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Abstract

The ability to uniquely characterize individual subjects based on their functional

connectome (FC) is a key requirement for progress toward precision psychiatry. FC

fingerprinting is increasingly studied in the neuroimaging community for this purpose,

where a variety of approaches have been developed for effective FC fingerprinting.

Recent independent studies showed that fingerprinting accuracy suffers at large sam-

ple sizes and when coarser parcellations are used for computing the FC. Quantifying

this problem and understanding the reasons these factors impact fingerprinting accu-

racy is crucial to develop more accurate fingerprinting methods for large sample sizes.

Part of the challenge in fingerprinting is that FC captures both generic and subject-

specific information. A systematic approach for identifying subject-specific FC infor-

mation is crucial for making progress in addressing the fingerprinting problem. In this

study, we addressed three gaps in our understanding of the FC fingerprinting prob-

lem. First, we studied the joint effect of sample size and parcellation granularity. Sec-

ond, we explained the reason for reduced fingerprinting accuracy with increased

sample size and reduced parcellation granularity. To this end, we used a clustering

quality metric from the data mining community. Third, we developed a general fea-

ture selection framework for systematically identifying resting-state functional con-

nectivity (RSFC) elements that capture information to uniquely identify subjects. In

sum, we evaluated six different approaches from this framework by quantifying both

subject-specific fingerprinting accuracy and the decrease in accuracy with an increase

in sample size to identify which approach improved quality metrics the most.
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1 | INTRODUCTION

Resting-state functional connectivity (RSFC) studies that estimate

connectivity based on blood-oxygen-level-dependent (BOLD) signal

measured using functional magnetic resonance imaging (fMRI) have

revealed many principles of brain function (Bandettini, 2012;

Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006;

Fornito & Bullmore, 2015; Fox & Greicius, 2010; Greicius, Krasnow,

Reiss, & Menon, 2003). Most of these studies made inferences about

RSFC at a group level and showed that such inferences are reliable

(Shehzad et al., 2009). While group-level inferences inform us of the

generic principles, they obscure principles specific to individual
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subjects that are essential for characterizing brain function in health

and disease (Dubois & Adolphs, 2016). The increased availability of

“dense” (Poldrack, 2017) scans, that is, repeated scans collected from

the same individual that resulted in hours of fMRI data from the same

subject, ranging from 60 min to 14 hr (Human Connectome Project

(HCP) Smith et al., 2013, Midnight Scan Club (MSC), Gordon

et al., 2017, MyConnectome, Laumann et al., 2015) present a tremen-

dous opportunity to identify subject-specific functional connectivity

and eventually study idiosyncratic properties of normal brain function

and disrupted brain function. This has the potential to allow neurosci-

entists to study the effect of individually targeted medicines and pro-

cedures and make progress towards “precision psychiatry”
(Poldrack, 2017; Satterthwaite, Xia, & Bassett, 2018).

With the goal of making progress towards precision psychiatry, a

problem that has received increased attention in the neuroimaging

community is that of Functional connectome (FC) fingerprinting (Finn

et al., 2015), where the goal is to uniquely identify individual subjects

using subject-specific RSFC. Specifically, given a set of N reference

fMRI scans, one from each of the N subjects, and a new target fMRI

scan from one of the same N subjects, the goal is to identify the sub-

ject by “matching” RSFC of the target scan with that of the reference

scans. As RSFC is used to match the reference and the target scans,

we refer to it as a functional fingerprint. This fingerprinting problem

has been studied using the above data sets that constitute dense

scans from individual subjects (Finn et al., 2015; Miranda-Dominguez

et al., 2014).

Early studies on FC fingerprinting reported very high accuracies

using a relatively small number of subjects. For instance, Finn

et al. (2015), using 126 subjects from HCP, reported a fingerprinting

accuracy in the range of 92–94% using whole-brain RSFC and

98–99% using frontoparietal-based RSFC. Waller et al. (2017)

reproduced the results of Finn et al. (2015) on the same data set

observing around 95% fingerprinting accuracy using frontoparietal-

based RSFC. Amico and Goñi (2018), using 100 unrelated subjects

from HCP, observed increased accuracy from 94 to 98% by per-

forming the principal component analysis (PCA) on whole-brain RSFC

and using the resultant principal components for reconstruction and

matching. Xu et al. (2016) studied fingerprinting accuracy using a

method involving the boundaries drawn between functional areas

delineated using spatial gradients (the approach is discussed elabo-

rately in Wig, Laumann, & Petersen, 2014) and reported a success rate

of up to 99% using 30 subjects.

These near 100% success rates may lead one to conclude that fin-

gerprinting is not only a relatively easy problem when dense scans are

available but also a solved problem. However, this is far from reality.

Waller et al. (2017) studied the generalization of FC fingerprinting at

numerous subjects by modeling frontoparietal-RSFC based finger-

printing accuracy using the 900-subjects December 2015, HCP data

release. They estimated heavily decreased accuracies of 62 and 42%

at 10,000 and 100,000 subjects, respectively. Understanding the rea-

son for reduced fingerprinting performance at large sample sizes is crucial

for addressing the problem effectively. On the other hand, Peña-Gómez,

Avena-Koenigsberger, Sepulcre, and Sporns (2018) showed that finer

parcellations used in the computation of RSFC resulted in increased

fingerprinting accuracy compared with coarser parcellations (Peña-

Gómez et al., 2018).

A variety of methods for performing fingerprinting using RSFC

have been developed since Finn et al.'s (2015) seminal work that

paved the way for characterizing subject-specific information in func-

tional connectivity matrices and quantifying it. For ease of compari-

son, we categorized these approaches into two classes: native-RSFC

approaches and RSFC-derived approaches. Native-RSFC methods use

the RSFC matrix as a whole or select part of it for fingerprinting.

Examples include the approach proposed by Finn et al. (2015) which

uses the correlation between connectivity values taken from a target

RSFC matrix and those from each of the reference RSFC matrices to

determine the best match. Finn et al. (2015) also used connectivity

values from a predefined sub-network in the RSFC matrix as opposed

to using the connectivity values from the entire RSFC matrix. Another

approach proposed by Peña-Gómez et al. (2018) uses connectivity

from selected regions that are deemed relevant for fingerprinting. In

contrast, RSFC-derived approaches construct new features from the

RSFC to use for fingerprinting. Examples include PCA based feature

construction (Amico & Goñi, 2018), a graph embedding based

approach (Abbas et al., 2020), and deep learning-based approaches

(Chen & Hu, 2018; Lori, Ramalhosa, Marques, & Alves, 2018; Shojaee,

Li, & Atluri, 2019). The native-RSFC methods are the simpler of the

two, in that they use a subset of original connectivity values from the

RSFC matrix. In contrast, RSFC-derived methods employ complex

machine learning models with thousands of parameters (e.g., deep

learning models by Shojaee et al. (2019), Chen and Hu (2018), and Lori

et al. (2018)) to project the RSFC matrix into a new, unfamiliar embed-

ding “space” that maximizes the variance between subjects. Despite

their vastly different complexity, both these classes of approaches

reported similar improvements in performance over the baseline

approach. This suggests that the RSFC-derived methods are not able

to capture any more signal than what is available in the native-RSFC

matrices. Moreover, the native-RSFC methods also result in the selec-

tion of interpretable features as FC information is computed using

correlation of BOLD time series.

