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Abstract: Rice consumption is a source of arsenic (As) exposure, which poses serious health risks.
In this study, the accumulation of As in rice was studied. Research shows that As accumulation in
rice in Taiwan and Bangladesh is higher than that in other countries. In addition, the critical factors
influencing the uptake of As into rice crops are defined. Furthermore, determining the feasibility
of using effective ways to reduce the accumulation of As in rice was studied. AsV and AsIII are
transported to the root through phosphate transporters and nodulin 26-like intrinsic channels. The
silicic acid transporter may have a vital role in the entry of methylated As, dimethylarsinic acid (DMA)
and monomethylarsonic acid (MMA), into the root. Amongst As species, DMA(V) is particularly
mobile in plants and can easily transfer from root to shoot. The OsPTR7 gene has a key role in moving
DMA in the xylem or phloem. Soil properties can affect the uptake of As by plants. An increase in
organic matter and in the concentrations of sulphur, iron, and manganese reduces the uptake of As
by plants. Amongst the agronomic strategies in diminishing the uptake and accumulation of As in
rice, using microalgae and bacteria is the most efficient.
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1. Introduction

Rice (Oryza sativa L.) provides food for more than three billion people [1]. Approximately 90%
of rice production and consumption is reported in Asia [2]. By 2050, the production of rice should
rise by 60%–70% to meet the requirements of the predicted population growth in Asia [3]. Rice can
be cultivated in many regions of the world because of its resourcefulness and diversity. Two species,
Oryza glaberrima Steud. (in Africa) and Oryza sativa L. (in Asia), are commonly cultivated [4]. However,
rice consumption can pose problems because of the arsenic (As) accumulation in rice and thus serves a
vital source of As exposure in humans [5].

As is the 20th abundant component on the Earth’s crust. However, As is a toxic metalloid and is
remarked as a considerable global groundwater contaminant, affecting certain rivers and deltas in
East and South Asia and in South American countries [6]. Based on the Agency for Toxic Substances
and Disease Registry list 2017, As is amongst the most hazardous materials that could be poisonous
to humans. Approximately 200 million people in around 70 countries have been exposed to this
metalloid [7].

As enters agricultural lands and the environment via natural sources, such as rocks, As-enriched
minerals, forest fires, volcanoes and anthropogenic sources (e.g., mining, herbicides, phosphate
fertilisers, smelting, industrial processes, coal combustion and timber preservatives) [8]. The average
amount of As in agricultural fields that receive As-comprising pesticides and defoliants ranges from
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5 mg/kg to 2553 mg/kg [9]. The management of paddy soils for the wet cultivation of rice involves
different cycles of submerged and dry days, which cause alternating oxidising and reducing processes
in soil. Under this condition in paddy soil, As is reduced to arsenite (AsIII) with high toxicity and
mobility in flooded soil, AsIII may then be taken up by rice [10]. Evidence shows considerable As
toxicity from the utilisation of rice and rice-based products, especially those consumed as a staple
dietary source [11]. Accumulation of As in rice may be decreased by amending cultural practices.
Hence, the current work focused on the mechanisms of uptake and accumulation of As in rice and
the effective factors which reduce As uptake by rice crops. The results are expected to enrich our
understanding of the uptake, transport and distribution of As in rice.

2. Arsenic Uptake and Transport by Rice Plants

Rice is more seriously affected by As pollution than other crop plants. Its cultivation is carried out
in flooded conditions, which lead to the reduction conditions [12]. As may be found in the environment,
organic and inorganic AsIII and arsenate (AsV) are the dominant As species that reduce paddy soil
conditions, followed by methylated As species. Moreover, plant roots selectively may uptake specific
As forms [13]. Table 1 shows the reported concentrations of As in rice around the world. All As species
can be transferred through the plant cell via specific transporter proteins [14]. The genes involved in
transporting As in rice are shown in Table 2.

Table 1. Arsenic found in rice plants around the world.

