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ABSTRACT
Obesity and associated metabolic dysfunction have reached epidemic proportions worldwide. The
current theory linking metabolic disease and obesity involves ischemic adipose tissue initiating an
inflammatory cascade that results in systemic insulin resistance and may eventually lead to type II
diabetes mellitus. Diabetes and associated metabolic dysfunction increase the risk of developing
cardiovascular disease and fatal cardiovascular events. By targeting key steps in this process,
ischemia and inflammation, this cascade may be prevented or reversed and thus metabolic and
cardiovascular health may be preserved in obesity. Regular heat exposure (termed ‘heat therapy’)
offers potential to improve cardiometabolic health in obese individuals through a variety of
mechanisms that include but are not limited to heat shock proteins, hypoxia-inducible factor 1a,
and hemodynamic effects. The purpose of this review is to highlight the cardiometabolic decline in
obese individuals stemming from adipose tissue dysfunction, and examine the ways in which heat
therapy and associated cellular and systemic adaptations can intersect with this decline in function
to improve or restore cardiovascular and metabolic health.
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Obesity and associated disease rates have reached
epidemic proportions, with nearly two billion people
worldwide being classified as overweight or obese.1

For example, as of 2012, 33.7% of men and 36.5% of
women in the United States were classified as obese
(BMI � 30),2 and 9.3% of the U.S. population suffered
from type II diabetes, a disease closely associated with
excess fat mass and a sedentary lifestyle. With rates of
obesity and diabetes continuing to rise, these classifi-
cations are risk factors for the development of cardio-
vascular disease in both men and women.3 Thus,
obese individuals are a high-risk population for both
cardiovascular and metabolic disease (termed ‘cardio-
metabolic disease’), and interventions aimed at
improving cardiometabolic health in obese
populations are sorely needed. Current lifestyle inter-
ventions for obesity and cardiometabolic disease
emphasize dietary modification and exercise training.
While changing diet and exercise patterns can be
effective strategies for reducing body mass, improving
vascular health, and enhancing insulin sensitivity,
compliance is often low in clinical populations.4

Barriers to exercise include physical limitations associ-
ated with obesity, injury, motivation, body image, and
socioeconomic constraints.4 In extreme cases (morbid
obesity, or obesity with comorbidities), surgical inter-
vention through roux-en-Y gastric bypass, vertical
sleeve gastrectomy, or other bariatric procedures is
another technique to reduce excess mass and improve
health. While weight loss is sustained and comorbid-
ities are reduced in the majority of patients, this
remains an expensive procedure with some patients
continuing to deal with weight regain and/or unre-
solved diabetes, hypertension, and dyslipidemia.5,6

Chronic heat exposure may offer an alternative or
supplemental therapy to improve metabolic health
and provide protection from cardiovascular disease in
obese individuals. There are a variety of potential
mechanisms for the observed improvements in car-
diovascular and metabolic health with chronic, inter-
mittent heat exposure (most commonly termed ‘heat
therapy’, but also ‘hyperthermic conditioning’, or
‘thermotherapy’). The purpose of this review is to
highlight the cardiometabolic decline in obese
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individuals stemming from adipose tissue dysfunction,
and examine the ways in which heat therapy and asso-
ciated cellular and systemic adaptations can intersect
with this decline in function to improve or restore car-
diovascular and metabolic health. Finally, we review
the current evidence of cardiometabolic improvement
with heat therapy using different heating methods in
humans.