The underlying hypothesis in native-RSFC methods is that FC

comprises both subject-specific and generic information. To perform

fingerprinting accurately an effective delineation of unique subject-

specific information is required. Native-RSFC methods are ideally

suited for this with the added advantage of capturing interpretable

features. While several native-RSFC methods have been studied indepen-

dently, a systematic study comparing such methods is needed to deter-

mine how to use RSFC elements and procedures most effectively for

fingerprinting.

In this study, we addressed three gaps in our understanding of

the FC fingerprinting problem. First, we studied the joint effects of

sample size and parcellation granularity on fingerprinting accuracy.

Second, we used a novel technique to help explain the reason for

reduced fingerprinting accuracy with increased sample size and

reduced parcellation granularity. To this end, we used a clustering

quality metric from the data mining community. Third, we developed
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a general feature selection framework for systematically identifying

procedures and RSFC elements that capture information to uniquely

identify subjects. We evaluated six different approaches from this

framework by quantifying both fingerprinting accuracy and the

decrease in accuracy with an increase in sample size. We also evalu-

ated the reproducibility of the selected features in two independent

groups of subjects.

2 | METHODS

2.1 | Data and preprocessing

In this study, we used node-time series data from the HCP1200

Parcellation + Time series + Netmats (PTN) release which is part of

the March 2017 HCP1200 data release (Smith et al., 2013). Under the

HCP protocol, all participants provided written informed consent and

the HCP study was approved by the Institutional Review Board at

Washington University in St. Louis.

As part of the HCP1200 data release, four resting-state fMRI

scans were collected from each subject on 2 days. Two, �15 min,

scans with a TR of 720 ms were obtained per day, a left-to-right

(LR) phase-encoded scan and a right-to-left (RL) phase-encoded scan.

Each fMRI scan was then preprocessed using the HCP functional

pipeline (Glasser et al., 2013; Smith et al., 2013) which included arti-

fact removal using independent component analysis (ICA) + FMRIB's

ICA-based Xnoiseifier (ICA + FIX) (Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014), and inter-subject registration using the Multi-

modal Surface Matching algorithm (“MSMAll”) (Glasser et al., 2016;

Robinson et al., 2014). The processed fMRI scans were in grayordinate

space consisting of surface vertices and subcortical voxels.

As part of the HCP1200 PTN release, these minimally-

preprocessed scans were further processed using group-PCA and

group spatial-ICA to generate group-based independent components

(ICs) at different granularities: 15, 25, 50, 100, 200, and 300. Group

ICs were then mapped to each subject's rfMRI data using dual-

regression to compute subject-specific time series for each IC. We

consider each IC as a “node” in the brain network. This processing

was performed only on 1,003 healthy young adults (ages 22–35,

469 Male, 534 Female) that have four resting-state fMRI runs of

1,200 time points each (totaling 4,800), resulting in four sets of node-

time series (one for each scan) at 15, 25, 50, 100, 200, 300

parcellation granularities. Additional details about these steps are

available in the HCP documentation (2017).

2.2 | FC fingerprinting

In this section, we define the terminology that we used in the rest of

the paper and discuss the process used for fingerprinting analysis.

We refer to fMRI scans for which we know which subject they

are collected from as “reference” scans. We refer to the new set of

scans that are to be matched with reference scans as “target” scans.

Given a set of N reference scans {R1, R2, …, RN} from N different sub-

jects, and a set of target scans {T1, T2, …, TN} from the same set of sub-

jects, the problem of FC fingerprinting is to determine for each target

scan Ti the corresponding subject's reference scan Rj by matching their

FC. There are two key steps here: (a) computing FC, (b) matching FC.

2.2.1 | Computing FC

We z-score normalized and concatenated LR and RL node time series

from each of the 2 days, creating two �30 min separate-day node

time series for each subject. For computing FC, we computed Pearson

correlation between each pair of node time series, generating a

pairwise correlation matrix. We computed FC on node time series for

the 2 days separately, resulting in two FCs from each subject: FCd1

and FCd2. As node-time series data are available for different granular-

ities of parcellation, these two FCs were computed for each granular-

ity. We refer to the set of FCs computed from day 1 node time series

at different granularities as FC15
d1 , FC

25
d1 , FC

50
d1 , FC

100
d1 , FC200

d1 , and FC300
d1

and those from day 2 node time series as FC15
d2 , FC

25
d2 , FC

50
d2 , FC

100
d2 ,

FC200
d2 , and FC300

d2 .

2.2.2 | Matching FC

For matching FCs, we used the method described in Finn et al. (2015).

Specifically, for each FC computed from a target scan Ti, we computed

the Pearson correlation between the vector constructed by taking all

upper-triangular values of the target FC matrix with that of each of

the reference FCs. The reference FC that showed the highest correla-

tion with the target FC is treated as a match. As this approach uses

connectivity values for all pairs of regions, we refer to this approach

as the Full-FC approach.

The accuracy of fingerprinting is computed as the fraction of sub-

jects for which the target scans were correctly matched with their ref-

erence scans. As we have two FCs from each subject (FCd1 and FCd2),

we computed fingerprinting accuracy in two ways: (a) using FCd1 as a

reference and FCd2 as a target, (b) using FCd2 as a reference and FCd1

as target. The results from the former and latter cases are labeled as

Day1 Ref; Day2 Tgt and Day2 Ref; Day1 Tgt, respectively.

2.3 | Silhouette coefficient based analysis for FC
fingerprinting

2.3.1 | Impact of sample size and parcellation
granularity on FC fingerprinting

To study the effect of sample size and parcellation granularity on FC

fingerprinting accuracy, we first computed the fingerprinting accuracy

for different sample sizes and parcellation granularities. We used sam-

ple sizes ranging from 100 to 1,000 subjects in steps of 100 and each

parcellation granularity (15, 25, 50, 100, 200, and 300). We repeated
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this analysis over 150 randomly sampled sets for each sample size and

granularity. To estimate fingerprinting accuracy at very large sample

sizes that are currently infeasible to enroll and study for the above

scenarios, we first learned linear models using the log-transformed

number of subjects and resultant accuracies and then estimated fin-

gerprinting accuracy at 100,000 subjects.

2.3.2 | Silhouette coefficient

The underlying hypothesis in Finn et al.'s (2015) approach is that all

FCs that are generated from the same subject reside in close proxim-

ity in some high-dimensional space and are also well separated from

FCs generated from other subjects. However, this has been chal-

lenged by observations in recent studies that found decreased finger-

printing accuracy with an increase in the number of subjects (Waller

et al., 2017). Our new hypothesis is that as we increase the number of

FCs from different subjects, there is an increase in the chance that an

FC, which previously would have correctly matched with an FC from

the same subject, may match with a new FC from a different subject.

To test this hypothesis, we used the Silhouette coefficient (Tan,

Steinbach, & Kumar, 2006), a commonly used cluster evaluation met-

ric from the data mining community, to determine how well sepa-

rated subject FCs are from other subject FCs in high-dimensional

space. The Silhouette coefficient measures the cohesion and separa-

tion of some clustering of data points in a data set (see Figure 1 left).