Plant’s Parts As (µg/Kg);
Average or Range Remarks Area Reference

Grains 230 * Boro rice

Sadar Upazila
(subdistrict),

Faridpur,
Bangladesh

[15]

Straw 2890
Husk 750

Grains 235 White rice Comilla district,
Bangladesh [16]

Straw 1149

Grains 600 BRRI dhan28 Satkhira district,
Bangladesh [17]

Straw 1700
Root 46,300

Grains 700 BRRI hybrid dhan1
Straw 1900
Root 51,900

Grains 78 ± 26 White rice Barisal, Bangladesh [18]

185 ± 82 Chandpur,
Bangladesh

189 ± 72 Comilla,
Bangladesh

180 ± 65 Dhaka, Bangladesh

177 ± 52 Munshiganj,
Bangladesh

210 ± 95 Narayanganj,
Bangladesh

Grains 170 to 260 Boro
Bhanga and
Faridpur in
Bangladesh

[19]



Plants 2020, 9, 129 3 of 17

Table 1. Cont.

Plant’s Parts As (µg/Kg);
Average or Range Remarks Area Reference

Straw 390 to 3430

Whole grains 20 to 130 Oryza sativa var.
kalijira

MATLAB,
Bangladesh

Grains 129.4 White rice Huang, China [20]
Grains 250 ± 51 White rice Renhua, China [21]
Straw 3300 ± 1300
Root 25,600 ± 12,500

Grains 280 ± 67 White rice Lechang, China [21]
Straw 5800 ± 2800
Root 35,000 ± 9400

Grains 147 Indica Fujian, China [22]
202 Indica Guangdong, China
302 Indica Guangxi, China
200 Indica Yunnan, China
184 Indica Chongqing, China
218 Indica Sichuan, China
187 Japonica Jiangsu, China
277 Indica Zhejiang, China
309 Indica Jiangxi, China
216 Japonica Henan, China
308 Indica Hunan, China
246 Indica Hubei, China
263 Indica Anhui, China
196 Japonica Liaoning, China
426 Japonica Jilin, China

(Unpolished
samples)

Grains 0.127 to 0.275 Indica Huahang-Simiao,
China [23]

Husk 0.314 to 0.985
Shoot 0.93 to 6.19
Root 35.4 to 327.3

Grains 230 ± 240 Taikeng No. 8 Gaudan Plan,
Taiwan [24]

Straw 4700 ± 1400
Root 266,000 ± 98,000
Grain 150 ± 50 Tain Nan No. 11
Straw 3200 ± 400
Root 157,000 ± 27,000

* Rice Types Ambagarh Chouki,
India [25]

Husk 432 IR-64
147 Culture
411 Shyamla
415 G. Gurmatia
235 Masuri
167 Purnima
144 Mahamaya
446 Kalinga
324 Luchai
18 Safari

Grains 3.30 to 4.91 ** NR the rice
species Punjab, India [26]

Straw 7.30 to 9.89
Grains 451 Boro rice West Bengal, India [27]
Grains 334 Aman rice

Grains 8.78 Oryza sativa L.
Central and

sub-mountainous
Punjab, India

[28]
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Table 1. Cont.

Plant’s Parts As (µg/Kg);
Average or Range Remarks Area Reference

Straw 3.94

Grains 290 ± 580 Oryza sativa Alor Setar, Kedah,
Malaysia [29]

Straw 80 ± 150
Root 23,100 ± 12,670

Grains 189 to 541 Oryza sativa

Besut, Sekinchan,
Tanjung Karang

and Sabak Bernam;
Malaysia

[30]

Grains 124 to 136 Polished rice
(White) Thailand [31]

186 to 198 Brown rice (White)
832 to 963 Rice bran (White)

(Samples collected
from markets

(Thailand-grown)

Grains 107 to 166 White rice Japan; Low-As
soils [32]

Grains

Grains 160 Brown rice Japan (average of
the country) [33]