Obesity, inflammation, and insulin resistance

While the growing obesity epidemic and associated
metabolic disease rates have been well-documented
and characterized, the causal link between obesity
and metabolic dysfunction is continually being
described and explored. Evidence points to an increase
in systemic inflammation in obesity being a primary
culprit in both metabolic and cardiovascular dysfunc-
tion. Early case studies noted improvement in diabetes
mellitus and glycosuria with anti-inflammatory
(salicylate) therapy, but no potential mechanism was
proposed.7 Inflammation and activation of innate
immunity in obese humans was first described in
1985, with researchers noting that morbidly obese
individuals had elevated leukocyte counts.8 In an ani-
mal model of obesity and diabetes, Hotamisligil9 dem-
onstrated that elevated systemic and adipose tissue
tumor necrosis factor a (TNFa) abundance were asso-
ciated with impaired glucose tolerance and adipocyte
glucose uptake. In humans, obesity has since been
found to be associated with higher levels of C-reactive
protein, interleukin 6 (IL-6), fibrinogen, TNFa, plas-
minogen activator inhibitor 1, and several other
inflammatory proteins.10 These proteins may be
secreted by adipose tissue, liver, and skeletal muscle,
and have implications in both metabolic and cardio-
vascular dysfunction. Weight loss through bariatric
surgery,11 diet,12 or diet and exercise11 results in
decreases in inflammatory markers including C-reac-
tive protein, plasminogen activator inhibitor 1, IL-6,
and TNFa. Additionally, anti-inflammatory therapy
(salicylates) has been shown to reverse insulin resis-
tance in obese rodents.13 These findings led to the cur-
rent theory that inflammation drives obesity-induced
insulin resistance.

The pathophysiological link between obesity and
metabolic disease relates to increased triglyceride stor-
age in adipocytes causing adipose tissue hypoxia
through compression of capillary networks and

inadequate blood supply relative to cell size.14,15 This
initiates a cascade of adipocyte apoptosis, followed by
a pro-inflammatory immune response (see Fig. 1).
The immune response involves a variety of chemo-
kines, adipokines, and immune cells, which alter the
profile of obese adipose tissue to a pro-inflammatory
phenotype.16 The change in immune cell profile
includes an increase in M1 macrophages forming a
crown-like structure around the adipocyte17 and
releasing pro-inflammatory cytokines in the adipose
tissue. Adipocytes act in a synergistic paracrine fash-
ion with resident macrophages to increase inflamma-
tory cytokine release by the other tissue. These
cytokines are thought to disrupt insulin signaling in
adipose tissue through serine phosphorylation of the
insulin receptor substrate (IRS), which blocks tyrosine
binding sites needed to activate the IRS within the cell
and allow insulin signaling to occur. The primary
function of insulin in adipose tissue is suppression of
free fatty acid release, so the result of this impairment
is increased fatty acids in circulation.18 These circulat-
ing fatty acids can accumulate in the liver and skeletal
muscle and produce fatty acid intermediates such as
diacylglycerol, ceramides, and long-chain fatty acid-
Acyl CoA,19 all of which can inhibit intracellular insu-
lin signaling by activation of c-Jun NH2-terminal
Kinase20 (JNK) or Inhibitor of kappa B kinase b

(IKKb).13,21 JNK and IKKb similarly impair intracel-
lular insulin signaling by serine phosphorylation of
IRS.22 This results in systemic insulin resistance with
an impaired ability of cells to transport glucose or sup-
press glucose production, creating a more metaboli-
cally inflexible profile.23 In addition, adipokines such
as leptin and adiponectin are altered in obesity,24 with
adiponectin in particular at much lower circulating
levels in obese individuals.25 Adiponectin is positively
correlated with insulin sensitivity,26 potentially acting
by changing macrophage polarization toward an anti-
inflammatory profile.27 The end result is a hyper-insu-
linemic and meta-inflammatory profile in obesity that
vastly increases the risk of developing both metabolic
and cardiovascular disease.28

Within the central nervous system, inflammation
and hyperinsulinemia are associated with increased
sympathetic nervous system (SNS) outflow.29 IL-6
receptors are present on sympathetic ganglia30,31 and
IL-6 infusions have been shown in to increase SNS
activity in humans.32 Further, elevated TNFa increases
the expression of IL-6 receptors on sympathetic
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neurons,30 and both cytokines are elevated in obese
humans.33,34 Insulin also acts centrally to increase
sympathetic outflow,35,36 increasing the risk of hyper-
tension in insulin-resistant populations.37 High sym-
pathetic outflow increases blood pressure through
cardiac, renal, and arterial innervation, and SNS over-
activity is considered an important risk factor for
development of cardiovascular disease.38 In addition,
obesity-induced SNS over-activity contributes to end-
organ damage in the kidney, blood vessels, and heart,
increasing cardiovascular morbidity and mortality,
even in the absence of hypertension.39 Specific adipo-
kines may influence the sympathetic overactivity,29

creating a vicious cycle of dysfunction that likely con-
tributes to the cardiovascular and metabolic distur-
bances observed with obesity.