Values are computed for each data point ranging from −1 to 1, where

values closer to −1 indicate that the data point is more similar to

points that are assigned to other clusters than to points within its

assigned cluster, while values closer to 1 indicate that the data point

is more similar to points within its assigned cluster than to points

that are assigned to other clusters. For the fingerprinting hypothesis,

FCs computed for a subject are treated as members of a cluster. In

this scenario, negative values indicate FCs more similar to FCs from

other subjects than it is to FCs from its own subject. For a more

complete treatment of the Silhouette coefficient, we refer an inter-

ested reader to (Tan et al., 2006).

We calculated the Silhouette value for each FC (FCd1 and FCd2) by

treating the two FCs generated from a subject as members of one

cluster, that is, by creating N clusters with two members each, and

computed the average Silhouette value over all FCs. We repeated this

on 150 randomly sampled sets for sample sizes ranging from 100 to

1,000 subjects in steps of 100 and each parcellation granularity

(15, 25, 50, 100, 200, and 300). To directly measure the degree of

overlap between subject clusters, that is, the extent of FC cluttering

in a high-dimensional space, we defined an “overlap ratio” measure

which is computed as the fraction of subjects with a negative Silhou-

ette value for an FC. For example, if four subjects out of 10 contained

at least one of their two FCs with a negative Silhouette value, the

overlap ratio is 4/10 = 0.4 subjects with overlapping subject spaces.

This indicates that 40% of subjects would have misidentified FCs and

would reduce fingerprinting accuracy. To quantitatively compare the

effect of parcellation granularity on the degree of cluttering as the

sample size increased, we used the Silhouette values and overlap

ratios and learned logarithmic models, with their corresponding p-

values, with respect to the number of subjects.

2.4 | Feature selection framework for improved FC
fingerprinting

Subject-level FC contains both generic and subject-specific information.

By detecting elements of the FC that contain subject-specific informa-

tion, we can effectively utilize these elements to reduce FC cluttering

and improve FC fingerprinting accuracy at larger sample sizes.

We developed a general FC feature selection framework to dis-

cover subject-specific information from FC matrices. Our framework

computes the amount of subject-specific information present in each

feature by accounting for how well segregated each subject's FCs are

from other subject's FCs and selects the feature with the most

F IGURE 1 Left: Representation of FCs in a geometric space that reflects the underlying assumption in FC fingerprinting that FCs from the
same subject have high cohesion, that is, are very similar to each other, and FCs from one subject are separated sufficiently from FCs of other
subjects. Right: A representation that reflects our hypothesis that as we increase the number of subjects the degree of overlap between “subject
spaces” increases, thereby reducing separation

3720 LI ET AL.



subject-specific information. Our FC Feature Selection framework

consists of four design parameters: (a) What are treated as features?

(b) What FC distance measure is used to quantify the dissimilarity

between two FCs? (c) What scoring metric is used to determine the

amount of subject-specific information in a feature? (d) What number

of features will be selected? A combination of choices for the four

design parameters will result in a feature selection approach. The

parameter choices along with the resultant feature selection approach

spawned from our framework are listed in Table 1.

For each of these four design parameters, the choices we studied

in this work are discussed below.

2.4.1 | Features

The first design parameter for the FC Feature Selection framework

involves choosing which FC elements are to be used as features. We

studied two possible choices: nodes and edges. When nodes are con-

sidered, we treated the FC profile of individual nodes as features. A

node's FC profile is defined as the set of edges between a node and

all other nodes, that is, a row in the FC. As we select nodes on each

iteration, we call these approaches Node selection (NS) approaches.

Alternatively, FC edges can be treated as features. Similarly, as edges

are selected on each iteration we call these approaches Edge selection

(ES) approaches. The process of node selection and edge selection is

illustrated in Figure 2.

2.4.2 | FC distance measure

The second design parameter involves selecting a distance measure

between FCs using a feature of interest.We used two different measures:

standardized Euclidean (SE) distance (δ) and Pearson correlation (ρ).

Standardized Euclidean distance is computed as:

δkij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi− fj

� �
S−1 fi− fj

� �0q

For a node k, fi, and fj are kth rows in the ith and jth FC matrices,

respectively. S is the diagonal matrix whose diagonal elements are the

SD of elements in the kth row for all FCs considered. For an edge k, fi,

and fj are kth edge weight in the ith and jth FC matrices, respectively. S

is the SD of edge k for all FCs considered.

Note that we cannot compute correlation when individual edges

are treated as candidates for selection. As we test each edge individu-

ally, we will have to compute the correlation between two scalar

values, which is not feasible.

2.4.3 | Scoring metric

The third design parameter involves selecting a metric to capture

the amount of subject-specific information available in each fea-

ture. We investigated two cost functions: the average cross-session

TABLE 1 FC feature selection
approaches that resulted from the
different parameter choices in our
feature selection framework

Name Feature definition Feature score Measure of FC distance Stop criteria

NS_ACSC_ρ Node profile ACSC Correlation Validation test

NS_RSC_ρ Node profile RSC Correlation Validation test

NS_ACSC_δ Node profile ACSC Standardized Euclidean Validation test

NS_RSC_δ Node profile RSC Standardized Euclidean Validation test

ES_ACSC_δ Edge ACSC Standardized Euclidean Validation test

ES_RSC_δ Edge RSC Standardized Euclidean Validation test

F IGURE 2 Feature definition for FC Feature Selection Framework. Node selection (NS) involves selecting individual rows or columns from
the FC matrix, whereas Edge selection (ES) involves selecting individual elements in the FC matrix. The highlighted elements indicate the selected
features
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cost (ACSC), inspired by the cost function introduced in Peña-

Gómez et al.'s (2018), and the rank-sum cost (RSC), introduced by

Airan et al. (2016). ACSC and RSC are illustrated in Figure 3 along

with the underlying matrices that are used for computing these

costs.

ACSC is computed using the cross-session distance matrix.

Cross-session distance matrix D captures the distance between FCs

from two separate sessions that are computed using an FC distance

measure and a feature of interest. Specifically, an element Dij cap-

tures the distance between the feature value in the ith subject's FC

from the first session and that of the jth subject's FC from the second

session. ACSC is then computed as the average off-diagonal distance

minus the average diagonal distance in the cross-session distance

matrix. A high ACSC indicates low same-subject cross-session dis-

tance and high different-subject cross-session distance for the fea-

ture in question, suggesting that the feature is effective for FC

fingerprinting.

RSC is computed using a rank matrix. A rank matrix R is a

2N × 2N matrix where the columns and rows indicate the FCs com-

puted for N subjects using scans from each of the two sessions.

Each row in the rank matrix captures the rank of the distances from

FCi to each of the remaining 2N − 1 FCs. For the row FCi, the rank

of FCi in the columns is given as 0 and so the highest value in each

row is 2N − 1. RSC is computed as the sum of all same-subject

across-session ranks, that is,
P
i, j
Rij where i≠ j and FCi and FCj are FCs

for the same subject computed using scans from two different ses-

sions. A low RSC indicates that the feature in question captures more

subject-specific information as it results in low relative distance

between same-subject cross-session FCs when compared to all

other FCs.