Grains 283 ± 18 * White rice
(organic)

Australia (not
specified) [34]

241 ± 07 White rice
(long-grain)

438 ± 23 Brown rice
(organic)

287 ± 03 Brown rice (whole)

198 ± 41 Brown rice
(long-grain)

Samples collected
from markets

(Australian-grown)

Grains 170 ± 30 * Mahatma Australia (not
specified) [35]

100 ± 30 Brown
120 ± 30 White

90 ± 20 Medium grain
white

220 ± 20 Sushi
220 ± 20 Arborio

210 ± 30 Medium grain
Arborio

Samples collected
from markets

(Australian-grown)
Grains 0.13 Oryza sativa California, US [36]
Straw 0.7
Grains 0.2 Oryza sativa Arkansas, US [36]
Straw 1.5

Grains 230 ± 10 * Arborio

Lombardia,
Piemonte, Emilia

Romagna, and
Calabria in Italy

[37]

230 ± 20 Carnaroli
180 ± 10 Ribe

200 ± 10 Ribe/Roma
parboiled

190 ± 10 Roma
280 ± 30 Vialone Nano
190 ± 30 Originario
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Table 1. Cont.

Plant’s Parts As (µg/Kg);
Average or Range Remarks Area Reference

Grains 0.32 Oryza sativa Carmargue, France [36]
Straw 10.2
Grains 232 ± 21 Brown rice Guayas, Ecuador [38]

174 ± 14 White rice Guayas, Ecuador
186 ± 17 White rice Los Rios, Ecuador

Samples collected
from markets

(Ecuadorian-grown)

Grains 167.94 Around Tumbes
river basin in Peru [39]

* Local name. ** NR: Not Reported.

2.1. Uptake of Inorganic Arsenic

Inorganic As, AsIII and AsV, is more toxic than organic As, dimethylarsinic acid (DMA) and
monomethylarsonic acid (MMA) [18]. Inorganic As is the dominant form of As in soil and groundwater.
Under aerobic conditions in soil, AsV dominates, whereas, in submerged conditions, AsIII is the
dominant species [40].

AsV may generally enter the roots of rice crops through phosphate transporters (PHTs), primarily
PHT1 (phosphate transporter1)-type transporters [41] during the regulation of inorganic phosphorous
(Pi) [42]. A total of 13 PHTs from the PHT1 family in rice (Oryza sativa) have been found to mediate Pi
uptake and transport [43] through the highly efficient silicon (Si) uptake pathway.

Furthermore, AsIII may enter by the nodulin 26-like intrinsic (NIPs) aquaporin channels
accompanied by silicic acid and ammonia [42]. NIP proteins are one of the major intrinsic proteins
which comprise the family of important membrane channel proteins [44]. NIPs are categorised into
three main groups, namely, NIP-I, NIP-II and NIP-III, with regard to the common substrate selectivity
and consistency of amino acid composition [45]. The NIP-II group (such as OsNIP3;1, AtNIP5;1,
AtNIP6;1 and ZmNIP3;1) has been found to be vital for the uptake and transporting of boron in several
plants [44]. NIP-III group members (such as OsNIP2;1, OsNIP2;2, HvNIP2;1, HvNIP2;2 and CmNIP2;1)
are revealed to be vital for the effectual uptake and translocation of Si [46]. A family of 10 NIP proteins
is found in rice. Bienert et al. [47] reported that NIPs in Oryza sativa L., OsNIP2;1 (Lsi1) and OsNIP3;2
(Lsi2) are capable of facilitating an influx of AsIII into rice root cells.