Systemic insulin resistance is also associated with
impaired endothelium-dependent dilation and micro-
vascular function,40,41 observed in impairment of insu-
lin’s actions on blood vessels42 as well as reduction in
bioavailable nitric oxide (NO) due to the high oxida-
tive stress seen in hyperinsulinemic individuals.43 The
meta-inflammatory state of obesity additionally causes
impaired vascular remodeling, resulting in increased

arterial stiffness44 and intima media thickness.45

Intima media thickening is also associated with the
dyslipidemia seen in obesity throughout the lifespan.46

While all obese individuals are at an elevated risk of
cardiometabolic dysfunction compared to healthy
weight counterparts, there appears to be a sex differ-
ence, placing women with diabetes at an elevated risk
for cardiovascular death as compared to obese, dia-
betic men.3 Within the population of obese women,
diagnosis with polycystic ovary syndrome (PCOS)
additionally carries a disproportionate risk of cardio-
vascular disease, diabetes, and cardiovascular death.47

PCOS is an endocrine disorder characterized by
androgen excess, menstrual dysfunction, and polycys-
tic ovaries upon ultrasound examination, and this syn-
drome affects up to 15% of women. The metabolic,
autonomic, and hormonal profiles in women with
PCOS greatly increase the risk for obesity, insulin
resistance, and cardiovascular disease.48 Sympathetic
over-activity49,50 may underlie the pathogenesis of
PCOS and additionally increase risk of cardiovascular
disease, so the potential for chronic heat to alter auto-
nomic outflow is particularly promising in this
population.

Figure 1. An overview of inflammation and ischemia in obese adipose tissue. Excess fat storage in obese individuals leads to adipose tis-
sue expansion as compared to lean individuals, and the blood supply does not adequately match this tissue expansion. This adipocyte
hypertrophy and inadequate blood supply causes adipocyte hypoxia, inflammatory cytokine release (IL-6, TNFa) by adipocytes and M1
macrophages, a reduction in adiponectin release, and impaired insulin action. Low adiponectin promotes the pro-inflammatory profile
of macrophages, and adipocytes and macrophages act in a paracrine fashion to further increase cytokine release from neighboring adi-
pose tissue. Insulin resistance in adipocytes causes impaired suppression of lipolysis, and fatty acids are released and deposited in other
insulin target tissues such as skeletal muscle and liver. Partially oxidized fatty acids increase inflammation through proteins such as JNK
and IKKb in the liver and skeletal muscle, impairing insulin signaling in these tissues. Impaired insulin action in the liver leads to an
increase in glucose release (impaired suppression of glycolysis), and in skeletal muscle leads to decreased glucose uptake (impaired
GLUT-4 translocation). The end result is hyperglycemia, hyperlipidemia, meta-inflammation, and insulin resistance. Filled arrows with
C signs represent increases in release or uptake, while unfilled arrows with – signs represent decreases in release or uptake.
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How can chronic heat therapy help?

Regular heat exposure, through sauna use, hot water
immersion, or combined exercise heat stress, is associ-
ated with a variety of cellular and systemic adaptations
that have potential to improve cardiometabolic health in
obese individuals. In animal work, passive heat exposure
with marked elevation in core temperature is associated
with changes in protein expression and abundance that
lead to enhanced cardiovascular and metabolic health,
as well as cellular protection from a multitude of stres-
sors.51,52 Long-term passive heat acclimation (30 days)
has been shown in animal models to initiate cellular
pathways such as Heat Shock Proteins (HSP) and Hyp-
oxia-inducible Factor 1a (HIF1a)51,52 that enhance
blood supply, protect cells from stressors such as ische-
mia,53 and reduce inflammation.54 In addition, altered
expression of adipokines such as leptin and adiponectin
have been observed in animals following repeated heat
exposure.55 As such, there are multiple possible mecha-
nisms by which heat therapy in humans could attenuate
or prevent the development of insulin resistance, diabe-
tes, and cardiovascular disease in obesity. These mecha-
nisms may work synergistically to intersect with the
obesity-inflammation cascade to potentially reduce
ischemia, inflammation, insulin resistance, and vascular
dysfunction.