It is worth noting the difference between the distance matrix

used by ACSC and the rank matrix used by RSC. In addition to the

apparent difference in what they capture, that is, distance versus rank,

there is also the difference in the extent of information available in

these matrices. Specifically, RSC ranks FCs both within the session

and between sessions, while the distance matrix only captures

between-session distances. This provides RSC an additional advan-

tage of accounting for within-session similarities, in addition to

between session-similarities, which enables RSC to capture features

that yield better-fingerprinting performance as demonstrated in our

results.

2.4.4 | Number of features

The final design parameter involves determining the total number of

features to select. This can be done by choosing a user-specified num-

ber of features or by choosing the number of features in a manner that

maximizes fingerprinting performance. In our experiments, we scored

features on training samples and then chose the number of features to

use by evaluating the extracted set of features on validation samples.

Specifically, after scoring features using the training set, we measure

the average Silhouette value of the FCs in the validation set using the

top x% scoring features for a wide range of values x. The x% top-

scoring feature set with the highest average Silhouette value is then

chosen to compute the FC fingerprinting accuracy on the test data set.

F IGURE 3 Illustration of ACSC and RSC cost functions used for scoring. This involves computing D and R matrices where the highlighted
elements in orange color are used to calculate ACSC and RSC, respectively
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2.4.5 | Approaches

The six different FC Feature Selection approaches we defined based

on the above design parameters are: NS_ACSC_ρ, NS_RSC_ρ,

NS_ACSC_δ, NS_RSC_δ, ES_ACSC_δ, and ES_RSC_δ. Table 1 shows

the different parameter choices involved in defining these

approaches. A MATLAB implementation of these approaches is made

available on our github page: https://github.com/STDSLab/Feature-

Selection-for-fMRI-Fingerprinting

2.5 | Comparative evaluation and Silhouette
coefficient based analysis of FC feature selection
approaches

To determine which FC Feature Selection approach, listed in Table 1,

is most effective in improving FC fingerprinting accuracy over the

Full-FC approach, we performed a comparative evaluation of all these

approaches including the Full-FC approach.

This comparative evaluation was performed using a train-valida-

tion-test method, in line with our approach to determine the number

of features. Specifically, from the FC300 data set, we created three

randomly selected nonoverlapping cohorts “training set,” “validation
set,” and “test set.” Hundred subjects were selected for both the

training and validation sets, leaving 803 subjects in the test set. For

each approach, we computed scores for each feature based on their

selected design parameters (features, FC distance measure, scoring

metric). After scoring each feature, we extract top x feature sets over

a range of cutoff points. The effectiveness of each feature set was

then measured by computing the average subject Silhouette value on

the validation set where only the features belonging to the feature set

were used when computing the Silhouette values for each FC. The

feature set yielding the highest average Silhouette value on the valida-

tion set was selected as the optimal feature set (features found at the

optimal stopping point for identifying unique subject information).

The Silhouette value was used to determine the optimal feature set

rather than the FC fingerprinting accuracy as the Silhouette value is

more sensitive to differences in feature sets. For example, cutoff

points at 10 and 11% would result in different Silhouette values but

may result in the same fingerprinting accuracy. By using Silhouette

values, we would be able to select a definitive optimal cutoff point

when both cutoffs may tie when using fingerprinting accuracy. Fur-

thermore, as we showed in our results Silhouette coefficient reflected

overall FC fingerprinting accuracy. We then randomly selected sets of

100 to 800 subjects in steps of 100 from the test set. The optimal fea-

ture set for each approach was then used to perform FC fingerprinting

to compute the fingerprinting accuracy, average subject Silhouette

value, and overlap ratio for each sample size. To account for sampling

bias on the training set, this evaluation was repeated over 150 ran-

domly sampled sets. These performance metrics are also computed

for the Full-FC approach using randomly selected sets of 100 to

100 subjects in steps of 100 from the test set. Note that training and

validation sets are not used in the context of the Full-FC approach.

Using empirical performance metrics computed for different fin-

gerprinting methods, we learned linear models between a logarithm

of the number of subjects (ln(N)) and performance metrics (finger-

printing accuracy, average Silhouette value, and overlap ratio) to

extrapolate the fingerprinting performance for a large number of

subjects.

2.6 | Evaluating the reproducibility of RSFC
elements selected by the most effective approach

To investigate the reproducibility of the FC features selected by the

most effective feature selection approach, we split the data arbitrarily

into two cohorts and compared the features selected from different

cohorts. Specifically, from the FC300 data set two nonoverlapping,

500 subject cohorts A and B were randomly selected and the

corresponding scores for each feature were computed per cohort.

The cohort A scores were then compared to the corresponding scores

from cohort B for each feature. In addition, we tested the statistical

significance of reproducibility by computing a hypergeometric

distribution-based p-value (Balakrishnan & Nevzorov, 2004) for the

amount of overlap in the selected features in cohorts A and B. Specifi-

cally, from a set of N features when x number of features are selected

using feature selection from cohort A and y number of features are

selected from cohort B, the hypergeometric distribution is used to

estimate the probability of finding an overlap of f features or more

between x and y due to random chance. Low probabilities indicate

that finding f or greater intersecting features in between features

selected in cohorts A and B is very unlikely by random chance,

suggesting that the features found using the most effective approach

are consistent across subject cohorts.

3 | RESULTS

3.1 | Silhouette coefficient based analysis for FC
fingerprinting

We computed RSFC-based fingerprinting accuracy by varying the

number of subjects and the parcellation granularity independently.

For each combination, we measured the fingerprinting accuracy for

150 bootstrap samples of the data. This allowed us to robustly model

the effects of these two parameters on the fingerprinting accuracy

and to extrapolate accuracies at sample sizes beyond what is currently

feasible. The average bootstrap sample fingerprinting accuracies for

all combinations are shown in Figure 3a for scenario Day1 Ref; Day2

Tgt. We observed from Figure 3a that an increase in sample size

resulted in a decrease in fingerprinting accuracy while an increase in

parcellation granularity resulted in an increase in increased finger-

printing accuracy. Specifically, at a parcellation granularity of 300, fin-

gerprinting accuracy decreased from 94.05 to 89.64%, a 4.41%

decrease, as the sample size increased from 100 to 1,000 subjects. On

the other hand, for a sample size of 100, fingerprinting accuracy
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increased from 63.48 to 94.05%, a 30.57% increase, when

parcellation granularity increased from 15 to 300.

To shed light on fingerprinting performance at sample sizes

beyond those available in the HCP data set, we modeled the effect of

sample size on fingerprinting accuracy at a parcellation granularity of

300. To learn our model, we used the fingerprinting accuracies mea-

sured for each bootstrap sample across different sample sizes. These

data are shown as boxplots for each sample size in Figure 3b. We

observed a similar decrease in accuracy with an increase in sample

sizes, with respect to our previous observations, for both scenarios

Day1 Ref; Day2 Tgt and Day2 Ref; Day1 Tgt, with the former scenario

showing marginally higher accuracies. We learned a model to predict

accuracy based on the logarithm of a number of subjects n. The resul-

tant models are shown as blue (Day1 Ref; Day2 Tgt) and red (Day2 Ref;

Day1 Tgt) dotted lines in Figure 3b. Specifically, the learned

models are:

Day1Ref;Day2Tgt : a= 1−0:0145ln nð Þ p−value=0

Day2Ref;Day1Tgt : a= 1−0:0166ln nð Þ p−value=0

These models quantify the fingerprinting accuracy decrease rate

with respect to the sample size as the coefficient of ln(n). The low p-

value of these models indicate that the accuracy is predicted signifi-

cantly better compared to a degenerative model with only an inter-

cept term (i.e., without the ln(n) term). Using these models, we

estimated the fingerprinting accuracy for 100,000 subjects, using sce-

nario Day2 Ref; Day1 Tgt, to be 80.89%. This suggests that for a large

number of subjects, FC fingerprinting is unable to match the high

accuracies observed for smaller data sets.