2.2. Uptake of Organic Arsenic

Methylated As species, namely, MMA (CH3AsO(OH)2) and DMA ((CH3)2AsOOH), might be
present in soil due to microbial actions or past usage of methylated As compounds, cacodylic acid
or sodium salt of MMA and DMA as pesticides [42]. Microorganisms in soil may convert As species
from AsV to AsIII and further to MMA and DMA. Suriyagoda et al. [48] stated that DMA and MMA
might be taken up by the silicic acid transporter Lsi1. Plant roots are capable of taking up DMA and
MMA, but the amounts of uptake are lower than those of inorganic As species and diminish with
increasing numbers of methyl groups [49]. MMA(V) is partially reduced to trivalent MMA(III) in rice
roots, but only MMA(V) is translocated to shoots [50]. DMA(V) is mobile in plants and may easily
transfer from root to shoot. Muehe et al. [51] explained that methylated As is taken up gradually into
rice relative to inorganic species but that it is freely translocated to grains.

2.3. Arsenic Species Translocation from Root to Shoot

The average translocation factor for As is around 0.8, which is higher than the other crops, such as
barley (0.2) and wheat (0.1) [52].
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As mentioned previously, the Si transporter OsNIP2;1 (Lsi1) is responsible for AsIII uptake,
and Lsi2 drives AsIII efflux from rice root cells to the xylem [53]. Lsi1 is located in the distal side of the
plasma membranes in exodermal and endodermal cells and is in charge of the influx of AsIII, whilst
Lsi2 is located in the proximal sides of the same root cells and is in charge of the efflux of AsIII [54].
In other words, the synergy of Lsi1 and Lsi2 transports Si and AsIII into root cells. Si and AsIII in the
xylem vessel are transported to the shoot via transpiration flow by Lsi1 and Lsi2 first and then by Lsi6,
which is localised in the xylem parenchyma cells of leaves [55]. Detmann et al. [56] stated that the Lsi6
gene plays a vital role in the distribution of Si, or maybe AsIII, in rice shoot.

In rice, 13 Pi transporter genes (OsPT) can transport AsV to the root. Amongst these genes, OsPT1,
OsPT2, OsPT4, OsPT6, OsPT8, OsPT9 and OsPT10 have a role in P uptake and translocation in rice.
Certain Pi transporters also mediate AsV uptake [57]. Amongst these OsPTs, OsPT1 is thoroughly
stated in roots and is a main regulator of Pi. OsPT2 has a vital role in Pi transferring from the root to
the shoot [58]. AsV may be reduced to AsIII inside the rice root, and AsIII may then enter the xylem
via a silicic acid/AsIII effluxer [59]. Chen et al. [60] explained that AsV may be quickly reduced to AsIII
in plant cells by high As content 1 (HAC1) AsV reductases. Chao et al. [61] reported that HAC1 is vital
in the reduction of AsV activity in the outer layer of the root (epidermis) and the inner layer adjacent
to the xylem (pericycle).

Mitra et al. [14] expressed that DMA and MMA enter the NIP protein. However, AsIII is more
capably taken up by roots than MMA and DMA. Zhao et al. [49] stated that the transferring from roots
to shoots commonly rises with the rising quantity of methyl groups in As. DMA is extremely mobile
throughout the xylem and phloem in rice. Tang et al. [62] reported that OsPTR7 may interact in the
transferring of DMA in the phloem or xylem. High mobility of DMA occurs in the moving from roots
to shoots and from leaves to grain.

2.4. Phloem and Xylem-Derived Pathways of As Species and As Loading in Grains

As may be transferred from roots to shoots through the xylem [48]. Phloem transportation is
probably responsible for 54%, 56%, 100% and 89% of AsIII, AsV, MMA(V) and DMA(V) translocation
into rice grains, respectively. In the phloem, organic arsenics are more transportable than inorganic
arsenics [63]. Moreover, AsIII is transported to rice grains principally through the phloem pathway,
whereas DMA is translocated to rice grains through the xylem and phloem pathways [62]. In arabidopsis,
Duan et al. [64] reported that AtINT2 and AtINT4 (inositol transporters) may have a role in AsIII
entering into the phloem and in adjusting the accumulation of As(III) in seeds. Hence, similar
transporters in rice plants may be responsible for As(III) transport. Furthermore, OsPTR7 has a role in
the long-distance transferring of DMA and in the accumulation of DMA in rice grains [62].

