368393 (in both MIR604 and

SVIL, not associated with risk of drug toxicity in children

with lymphoblastic leukemia–lymphoma [66]), and HIV-1

RNA control and rs7865618 (in CDKN2B-AS1, associated
with cardiovascular disease [67] and glaucoma in GWAS

[68]) may be spurious. Replication for these and other

SNP associations (many of which may be spurious) in

independent cohorts is warranted.

In this analysis, we used context as a strategy to derive

multiple subphenotypes from each primary phenotype.

Our rationale is that genetic associations for a given

SNP–trait association may differ depending on context;

thus, we expect that context-dependent associations may

be more readily identified and understood using this

approach. One advantage of this approach is that it allows

for a very granular exploration of SNP–genotype associa-

tions that may be influenced by context. We found such

context dependence in the association between rs651821

and triglyceride phenotypes among patients randomized

to ATV/RTV-containing ART regimens, but not among

patients randomized to EFV-containing ART regimens.

The random assignment of A5202 participants to receive

either ATV/RTV-containing or EFV-containing ART

decreases the likelihood that our finding was because of

confounding as unrecognized confounders should be

equally distributed across arms. This is an advantage of

using clinical trials datasets for genetic association ana-

lyses. Another advantage of granular exploration of

SNP–genotype associations is the ability to discern asso-

ciations that are almost certainly spurious by comparing

strengths of association between closely related pheno-

types. For example, among individuals with baseline CD4

count of more than 302, the association between

rs2302821 and change in triglycerides at week 96

(P= 7.8× 10− 7) is almost certainly spurious as there was

no such association at week 48 (P= 0.45).

Multiple hypothesis testing is inherent in approaches that

examine multiple phenotypes such as PheWAS, but

Bonferoni correction is not appropriate because the

assumption that tests are independent is violated. To

address this issue, we performed 1000 permutations of

the analysis to create an empirical null distribution. This

showed that in the present analysis, the majority of

models with P-value less than 1.5× 10− 4 were unlikely to

be by chance alone.

This analysis leveraged extensive a priori knowledge of

genes and phenotypes from PharmGKB and the GWAS

Catalog. This increases the likelihood of validity, biolo-

gical plausibility, and supportive publications. As was

apparent in both our previous PheWAS [22] and the

present study, disease-specific knowledge is useful in

interpreting genetic associations and to prioritize asso-

ciations for further replication and study. Because every

phenome is unique, analyses that consider large numbers

of phenotypes may benefit more so than GWAS from

disease-specific knowledge and understanding, including

relationships among phenotypes.

This study had limitations. A larger sample size may have

shown additional associations and we have not yet sought

to replicate associations in other datasets. We considered

a limited number of phenotypes and contexts. We con-

sidered ART as intent to treat. We only used available

SNPs that were available or imputed from genome-wide

genotyping, without additional genotyping. We also

focused analyses on individual SNPs, whereas multiple

SNPs considered in combination may more strongly

associate with some phenotypes. Data from prospective,

randomized clinical trials offer distinct advantages (e.g.

randomization tends to evenly distribute covariates across

study arms), but there are limitations. Although data of

ACTG clinical trials are rigorously collected and vali-

dated, electronic medical records datasets will likely

contain a wider range of variables. In addition, eligibility

criteria for clinical trials may exclude some individuals

who would otherwise be included in electronic medical

records datasets.
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In summary, this pilot study supports a multiphenotype

analysis strategy to explore clinical trials datasets for

genetic associations and to ultimately identify genetic

associations with the potential to optimize ART safety

and efficacy. This approach complements more estab-

lished GWAS by performing simultaneous calculations

for identifying genotype–phenotype associations across

numerous phenotypes. Work is ongoing to further eval-

uate and optimize multiphenotype analyses for clinical

trials datasets. On the basis of results from this pilot

study, we plan to extend the PheWAS approach both to a

much more extensive set of traits and to multiple other

clinical trials datasets. This will include replication of

associations identified here.
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