To explain the reason for the decrease in FC fingerprinting accu-

racy with an increase in sample size, we hypothesized that an increase

in sample size is accompanied by an increase in subject FC overlap,

that is, a decrease in the segregation of RSFCs in the high-dimensional

space where FCs reside. This decrease in the segregation of RSFCs

further explains the decrease in inaccuracy caused by the increase in

sample size. To investigate this, we used the Silhouette coefficient

and overlap ratio to quantify the segregation of RSFCs at different

sample sizes and parcellation granularities. As per our hypothesis, the

Silhouette coefficient is expected to decrease and the overlap ratio is

expected to increase with an increase in sample size. We measured

the average subject Silhouette value and overlap ratio for 150 boot-

strap samples of the data for different number of subjects and differ-

ent parcellation granularities. These measurements are shown in

Figure 3c,d as boxplots for each sample size with respect to scenario

Day1 Ref; Day2 Tgt. We observed that as the sample size increased,

Silhouette values decreased and overlap ratios increased. At a

parcellation granularity of 300, the average subject Silhouette value

computed (mean of averages over 150 bootstrap samples) decreased

from 0.329 to 0.273 as the sample size increased from 100 to 1,000

subjects. For the same increase in sample size, an increase in the over-

lap ratio (mean of overlap ratios over 150 bootstrap samples) was also

observed from 0.071 to 0.121. These observations suggest that with

an increase in sample size, the corresponding decrease of segregation

results in decreased fingerprinting accuracy.

Additionally, we observed that the parcellation granularity plays a

role in the amount of decrease and increase for Silhouette values and

overlap ratios, respectively. When parcellation granularity decreased

from 300 to 15, we observed a 2.134 times decrease in the Silhouette

value and a 2.580 times increase in overlap ratio when the sample size

increased from 100 to 1,000 subjects. Specifically, for this increase in

the number of subjects at a parcellation granularity of 15, the average

subject Silhouette value decreased from 0.136 to 0.0165 and the

overlap ratio increased from 0.399 to 0.528. To quantitatively com-

pare the effect of parcellation granularity on the rate of change for

the Silhouette value and overlap ratio as the sample size increased,

we learned a model to predict the average subject Silhouette value s

and overlap ratio r based on the logarithm of the number of subjects

n. To provide an unbiased comparison between the rate of change for

different parcellation granularities, we set a constant intercept value

for all Silhouette value models and all overlap ratio models. The

models for the average subject Silhouette value are shown in

Figure 3c as blue (FC15), red (FC50), and yellow (FC300) dotted lines.

The overlap ratio models are shown similarly in Figure 3d. The Silhou-

ette models are:

FC15 : s =0:4−0:0561ln nð Þ p−value=0

FC50 : s =0:4−0:0328ln nð Þ p−value=0

FC300 : s =0:4−0:0176ln nð Þ p−value=0

The corresponding overlap ratio models are:

FC15 : r =0:0722ln nð Þ+0:04 p−value=0

FC50 : r =0:0408ln nð Þ+0:04 p−value=0

FC300 : r =0:0103ln nð Þ+0:04 p−value=0

The coefficient for the ln(n) term quantifies the rate of change for

the Silhouette value and overlap ratio with respect to the sample size.

Our models suggest that finer parcellation granularities exhibit a

slower rate of decrease for Silhouette values and a slower rate of

increase for overlap ratios with an increase in the sample size. Specifi-

cally, as the granularity increased from 15 to 300 the rate of decrease

for the Silhouette value reduced from 0.0561 to 0.0176. Over the

same increase in granularity, we observed that the rate of increase for

the overlap ratio was reduced from 0.0722 to 0.0103. This reduction

in the rate of change for the Silhouette value and overlap ratio sug-

gests that finer parcellations produce RSFCs which segregate better

as the number of subjects increase.

To summarize our observations: (a) We observed that as the num-

ber of subjects increased FC fingerprinting accuracy decreased, and as

the parcellation granularity increased FC fingerprinting accuracy

increased. (b) Using the Silhouette value and overlap ratio, we
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observed that as the number of subjects increased RSFC segregation

in high-dimensional space decreased. This supported our hypotheses

that the decrease in fingerprinting accuracy is caused by a reduction

in RSFC segregation due to an increase in the number of subjects.

(c) We observed that as the parcellation granularity increased, the rate

of decrease for the Silhouette vale and the rate of increase for the

overlap ratio are both reduced. This suggested that finer parcellations

produce better segregating RSFCs with an increase in the number of

subjects. We repeated this analysis on motion-censored data and

made the same observations as shown in section 1.2 of the Supple-

mentary data.

As finer parcellations reduce segregation and improve fingerprint-

ing accuracy, we observed that smaller regions are better able to cap-

ture subject-specific information. There can be multiple explanations

for relatively low fingerprinting accuracy at coarse parcellations. The

finer regions involved in variable connectivity across subjects but reli-

able connectivity within each subject could be merged with neighboring

regions that may be either unreliable within each subject (e.g., due to

periodic changes in connectivity, Handwerker, Roopchansingh,

Gonzalez-Castillo, & Bandettini, 2012) or merged with neighboring

regions that may be less variable across subjects. Another reason could

be due to finer regions that may be merged with neighboring regions

that may have a different signal-to-noise ratio (Liu, 2016) that results in

unreliable edges at the coarse level. Effective FC fingerprinting thereby

requires not just a fine parcellation of the brain, but intelligent methods

to identify and select those small regions with subject-specific informa-

tion over those regions with generic information.

3.2 | Comparative evaluation of FC feature
selection approaches

We performed a comparative evaluation of the FC Feature selection

approaches, including the baseline Full-FC approach. The average fin-

gerprinting accuracies for these approaches are shown in Figure 4a as

a function of a number of subjects. All feature selection approaches

F IGURE 4 Top: Impact of sample size and parcellation granularity on Accuracy. (a) Average fingerprinting accuracy as a function of sample
size and parcellation granularity for scenario Day1 Ref; Day2 Tgt. (b) Box plots of fingerprinting accuracies computed for 150 random runs using
different sample sizes on the FC300 data set for scenarios Day1 Ref; Day2 Tgt (blue) and Day2 Ref; Day1 Tgt (red). Curves in blue and red show
models learned for the two scenarios. Bottom: Silhouette coefficient analysis explaining the effect of sample size and parcellation granularity on
fingerprinting accuracy. Box plots in (c) and (d) show Average subject Silhouette values (higher value indicates more unique) and overlap ratios
(higher value indicates less unique), respectively, computed for 150 random runs using different sample sizes on the FC15 (blue), FC50 (red), and
FC300 (yellow) data sets for scenario Day1 Ref; Day2 Tgt. Curves in blue, red, and yellow show models learned on the three data sets

LI ET AL. 3725



performed better than the Full-FC approach, which used all edges in

the FC matrix for fingerprinting. Of the feature selection approaches,

ES approaches (ES_ACSC_δ and ES_RSC_δ) performed better than NS

approaches. With regards to the scoring metric, ES approaches with

ACSC resulted in marginally better accuracy than that of RSC. This is

also the case for NS approaches that use correlation as a distance

measure, ACSC performed better than RSC. In contrast, for NS

approaches that use standardized Euclidean distance, RSC performed

better than ACSC. We repeated this analysis on motion-censored data

and made the same observations as shown in section 1.3 of the Sup-

plementary data.