Table 2. Gene families involved in As uptake, transport and metabolism in rice.

Name Category As species Remarks Reference

OsPT1 P transporter AsV AsV transporter to
root [57]

OsPT2 P transporter AsV AsV transporter
root to shoot [57]

OsNIP2;1 (Lsi1) NIPs AsIII, DMA, MMA
AsIII, DMA and

MMA transporter
to root

[63]

OsNIP2;2 (Lsi2)
OsNIP1;1
OsNIP3;1
OsNIP3;2
OsNIP3;3
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Table 2. Cont.

Name Category As species Remarks Reference

OsPIP1;2
PIP (plasma

membrane intrinsic
protein)

AsIII AsIII transport root
to shoot [65]

OsPIP1;3
OsPIP2;4
OsPIP2;6
OsPIP2;7

OsNRAMP1

NRAMP (natural
resistance-associated

macrophage
protein)

AsIII AsIII transport root
to shoot [5]

OsHAC1;1 NIPs DMA, MMA, AsV DMA and MMA
transporter to root [63]

OsHAC1;2 AsV reduction to AsIII in root
OsHAC4

OsNPF8;1
(OsPTR7)

Putative Peptide
Transporter DMA

Translocation of
DMA in plant,

including xylem,
phloem and grains

[62]

OsABCC1 ATP-binding
cassette transporter As Detoxifying [66]

2.5. Phytotoxicity of Arsenic and Arsenic Detoxification Mechanism in Rice Plants

As is extremely phytotoxic to plants as it diminishes plant growth and crop yield [18]. Several
rice varieties were subjected to AsIII and AsV by Shakoor et al. [67]. Seed germination was slightly
limited at 0.5 and 1 mg·L−1, and a diminishing of around 10% in germination was detected at 2 mg·L−1.
The growth of root was limited by 20% at 0.5 mg·L−1 of AsV. In addition, AsV was found to be more
toxic than AsIII. The dangerous biochemical impact of As at the subcellular level is the production of
reactive oxygen species (ROSs), such as hydroxyl radical (OH), superoxide radical (O2

−) and hydrogen
peroxide. ROSs are hazardous for plant metabolism and may lead to damage to macromolecules [68].

As previously mentioned, AsV is reduced to AsIII in plants. In addition, AsIII efflux to the
external medium is a vital way of As detoxification in plants. Inside plant cells, AsIII may be detoxified
by complexation with phytochelatins (PCs), followed by the accumulation of AsIII–PC complexes in
vacuoles through OsABCC1 transporters [69]. OsABCC1 is one of the ATP-binding cassette (ABC)
transporters. ABC transporter proteins play roles in the translocation of a broad range of substances
within membranes using energy from ATP hydrolysis [70]. Song et al. [66] stated that OsABCC1 plays
a vital role in the detoxification and decreasing As in rice grains.

HAC1 contributes to the defence against As in plants [71] and is essential for the efflux of AsIII
from roots for AsV detoxification [72]. In rice, OsHAC1;1, OsHAC1;2 and OsHAC4 function as
AsV reductase. Moreover, glutaredoxin possesses AsV reductase enzyme activity in maintaining the
glutathione (GSH) pool and assists in AsIII efflux [73].

Brinke et al. [74] stated that with rising AsIII concentrations, the importance of the term ‘response
to stress’ is replaced by the detoxification ways ‘glutathione biosynthesis’, which is related to the term
‘oxidation reduction’. GSH is applied as an electron donor by dehydroascorbate reductase to reconvert
dehydroascorbate to ascorbate. GSH disulphide is the oxidised form of GSH, which may be reprocessed
to GSH by glutathione reductase via reduced nicotinamide adenine dinucleotide phosphate. Hence,
these different components of the ascorbate–GSH cycle may have a vital character in protecting cells
against oxidative damage resulted by As toxicity [75].