Ischemia, inflammation, and insulin resistance

Seminal work in animals using long-term heat accli-
mation first described heat acclimation cross-toler-
ance, where long-term passive heat acclimation
protected cells from a multitude of stressors, including
ischemia/hypoxia. This was first described in the rat
heart, with a reduced infarct size in response to ische-
mia-reperfusion injury in heat-acclimated animals.53

Since then, interest in heat/hypoxia cross-tolerance
has expanded56 to include acute human studies of
ischemia-reperfusion57 and human performance mod-
els.58,59 It is thought that both HSPs and HIF1a play a
role in protection from ischemic injury.52

In obesity, adipocyte ischemia is among the first
steps leading to cardiometabolic dysfunction. Chronic
heat provides multiple avenues to improve blood sup-
ply (see Fig. 2). For example, one downstream target
of HIF-1a is vascular endothelial growth factor
(VEGF),53 which stimulates microvascular angiogene-
sis. Recent human work examining acute heat expo-
sure demonstrated increased expression of various

angiogenic signals including VEGF and angiopoietin
after one 90-minute leg heating session, with concom-
itant increases in Hsp90 expression.60 Hsp90 can also
act through stabilizing endothelial nitric oxide syn-
thase,61 and NO acts as another angiogenic signal.62

In addition, NO production in endothelial cells is
enhanced through shear stress,63 as observed during
acute heating. If blood supply to adipocytes is
improved through some combination of these mecha-
nisms, adipocytes are less likely to become ischemic,
which may attenuate the inflammatory response that
comes from ischemia-induced hypoxia. While acute
heat exposure may result in transient increases in pro-
inflammatory compounds such as IL-664 and JNK,65

chronic heat treatment has been shown to decrease
intracellular levels of inflammatory proteins such as
JNK and IKKb.66 Heat shock proteins have been
linked with altered expression of pro- and anti-inflam-
matory cytokines,67,68 and decreases in other inflam-
matory compounds such as JNK and IKKb in skeletal
muscle66 in response to repeated heat exposure. IL-6
and TNFa, both targets of HSPs, are associated with
impaired insulin signaling in adipose tissue,69–71 and
JNK and IKKb have been shown to impair insulin sig-
naling in skeletal muscle, as well as liver and adipose
tissue.21,72,73

HSP levels have been linked to insulin sensitivity
in humans74 through a variety of mechanisms. Indi-
viduals with type II diabetes exhibit reduced levels of
HSPs in adipose tissue75 and skeletal muscle.74 Ani-
mal work using regular heat exposure examined the
relationship between various HSPs and insulin signal-
ing in rat skeletal muscle, and found both Hsp27 and
Hsp70 decreased inflammatory proteins such as JNK
and IKKb, both known to impair insulin signaling
through serine phosphorylation of IRS-1.66 In adi-
pose tissue, Hsp70 decreases the expression of
nuclear factor kappa-B, which in turn reduces the
release of pro-inflammatory cytokines such as IL-1b,
IL-6, and TNFa.76 Hsp70 is additionally involved in
the protein refolding of the insulin receptor when
denatured by stress,77 providing another mechanism
through which heat shock proteins can improve or
maintain insulin signaling in populations with
impaired metabolic health. In skeletal muscle, mild
heating increases expression of genes encoding mito-
chondrial biogenesis,78 which can increase energy
flux in the cell and reduce the accumulation of the
fatty acid intermediates linked to inflammation and
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insulin resistance. In addition, animal work has sug-
gested that as little as five days of passive heat expo-
sure in mice increased serum adiponectin levels,55

which is associated with enhanced insulin sensitivity
and reduce inflammation.25

Vascular dysfunction

In advance of overt cardiovascular disease, obesity and
insulin resistance can increase cardiovascular dysfunc-
tion and blood pressure through impaired vascular
remodeling,25,79 endothelial dysfunction,40 and ele-
vated sympathetic nervous system activity.29,80 While
the relative contributions of obesity, inflammation,
and metabolic dysfunction are difficult to tease apart,
these elements combine to create an elevated risk of
cardiovascular disease and cardiovascular death3 in
obesity.