To investigate the potential of these approaches at improving FC

fingerprinting accuracy a at larger sample sizes n, we learned linear

models for each approach, including the Full-FC approach, on the log-

transformed number of subjects and then estimated accuracies at

100,000 subjects. The resultant models are shown as curves in

Figure 4a. The learned models are as follows:

Full−FC : a=1−0:0145ln nð Þ p−value=0

NS_ACSC_ρ : a=1−0:0081ln nð Þp−value=0

NS_RSC_ρ : a=1−0:0092ln nð Þ p−value=0

NS_ACSC_δ : a=1−0:0123ln nð Þp−value=0

NS_RSC_δ : a=1−0:0105ln nð Þ p−value=0

ES_ACSC_δ : a=1−0:0023ln nð Þp−value=0

ES_RSC_δ : a=1−0:0024ln nð Þp−value=0

These models enabled us to quantitatively compare the accuracy

decay with respect to increase in the sample size. Specifically, the

coefficient of the ln(n) the term indicates the rate of decrease in the

accuracy of the approach as sample size increases. These models

show the smallest reduction in accuracy decay for ES approaches,

followed by NS approaches and the Full-FC approach. While marginal

differences in decay are observed between ACSC and RSC based

models for both ES and NS approaches when standardized Euclidean

distance is used, the NS_ACSC_ρ approach showed smaller decay

compared with the NS_RSC_ρ approach. Using the above models, we

estimated the fingerprinting accuracy estimates for 100,000 subjects

and observed that the ES_ACSC_δ approach improved accuracy by

14.04% (estimated 97.35%), the NS_ACSC_ρ approach improved

accuracy by 7.36% (estimated 90.67%), and the NS_RSC_δ approach

improved accuracy by 4.60% (estimated 87.91%) with respect to the

Full-FC approach (estimated 83.31%).

The average accuracy for 800 subjects along with the average

number of selected features for the scenario Day1 Ref; Day2 Tgt on

the test set across all 150 runs are shown in Table 2. While NS

approaches select nodes and ES approaches select edges, to be able

to compare the number of selected features we reported the number

of edges selected for each of the feature selection approaches, given

edges are involved in the calculations of each (see Section 2.4). From

Table 2 it can be observed that the feature selection approach which

performed the best (ES_ACSC_δ) made use of only 259 edges from

the FC matrix, whereas the Full-FC approach which performed the

worst made use of all 44,850 edges. This observation that ES

approaches using a small set of edges results in the highest accuracy

is supportive of our hypothesis that the FC matrix contains both

subject-specific information and population-specific information. It is

also worth noting that NS approaches generally select many more

edges than ES approaches. For example, the NC_RSC_ρ approach

which selected the least number of edges (4754) on average used

18 times more edges than ES_ACSC_δ. This is because NS approaches

are forced to select all the edges in the node profile, a problem that

ES approaches are free from.

3.3 | Silhouette coefficient based analysis to
explain the utility of FC feature selection approaches

We studied the impact of feature selection approaches on the average

subject Silhouette value for each approach at different sample sizes.

These results are shown in Figure 4b. ES approaches resulted in the

highest average Silhouette value and NS approaches resulted in a bet-

ter average Silhouette value compared to the Full-FC approach. With

TABLE 2 Comparative analysis of
the FC feature selection approaches

Name Accuracy # features Silhouette value Overlap ratio

Full-FC approach 90.06% 44,850 0.2794 0.1151

NS ACSC ρ 94.16% 14,271.4 (28.6) 0.3476 0.0745

NS RSC ρ 93.45% 4,754.1 (15.9) 0.3687 0.0825

NS ACSC δ 91.58% 4,903.6 (16.4) 0.3561 0.1008

NS RSC δ 92.72% 5,232.5 (17.5) 0.3637 0.0936

ES ACSC δ 98.17% 259 0.5439 0.0244

ES RSC δ 98.06% 248 0.5420 0.0248

Note: Average accuracy, silhouette value, and overlap ratio are reported for 150 runs for 800 subjects for

scenario Day1 Ref; Day2 Tgt. ES_ACSC_δ outperformed other approaches, including the Full-FC

approach.
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regards to the scoring metric, ES approaches using ACSC resulted in a

marginally better average Silhouette value than that of RSC. However,

in the case of NS approaches, RSC resulted in a better average Silhou-

ette value than ACSC. This is particularly because RSC takes into

account both within-session and between-session FC distances,

whereas ACSC takes only the latter into account.

The number of features selected using feature selection

approaches are reported along with the average Silhouette values and

overlap ratios in Table 2. The approach that resulted in the highest

average Silhouette value and least overlap ratio was the ES_ACSC_δ

approach (259 edges), the Full-FC approach (44,850 edges) resulted in

the least performance. ES approaches which use a small set of edges

resulted in the best segregation, that is, an overlap ratio of 0.02 as

opposed to 0.12 for Full-FC approach. This observation is identical to

that of Section 3.2 and is supportive of our hypothesis that the FC

matrix contains both subject-specific information and the population-

specific information and that the edge selection approaches are able

to identify the edges that represent subject-specific information.

As with the accuracy results, we computed linear models on the

log-transformed number of subjects (n) for average subject Silhouette

value (s) to investigate these measures at larger sample sizes. The

resultant models found for s are shown in Figure 4b. Specifically, the

learned models are:

Full−FC : s= −0:0238ln nð Þ+0:439p−value=0

NS_ACSC_ρ : s= −0:0312ln nð Þ+0:553p−value=0

NS_RSC_ρ : s = −0:0317ln nð Þ+0:578p−value=0

NS_ACSC_δ : s= −0:0349ln nð Þ+0:585p−value= 0

NS_RSC_δ : s= −0:0326ln nð Þ+0:579p−value=0

ES_ACSC_δ : s= −0:0343ln nð Þ+0:773p−value= 0

ES_RSC_δ : s= −0:0351ln nð Þ+0:776p−value=0

These models quantitatively describe the change in average subject

Silhouette value as the sample size increased. We observed that the

main contributor for the better performance of feature selection

approaches is high average subject Silhouette values, where

ES_ACSC_δ increased the offset value by 0.334 for the Full-FC

approach, from 0.439 to 0.773. Although the average subject Silhou-

ette value decay with an increase in the sample size for feature selec-

tion approaches are larger for Full-FC, this increase is marginal

compared to the offset value within the range of realistic sample sizes.