After the reduction of AsV to AsIII, further mechanisms of detoxification arise in the vacuole via
vacuolar sequestration. AsIII chelates with sulfhydryl (–SH)-rich protein and arranges a complex that



Plants 2020, 9, 129 8 of 17

is separated by vacuolar transporters (PCs). In rice, two phytochelatin synthase enzymes have been
testified, comprising OsPCS1 and OsPCS2 [73].

3. Effects of Different Factors on Reducing Arsenic Uptake by Plants

Certain factors, such as pH, soil texture, organic matter (OM) and sulphide concentrations, may
affect As uptake by plants [76]. Soil texture may affect As mobility due to differences in charges on the
soil surface, which controls the adsorption and desorption procedures in soil. Soils with high amounts
of clay have a higher As retention potential than coarse-textured soils. Reports also indicated that As
uptake and concentrations are higher in plants grown in loamy sand than in plants grown in silty
clay loam soils [77]. Moreover, As is five times more toxic in sand and loam than in clay soil, and its
available form is a vital factor related to phytotoxicity [78].

3.1. Soil pH

pH is an important factor affecting As uptake [79]. An increase in pH commonly results in the
mobilisation of As in soil. In general, an increase in soil pH results in a release of anions from within
their exchange positions, along with AsV and AsIII [80]. Tu and Ma [79] reported that redox potential
and pH influence As species. For example, under oxidising situations at pH < 6.9, H2AsO4

− becomes
the primary species, and at a high pH, HAsO4

2− is dominant. High soil pH (generally pH 8.5) increases
the negative surface charges, such as hydroxyl ions, thereby facilitating the desorption of As from
Fe oxides and the resulting mobilisation of As in the root area; these conditions, in turn, increase As
accumulation in plants [14].

3.2. Soil Organic Matter

OM in soil may influence the mobility and bioavailability of As over redox reactions, anions
(phosphate, DOC and silicate), As–OM complexation and competitive adsorption [81]. OM may
also affect plant growth and As accumulation in rice plants. OM, theoretically, insolubilises As over
certain mechanisms, such as the binding of As with phenolic OH, carboxylate and sulfhydryl groups
with/without ternary complexes [82]. Norton et al. [83] stated that OM is important in the mobilisation
of As from paddy fields because microbes utilising OM consume oxygen that results in a reduction
in redox potential, which leads to As dissolution from FeOOH. Syu et al. [81] explained that the
characteristics of soils and OMs should be considered before using OM amendments to As-polluted
soils. The use of OM to As-polluted soils may exert different effects on the As accumulation and growth
of rice plants [81]. For example, biochar may improve As reduction and release in flooded paddy
soils [84], but augmenting farmyard manure to soils with high amounts of As leads to a reduction of
plant growth [83]. Norton et al. [83] stated that OM may also play two other roles in As availability
in soils: by desorbing As species from soil surface exchange sites and complexing As species with
dissolved organic matter (DOM).

3.3. Concentration of Nitrogen, Phosphorous and Sulphate in Soil

In rice soils, the main form of nitrogen (N) is ammonium, whilst nitrate concentration is less than
10 µM. Rice roots discharge oxygen into the rhizosphere, thereby causing ammonium nitrification by
microbes near the root surface [85]. The procedure of Fe redox cycling may be influenced by N cycling.
The coupled NO3