Heat therapy offers potential to attenuate or reverse
impairment through a variety of mechanisms
(see Fig. 3). First, acute heating, through hot water
immersion or sauna, promotes increases in cardiac
output and redistribution of blood flow to the periph-
ery as a cooling mechanism. This increase in skin
blood flow alters the shear pattern of arterial blood
flow through conduit vessels to increase anterograde

shear and reduce retrograde shear.63,81,82 This altered
shear pattern has been shown to enhance vascular
remodeling and endothelial function following exer-
cise training83,84 and passive heating.81,83 Acute leg
heating has also been shown in patients with symp-
tomatic peripheral artery disease to enhance lower
limb blood flow, reduce blood pressure and decrease
circulating endothelin-1,85 all of which can improve
vascular health and function, particularly if heat is
repeatedly applied over time.

Heat shock proteins also play an important role in
cardiovascular protection. In vascular remodeling,
Hsp27 reduces intimal hyperplasia,86 an early step in
formation of atherosclerotic plaques. Hsp72, through
inhibition of Angiotensin II, reduces vascular smooth
muscle hypertrophy.87 Heat exposure has additionally
been associated with reductions in IL-688 and
increases in adiponectin,55 which promote and inhibit
vascular inflammation, respectively.

Endothelial function, in healthy populations, is pre-
dominantly dependent on the production of bioavail-
able NO.89 Hsp90 is an essential cofactor for nitric
oxide synthase stability,61 so increases in Hsp90
expression would likely lead to an increase in endothe-
lial NO production, as seen in animal models.90,91 In
human models of vascular function, this increased

Figure 2. The potential pathways through which chronic heat exposure can reduce inflammation, improve blood flow, and reduce insu-
lin resistance. The increases in shear, HSP90, and HIF1a all offer potential to improve blood flow and reduce adipose tissue hypoxia,
through mechanisms such as increased nitric oxide (NO) and vascular endothelial growth factor (VEGF). In addition, HSP70 reduces
inflammatory markers in both adipose tissue (nuclear factor kappa-B [NFkB], IL-6, and TNFa) and skeletal muscle (JNK), along with
HSP27 (IKKb). In addition, HSP70 is involved in protein refolding of the insulin receptor. In concert, these mechanisms can reduce
inflammation, improve insulin signaling, increase glucose uptake and reduce fatty acid release, and increase adiponectin secretion,
improving the metabolic health profile in obesity. While the changes in protein abundance and expression have been experimentally
observed in human or animal models (denoted with boxes), some downstream effects have not specifically been examined in response
to chronic heat.
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NO production would enhance vasodilation as
assessed by techniques such as flow-mediated dila-
tion92 and cutaneous local heating.93 Since endothe-
lial40 and cutaneous microcirculatory function94 are
impaired in obesity, even in advance of overt cardio-
vascular disease or hyperglycemia,94 improving micro-
circulatory function is a promising means to improve
cardiovascular health in obese individuals.

Sympathetic nervous system activity is regulated
through a variety of neurological, neurohumoral, and
psychological inputs, and can be modulated by a vari-
ety of hormones and compounds including adiponec-
tin,95 Angiotensin II,96 and NO.97 In addition to the
cardiovascular consequences of high sympathetic
activity, sympathetic outflow is inter-related with met-
abolic function in obesity.29 High circulating epine-
pherine suppresses insulin release from the pancreas
and increases lipolysis and fatty acid release in to the
bloodstream.98 In turn, inflammation and hyperinsuli-
nemia increase sympathetic outflow,35,36 creating a
positive feedback loop for both cardiovascular and
metabolic decline in obesity. Chronic heat exposure
offers potential to reduce sympathetic outflow through
reductions in inflammation and insulin resistance as

previously described, and can additionally reduce
sympathetic activity through increasing circulating
adiponectin55 and enhancing NO production.90,91,99

Heat acclimation has additionally been shown, in
murine models, to increase Angiotensin II receptor
subtype 2 (AT2) in the hypothalamus,100 which acts
to reduce sympathetic outflow.101

In combination, heat therapy offers the potential to
improve metabolic and cardiovascular function and
risk through a variety of mechanisms. To date,
research in humans, particularly in obese individuals,
has been limited.