3.4 | Evaluating the reproducibility of FC elements
selected by the ES_ACSC_δ approach

We evaluated the reproducibility of the FC features selected by the

ES_ACSC_δ approach by investigating the extent of overlap between

features selected from two nonoverlapping subject cohorts. The high

overlap of selected features indicates that the selected features are

reproducible in capturing subject-specific information. When we

selected the top 259 edges from two nonoverlapping, 500-subject

cohorts A and B (chosen from the FC300 data set), we discovered an

overlap of 185 features selected. To measure the significance of this

overlap, we computed a hypergeometric distribution p-value. With a

185 overlap from a 259 selection, the p-value is 0. This p-value indi-

cates that an overlap of this magnitude is statistically significant,

suggesting that the ES_ACSC_δ approach consistently reproduced

subject-specific edges effective for FC fingerprinting.

We visualized this consistency by plotting edge scores from each

cohort against the other in Figure 5a, where the orange lines indicate

F IGURE 5 Performance of FC Feature Selection approaches and the Full-FC approach. Box plots showing: (a) fingerprinting accuracy and
(b) average subject Silhouette value for 150 random runs computed across a range of sample sizes for each FC Feature Selection approach and
the Full-FC approach. Data used was from the FC300 data set for scenario Day1 Ref; Day2 Tgt. Curves show the models learned to capture the
impact of sample sizes on the three measures. The accuracies for ES approaches are much higher than others
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the cutoff point for the top 259 edges selected from each cohort.

Orange points indicate the 185 edges which are consistently discovered

in both cohorts. Not only do we observe fairly consistent edge scores in

the top 259 edges, but we also observed consistent scores across all

edges with lower-scoring edges exhibiting marginally lower consistency

compared with the higher scoring edges. To investigate the spatial rela-

tionships between the 259 best scoring edges in the FC, we plotted a

heatmap where these edges are colored based on their scores, shown in

Figure 5b. We observe that these edges mostly lie among a small set of

nodes located in the upper left corner of the FC matrix.

The edges selected by ES_ACSC_δ are shown in Figure 5c for

cohort A. The general connectivity of the selected edges is between

three major areas: frontal cortex, parietotemporal region, and subcor-

tical regions.

The superior performance of ES approaches is due to the selec-

tion of edges with high between-session variance, but low within-

subject differences, as those are the most effective for FC fingerprint-

ing. Nodes contain a mixture of high-variance and low-variance edges

and hence NS approaches are inferior to ES approaches. To demon-

strate this, we compared the variance of edges selected by ES_ACSC_

δ to those present in each node, by plotting the density of edge vari-

ance for edges in each node along with the variance of edges selected

by ES_ACSC_ δ (shown in Figure 6d. We observed that all nodes con-

tain a large fraction of low variance edges when compared with the

edges selected by ES_ACSC_ δ. These results underscore the ten-

dency of ES approaches to capture edges that exhibit high variance

across subjects.

We also used a rank-sum based approach to demonstrate this.

For each edge in the FC, we computed the variance of its connectivity

value across Day 1 FCs (1,003 scans). We then ranked each edge in

the decreasing order of variance, that is, the edge with the highest

variance will be rank 1. Using the best 259 edges selected by the

F IGURE 6 Top: Reproducibility of features found by the approach with the highest fingerprinting accuracy, the ES_ACSC_δ approach.
(a) Comparison between edgewise ACSC values computed from 500 subject cohorts A and B selected from the FC300 data set. Orange circles
show the 259 edges selected for both cohorts A and B. (b) Edges in the RSFC selected in cohort A colored by effectiveness (edges to the left of
the dashed vertical line in a). Bottom: (c) Edges selected using the ES_ACSC_δ approach in cohort A. (d) Edge variance density for all 300 nodes.
Each line shows the edge variance density of a node where higher densities indicate that more edges in the node have the specified edge
variance in the Day 1 scans. Yellow lines indicate nodes which were selected by at least one Node Selection approach. Diamonds in orange
indicate the edge variances of the edges selected by the ES_ACSC_δ approach
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ES_ACSC_ δ approach (as reported in Table 2), we computed the sum

of ranks for this set of edges. We also randomly picked 1,000 sets of

259 edges and computed the rank sums for each set of edges. The

rank-sum of the 259 edges selected by ES_ACSC_ δ is smaller than all

the 1,000 rank sums and so the p-value is <.001. These results are

shown in Supplementary Figure S8. Our results indicated that the var-

iance of the edges selected by ES_ACSC_ δ has significantly high over-

all variance compared to what is expected by random chance.

4 | DISCUSSION

In this work, we showed that an increase in sample size resulted in a

decrease in fingerprinting accuracy, while an increase in parcellation

granularity increased fingerprinting accuracy. We discovered the

reason behind these observations using Silhouette coefficient, a

metric used in data mining literature to assess clustering quality. We

showed that as the number of subjects increase, the high-

dimensional space is more cluttered, resulting in the high similarity

between FCs from different subjects. We introduced a generic fea-

ture selection framework for improving fingerprinting accuracy that

is similar to feature selection, a technique used in classification prob-

lems in data mining to identify the most informative features. We

evaluated different instances of our framework to identify the most

effective approach. Edge selection approaches, in particular

ES_ACSC_δ, were observed to be the most effective in identifying

subject-specific characteristics, despite comprising a relatively small

number of edges. We showed using a Silhouette metric based analy-

sis how the selected edges result in better segregation of FCs from

the same subject. Our results lastly indicate that the edges selected

using ES_ACSC_δ are highly reproducible and substantially different

from edges (and associated edges) selected using other methods we

evaluated.

4.1 | Impact of sample size and parcellation
granularity

Our observations that an increase in sample size resulted in a

decrease in fingerprinting accuracy while the increase in parcellation

granularity resulted in an increase in fingerprinting accuracy, are in

line with existing literature. Waller et al. (2017), reported decreased

FC fingerprinting accuracy with increasing sample sizes on the HCP

900 data set. Peña-Gómez et al. (2018) and Airan et al. (2016)

reported increased fingerprinting accuracy as the parcellation granu-

larity increased. As part of their work, Peña-Gómez et al. (2018) used

a random parcellation while Airan et al. (2016) used both a random

parcellation and a spectral clustering-based parcellation (Craddock,

James, Holtzheimer III, Hu, & Mayberg, 2012). In contrast, we used

the ICA-based parcellation generated using the HCP 1200 data set.

These observations collectively suggest that an increase in fingerprint-

ing accuracy is mainly due to finer parcellation granularity and much

less due to the method used for parcellation.

4.2 | Using Silhouette coefficient to explain the
impact of sample size on fingerprinting

One of the major contributions of this work is in shedding light on the

reason behind the change in fingerprinting accuracy with change in

the number of subjects and parcellation granularity, where we used

the Silhouette coefficient that is often used to assess the quality of

clustering of data points by measuring the cohesion of points within

clusters and separation of clusters. We treated FCs from the same

subject as a cluster, and to measure the degree of overlap among sub-

ject clusters we defined an “overlap ratio” metric based on the num-

ber of subjects with negative Silhouette coefficients. We observed

low Silhouette values and high overlap ratios when the number of

subjects increased and the reverse when parcellation granularity was

increased. This observation suggests that FCs in high-dimensional

space became more cluttered as the sample size increased. Further-

more, we found that finer parcellations not only reduced FC

cluttering, but also exhibited reduced cluttering as the number of sub-

jects increased. This suggests that subject-specific functional connec-

tivity which exists among smaller ROIs is lost as they are

agglomerated with adjacent ROIs to form bigger ROIs and that ana-

lyses using the smaller ROIs are resistant to negative effects of

cluttering in larger sample sizes.