− reduction and Fe(II) oxidation can diminish As in paddy environments [63].
As previously mentioned, rice crops take up AsV via phosphate transporters [57]. Phosphate and

arsenate are analogues and may compete for the same sorption sites on soil particles. The adding of
phosphate commonly has two consequences: (i) raised downward move of As resulting in increased
leaching from the topsoil and (ii) enhanced accessibility of As in the soil solution. AsV also acts as a
phosphate analogue with respect to transport across the root plasma membrane [86]. Pigna et al. [87]
reported that As toxicity in crops may be prevalent in situations where As pollution coexists with low
available P.
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Sulphur (S) is an element that interacts toughly with As, particularly under reducing conditions;
the reduced forms of S can make a binding with As(III) [88]. Srivastava et al. [89] stated that S is
important for plant growth as it regulates As tolerance over complexation of As by S-containing ligands
(glutathione [GSH; γ-Glu-Cys-Gly] and PCs [GSH oligomers]). Zhang et al. [90] reported a reduction
in translocating As from roots to shoots in high sulphate-pretreated rice plants.

3.4. Concentration of Iron and Manganese in Soil

Anwar et al. [9] expressed that Fe and Mn-rich compounds, such as goethite, ferruginous smectites,
nontronite, pyrolusite and birnessite, absorb large amounts of As(V). Hence, As mobility may be low.
A coating of Fe hydroxides/oxides identified as iron plaque, is normally formed on the roots of aquatic
plant species. Iron plaque is the result of the oxidation of roots by releasing oxygen and oxidants
into the rhizosphere [91,92]. Iron plaque also restrains the uptake of As by plants, possibly due to its
adsorption or co-precipitation procedures [93]. Yu et al. [94] reported a negative correlation between
As in rice grains and amorphous Fe oxide-bound As in soil and specified that amorphous Fe oxides
might play a role as a barrier for As uptake by the plant. Liu et al. [91] expressed that Mn and Fe
plaque can reduce the uptake of As in rice seedlings.

4. Agronomic Methods for Reducing Uptake and Accumulation of Arsenic by Plants

Awasthi et al. [12] stated three key plans to decrease As uptake by rice: (1) agronomic practices; (2)
transforming the transporters involved in uptake; and (3) influencing the mobility of As in developing
the synthesis of chelators.

For the agronomic strategy, researchers have tried to reduce As uptake by rice using different
mitigation methods (Table 3). Several strategies are being practiced to mitigate As pollution, and they
include overbreeding, bioremediation, transgenics and developed fertilisation; these techniques have
their own limitations of time, ethics and applicability [95]. Using Fe oxides/hydroxides is one of the
mitigation techniques to diminish As uptake by plants. Anwar et al. [9] reported that a high rate of
goethite addition to soils may decrease As uptake by plants because goethite may adsorb As. Farquhar
et al. [96] stated that As(V) oxyanions are toughly ‘sorbed’ to the surfaces of iron oxides such as
goethite, hence, As uptake may be reduced by plants. Ultra et al. [92] stated that soil amendments
with Am-FeOH can modify the accessibility of As uptake by rice plants irrigated with As-polluted
water. The manipulation of Si is a way to abate As uptake by rice. This approach takes advantage of
the fact that AsIII, the most prevalent As species in flooded porewater, shares the silicic acid uptake
pathway in rice [97]. Liu et al. [98] reported that foliar using SiO2 nanoparticles in As-polluted paddy
soil increases the dry weight of rice and obviously reduces As accumulation in grains and shoots.
The addition of SiO2 nanoparticles increases pectin content and advances the mechanical force of the
cell wall, resulting in decreased As uptake into rice cells [99]. Rice planted along with accumulators
has received growing research attention due to the reduced As uptake by rice. Parveen et al. [100]
stated that rice accompanied by accumulators in As-amended plots shows reduced As uptake in
grains and shoots. Thus, certain accumulator plants, such as Pteris vittata, Vetiveria zizanioides and
Phragmites australis, have been cultivated along with rice. The use of algae or bacteria to reduce As
uptake by plants has also been reported [101]. Flooded rice fields offer ideal conditions for microbial
and algal growth and regulate As bioavailability through precipitation, redox reactions, complexation
and nutrient availability [95].
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Table 3. Reported ways for reducing the uptake of As by rice plants.