Current evidence in humans

A variety of heating methods, timelines, and cardio-
metabolic outcome measures have been examined in
healthy and obese populations. Hot water immersion
was one of the first therapeutic methods to be studied
in humans, with Hooper102 examining glucose control
in eight obese, diabetic individuals following three
weeks of regular hot tub use (30 minutes per session).
The subjects experienced a large decrease in fasting
glucose and glycosylated hemoglobin, and the

Figure 3. The potential pathways through which chronic heat exposure can improve cardiovascular health in the heart, macrovascula-
ture, and microvasculature and autonomic activity in the brain. Increases in HSP90 and shear stress with heat therapy act to increase
nitric oxide (NO), which can decrease sympathetic outflow, increase vasodilation in the microvasculature, and, along with HIF1a/VEGF,
increase angiogenesis in the microvasculature. Increases in angiotensin II type 2 receptors (AT2) and adiponectin in the central nervous
system can additionally reduce sympathetic outflow, which can decrease heart rate and peripheral resistance, reducing stress on the car-
diovascular system. HSP27 and HSP70 decrease intimal and vascular smooth muscle (VSM) hyperplasia, and HSPs and HIF1a improve
ischemic tolerance in the heart, reducing the risk or severity of cardiovascular events. Together, these mechanisms can reduce sympa-
thetic outflow, reduce blood pressure, increase ischemic tolerance, and enhance vascular remodeling to improve the cardiovascular risk
profile in obesity. Changes in shear stress, protein abundance and expression have been experimentally observed in human or animal
models (indicated with boxes); however; some downstream effects have not specifically been examined in response to chronic heat.
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researchers postulated that this was due to the
increased blood flow to skeletal muscles during heat-
ing. While multiple alternative mechanisms have since
been explored, this study was among the first to exam-
ine health benefits of passive heating in obese individ-
uals. Local heating of abdominal adipose tissue,
similar to that experienced during hot water immer-
sion, has also been shown to reduce visceral fat storage
and improve glucose tolerance in obese, diabetic
individuals.103

Acute hot water immersion has since been studied
as a means to improve glucose control. Faulkner and
colleagues64 compared the glucose response to a meal
after either a 60-min hot bath or 60-min moderate
intensity exercise in lean and overweight men, and
found that heat decreased peak post-prandial glucose
compared to exercise, with no difference in 24-h glu-
cose control between heat and exercise. The authors
postulated that increased HSP production in response
to heat drove the improved glucose control through
enhanced insulin signaling.

Vascular health and function have also been exam-
ined in response to repeated passive heat exposure in
healthy, inactive men and women. Brunt and col-
leagues92 examined the effect of 8 weeks of hot water
immersion (4–5 times per week for »90 min per ses-
sion, with core temperature increase of »1.58C) and
observed improvements in endothelial function, arte-
rial stiffness, wall thickness, and blood pressure. In a
companion study, this group also investigated cutane-
ous vasodilation in response to local heating as a
model of microvascular function and specifically
examined the role of NO,93 and observed an increase
in cutaneous vascular conductance to thermal hyper-
emia that was primarily mediated by NO.

Sauna has also been investigated both as an interven-
tion in clinical populations and in prospective cohort
studies. Classic Finnish saunas involve air temperatures
of 80–100�C with low humidity, and individuals spend
5–30 minutes at a time in the sauna with brief breaks in
a thermoneutral room between multiple bouts. A
30-min bout in an 80�C sauna quickly increases skin
temperature and heart rate, and raises rectal temperature
»0.9�C.104 Two weeks of thermal therapy (60�C far-
infrared sauna 6 days per week) in men with elevated
cardiovascular risk significantly improved endothelial
function, assessed via flow-mediated dilation.105 A study
in men with congestive heart failure underwent the same
therapy and similar improvements in flow-mediated

dilation were observed.106 In addition, brain natriuretic
peptide (a marker of cardiac dysfunction) was signifi-
cantly reduced following thermal therapy.

A large prospective cohort study (2,315 Finnish
men) examined frequency and duration of sauna use
and the correlation with mortality rates during a
20-year follow-up.107 Increased frequency and dura-
tion of sauna use were associated with substantially
reduced hazard ratios for sudden cardiac death, fatal
coronary heart disease, fatal cardiovascular disease,
and all-cause mortality. While this study only exam-
ined men, did not include subject that did not regu-
larly use sauna, and did not specifically examine death
related to metabolic diseases such as diabetes, it is the
largest and longest study to date on the potential long-
term cardiovascular health benefits of regular passive
heat exposure.