4.3 | Introducing a feature selection framework
and its evaluation

Another contribution of this work is the proposed feature selection

framework to alleviate the cluttering problem. This framework con-

sists of four design choices: (a) Which FC elements are defined as fea-

tures, for example, nodes or edges? (b) What cost function is used to

score features to determine optimal features for selection? (c) What

measure is used to compute the distance for our cost function?

(d) What stopping criteria are used to determine the number of final

features to select? We tested a variety of possible instantiations of

our framework to provide insight into which feature, cost function,

and distance measure are most effective in improving FC fingerprint-

ing accuracy. To this end, we compared two features, node profiles

(node selection (NS)) and edges (Edge Selection (ES)); two cost func-

tions, Average Cross-Session Cost (ACSC) and Rank Sum Cost (RSC);

and two distance measures, Standardized Euclidean (SE) and Pearson

correlation (correlation) in our comparative analysis.

This direction of feature selection has been earlier explored to a

small extent and in an ad hoc manner. For example, the approach pro-

posed by Peña-Gómez et al. (2018) can be seen as an instantiation of

our framework. Specifically, it is a NS approach that uses ACSC scor-

ing metric. The metrics of differential power discussed in Finn

et al. (2015) and intraclass correlation used by Amico and Goñi (2018)

that are proposed to quantify subject-specific information in nodes

and edges can serve as cost functions in our framework. However,

the current study systematically examined and compared a wider

range of methods to guide future investigations. Our comparative
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evaluation resulted in three key observations: (a) ES approaches are

the most effective in improving fingerprinting accuracy and

maintaining high fingerprinting accuracy at large sample sizes,

(b) When comparing node profiles, correlation-based approaches are

more effective than SE-based approaches, and (c) While the effect of

cost functions ACSC and RSC for analysis depends on the distance

measurement used, the difference in accuracy is marginal. As ES

approaches are more effective, this suggests that subject-specific

information lies in specific region-region interactions, that is, edges,

rather than for the entire region's connectivity profile. The fact that

correlation-based approaches are more effective than SE-based

approaches indicates that the relative edge strength is more reliable

between scans from the same individual than the actual value of the

edge weights for fingerprinting.

4.4 | Importance of modeling accuracy decay with
the increase in sample size

For each of the feature, selection approaches studied in this work we

modeled the rate of decrease in accuracy with the increase in sample

size. We observed that that ES approaches exhibit the least rate of

decrease, in addition to achieving the highest accuracy. While recently

published fingerprinting approaches (Abbas et al., 2020; Shojaee

et al., 2019; Venkatesh, Jaja, & Pessoa, 2020) report higher accuracy

compared to baseline approaches, they rarely account for perfor-

mance degeneracy with the increase in sample size. We argue that

fingerprinting problem is susceptible to the “cluttering” issue we dem-

onstrated in this paper and to make progress towards precision psy-

chiatry it is also important to study the “rate of decrease” inaccuracy

with the increase in sample size.

4.5 | Selected edges and their reproducibility

The edges selected using the best approach (ES_ACSC_δ) in our

framework exist between three major areas: frontal cortex,

parietotemporal region, and the subcortical regions. While the role of

subcortical regions in the context of fingerprinting has not been

explored in the literature, the edges between the frontal and

parietotemporal regions have been found to play an important role in

multiple studies. Specifically, using a network-centric analysis Finn

et al. (2015) observed that the edges in the frontoparietal network

were the most effective for fingerprinting. Using a PCA-based

approach, Amico and Goñi (2018) also reported high identifiability

from regions in the frontal–parietal and default mode networks. Airan

et al. (2016) observed that the prefrontal cortex and parietotemporal

regions are among the regions that provided the most individual dif-

ferentiation. Peña-Gómez et al. (2018) found that voxels in the

frontal–parietal network and default-mode network were selected the

most for fingerprinting, with some voxels from the dorsal-attention

and salience networks. Miranda-Dominguez et al. (2014) observed

that the most variable connections in their individual-based models lie

in the frontal–parietal cortices. Using a dynamic-FC-based fingerprint-

ing approach, Liu, Liao, Xia, and He (2018) found the default-mode,

dorsal-attention, and frontoparietal regions contributed the most to

fingerprinting. Thus, our findings fit with the broader literature and

highlight a need to further consider subcortical regions in future

studies.

By performing reproducibility analysis on the best approach

(ES_ACSC_δ) in our framework, we observed that the selected edges

are significantly reproduced in independent cohorts. This result sug-

gests that the selected edges are independent of the samples consid-

ered for feature selection yet consistent, which is an important

measurement property that has been ignored in recent studies that

proposed sophisticated fingerprinting approaches that are based on

deep learning (Chen & Hu, 2018; Shojaee et al., 2019) and graph

embedding (Abbas et al., 2020). Not studying the reproducibility of

the resultant models leaves the question of generalizability of the

learned fingerprinting models to other cohorts unanswered.

4.6 | Limitations and future work

One limitation of our work is that we used data from related individ-

uals in the HCP. However, note that a similar analysis we performed

on unrelated individuals in the HCP resulted in similar observations

(Li & Atluri, 2018). Another limitation is that our framework follows a

greedy selection which may result in suboptimal selection of features,

because this framework cannot find a globally optimal solution due to

the greedy nature of the search. Other optimization strategies such as

genetic algorithms can be explored to overcome this limitation. In this

study we did not investigate the impact of collection parameters such

as scan duration and scan quality on the fingerprinting performance

(Airan et al., 2016; Amico & Goñi, 2018; Finn et al., 2015; Horien

et al., 2018). We also did not study the role of brain parcellation on

the performance of our feature selection approaches.

A direction that could be explored as part of future work is to

study the impact of time between scans on the degree of cluttering.

MyConnetcome data set (Poldrack, 2021) that provides 14 hr of

resting-state data collected from one subject is ideal for these investi-

gations. Another promising direction is to extend this feature selection

work to dynamic FCs (dFC). There has been much interest in modeling

FC by taking into account the transient nature of the edge connectiv-

ity (Allen et al., 2014; Preti, Bolton, & Van De Ville, 2017). Using the

transient nature of the edges as a way to uniquely profile individual

subjects and selecting edges that are effective for this purpose is a

direction that needs to be explored.

5 | CONCLUSION

In this study we demonstrated the reason for the reduction in finger-

printing performance with increase in sample size using Silhouette

coefficient that is commonly used in the data mining community. We

proposed a generic feature selection framework for identifying
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features from the FC that are highly suited to uniquely identify sub-

jects. We evaluated six different approaches from this framework and

showed that ES-based approaches are superior to NS-based

approaches in both fingerprinting accuracies and the rate of decrease

of this accuracy with increase in sample size. We also observed that

the edges selected using the best approach are independent of the

cohort from which the data are collected, yet consistent across

cohorts. The current findings are hoped to provide clarity and guid-

ance to continue to improve the measurement qualities of future FC

fingerprinting investigations.
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