Decreasing of As Uptake Method Remarks Reference

43% to 70% Using Anabaena azotica
(Microalgae)

(i) Decreasing translocation of As from root
to grains; (ii) decreasing DMA in grains and

roots and (iii) enhancing nutrient uptake
and rice growth

[102]

40%
Using Chlorella vulgaris
and Nannochloropsis sp.

(Microalgae)

(i) Increasing root and shoot length and
biomass and (ii) reduction in cellular

toxicity and antioxidant enzyme
[103]

48.1% to 77.7%

Using Chlorella vulgaris
(Microalgae) and

Pseudomonas putida
(Bacteria)

(i) Reducing As accessibility; (ii)
modulating the As uptake and (iii)

enhancing detoxification mechanism.
[95]

3.5% to 26.0% Using rhizobacteria
(PGPR)

(i) Improving rice growth and (ii)
decreasing As accumulation [104]

79% (in shoots) Using Pantoea sp
(Bacteria; EA106)

(i) improving Fe uptake by root; (ii)
decreasing As accumulation [105]

52.3% to 64.5%

Using Rhodopseudomonas
palustris C1 and

Rubrivivax benzoatilyticus
C31(Nonsulfur bacteria)

(i) Improving the rice growth; (ii) increasing
chlorophyll a and b and (iii) reducing As

accumulation
[106]

31% (in grains; just leonardite);

Using leonardite +
Bacillus pumilus,

Pseudomonas sp and
Bacillus thuringiensis

(i) High efficiency of leonardite in
adsorption of arsenic and (ii) increasing

productivity and reducing arsenic in grains
[107]

92 % (in grains; leonardite +
Bacillus pumilus)

91% (in grains; leonardite +
Pseudomonas sp)

91% (in grains; leonardite +
Bacillus thuringiensis)

17% to 82% (in straw) Using Pteris vittata
(Plant)

(i) Decreasing phosphate extractable; (ii)
decreasing methylated As in grains more

than inorganic As
[108]

22% to 58% (in grains)

179% (in root) Using selenium
amendments

(i) Enhancing the essential amino acids; and
(ii) increasing non-protein thiols and

phytochelatins in rice
[109]

144% (in shoot)

46% (in straw) Using Si-rich
amendments

(i) Decreasing As accumulation and (ii)
reducing CH4 emissions from soil [97]

27.5 (in grains) Using selenite
fertilization

(i) Decreasing the soil solution As in
flooded condition; (ii) decreasing As uptake

by rice in aerobic and (iii) decreasing the
proportion of As in rice shoots.

[110]

50% (straw, flag leaf and husk) Using silicon (i) Increasing the Si, Fe and P in soil solution [111]

68.9% to 78.3% (in grains) Using ferromanganese
oxide and biochar

(i) increasing the Fe and Mn plaque content
and (ii) improving the biomass weight of

the rice
[112]

32% (in grains under low water) Using zero valent iron
(i) Increasing percentage productive tillers

and grain yield and (ii) reducing the
cadmium bioaccumulation in rice grains

[113]

As shown in Table 3, using microalgae and bacteria are efficient in reducing As accumulation
in rice.

5. Conclusions

Rice is a major dietary source of As; therefore, researchers have tried to reduce As uptake by rice
plants. In the present study, several research papers were reviewed to investigate the journey of arsenic
in rice. The key conclusions of the present study are as follows:

1. The accumulation of As in soils in Bangladesh (51,900 µg/L in root) and Taiwan (157,000 µg/L in
root) is higher than that in other countries.
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2. AsV enters the root via Pi transporters, and AsIII, DMA and MMA enter the root through NIPs.
3. AsV can be reduced to AsIII by HAC1. In addition, DMA is more mobile than other As species.
4. Soil properties, such as pH, OM and the amounts of Fe, Mn, N, P and S, can affect As uptake

by rice.
5. Amongst the agronomic strategies for reducing the uptake and accumulation of As in rice, the use

of microalgae and bacteria is the most efficient.
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