Performing yoga in a hot room may offer an alter-
native to passive immersions in more able-bodied
populations, with the additional benefit of low to
moderate intensity exercise. Research is mixed on the
increase in core temperature observed during a
90-min Bikram yoga class (a series of 26 postures in a
room set to 40.5�C, 40% relative humidity), with
values ranging from mild hyperthermia [0.6–1.0�C
increase in novice and experienced practitioners,
respectively108] to increases more similar to those seen
in hot water immersion [1.7–2.5�C in men and
women, respectively109]. While core temperature ele-
vation in hot yoga is highly dependent on both ambi-
ent temperature and level of intensity (metabolic heat
production), some promising results of hot yoga train-
ing have been seen in obese populations.

Hunter et al.110 examined the effect of an 8-week
hot yoga intervention (three 90-minute sessions per
week) on body composition and glucose tolerance.
Following this intervention, a significant reduction in
glucose area under the curve was noted in obese men
and women, with no change in lean individuals. Fast-
ing glucose did not change in either population, and
body composition was additionally unaltered. Since
this study did not have an exercise-only, heat-only, or
time control, it is unclear whether the exercise, the
high temperature, or the combination of both stressors
drove these changes. However, the findings do suggest
that hot yoga may improve glucose tolerance in obese
individuals.

In a similar intervention study from the same
research group, arterial stiffness, blood pressure,
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cholesterol, and insulin levels were examined in
healthy younger and older individuals in response to
an 8-week Bikram yoga practice.111 Again, this study
lacked a control group to tease apart the effects of
yoga, heat, or time, but younger individuals experi-
enced a decrease in arterial stiffness, while older indi-
viduals experienced a decrease in fasting insulin and
low-density lipoprotein-cholesterol. Blood pressure
did not change in either group after the 8-week Bik-
ram yoga intervention.

Guo et al112 performed a longer-duration study
examining markers of body composition, cardiovascu-
lar health, and psychological well-being follow one
year of Bikram yoga (4 sessions per week) in obese
individuals. The yoga intervention led to significant
reductions in skinfold thickness, waist circumference,
blood pressure (MAP decreased »3mmHg), total cho-
lesterol, low-density lipoprotein-cholesterol, and tri-
glycerides, and led to increases in vital capacity, high-
density lipoprotein-cholesterol, and subjective scores
of well being. No study has yet examined the combina-
tion of metabolic and cardiovascular health markers
following hot yoga training, but these early studies
suggest a benefit for cardiometabolic health in obese
populations.

Summary & perspectives

The multifaceted decline in cardiovascular and meta-
bolic function that occurs in obesity has been well-
described, and despite treatment options including
diet, exercise, surgery, and a variety of medications,
obesity remains a global epidemic with extremely high
associated healthcare costs.113 Chronic heat exposure
as heat therapy offers potential as a novel or adjunc-
tive therapy to improve cardiometabolic health in obe-
sity and to potentially reduce the medical burden of
obesity. While not offering a direct path to weight
reduction, the reductions in inflammation, improve-
ments in glucose tolerance, and improvements in vas-
cular function that have been observed in human and
animal models with chronic heat exposure provide a
variety of avenues through which cardiometabolic
health can be improved in the absence of weight
changes.

Future work exploring heat therapy as a means to
improve cardiometabolic health should examine a
dose-response and timeline, as a wide variety of acute
and chronic timelines have been utilized, resulting in

a large range of core temperature responses, and total
heat exposure time ranging from 9 hours over 3
weeks102 to over 300 hours in a 1-year intervention.112

The underlying mechanisms to explain the observed
health benefits also require further study in humans,
with blood samples, tissue biopsies, and complemen-
tary cell work providing promising avenues for explo-
ration of changes in protein abundance, gene
transcription, and downstream targets. In addition,
more work is needed examining passive heat in at-risk
and understudied populations, including obese
women with or without PCOS, and those at increased
cardiometabolic risk but with limited ability to gain
the full benefits of exercise, such as individuals living
with spinal cord injury.
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