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A B S T R A C T

Every effort aimed at stopping the expansion of Tuberculosis is important to national programs' struggle to combat
this disease. Different computational tools have been proposed in order to design new strategies that allow
managing potential patients and thus providing the correct treatment. In this work, artificial neural networks
were used for time series forecasting, which were trained with information on reported cases obtained from the
national vigilance institution in Colombia. Three neural models were proposed in order to determine the best one
according to their forecasting performance. The first approach employed a nonlinear autoregressive model, the
second proposal used a recurrent neural network, and the third proposal was based on radial basis functions. The
results are presented in terms of the mean average percentage error, which indicates that the models based on
traditional methods show better performance compared to connectionist ones. These models contribute to
obtaining dynamic information about incidence, thus providing extra-help for health authorities to propose more
strategies to control the disease's spread.
1. Introduction

Tuberculosis (TB) is an infectious disease considered to be the 13th

leading cause of death and the second leading infectious mortal illness
after COVID-19 around the world by the World Health Organization
(WHO). It has been estimated that this disease caused around 1.5 million
deaths and 10 million people fell ill from TB in 2019. These illness in-
dicators have decreased slowly in recent years despite the different ef-
forts made against it (Organization & others, 2021). This infection is
caused by Mycobacterium tuberculosis spreading through the air when
infected people cough and expel the bacteria (Lienhardt et al., 2012),
affecting the lungs in most cases, which is known as pulmonary TB. Due
to its simple propagationmode, the incidence rate of TB is falling at about
2% per year, which is less than expected for health authorities. The in-
ternational reported numbers are between 5 and more than 500 new
cases for every 100000 inhabitants. Because of that, the efforts led by
the WHO and initiatives such as End TB have tried to decelerate the in-
crease in TB cases faster and more effectively (Organization & others,
2020).
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Geographically, the region of the Americas had 2.9% of the reported
cases in 2019, with Brazil being inside the 30 high-TB-burden countries,
with an incidence rate of 46 new cases for every 100000 inhabitants
(Organization & others, 2020). In Colombia, the reported cases reached
an incidence rate of 20 new cases every 100,000 inhabitants and 14684
reported new cases in 2019 (Rinc�on-Torres et al., 2021; Salud, 2020).

In light of the above, innovative approaches have been studied, pro-
posing more instruments to contribute to the WHO's objectives. In recent
decades, time series forecasting (TSF) has been considered for statistical
methods based on observed data in order to provide additional knowl-
edge about the behavior of the disease. To this effect, mainly Box-Jenkins
or autoregressive integrated moving average (ARIMA) techniques have
been used (Helfenstein, 1986, 1996; Nelson, 1998). Recently, the field of
artificial intelligence (AI) has contributed with models based on artificial
neural networks (ANNs), which are considered to be part of the machine
learning theory of supervised learning models. ANNs have different ar-
chitectures which have been applied to TSF, such as those based on
nonlinear autoregressive (NAR) models, on radial basis functions (RBF),
or on long short-term memory (LSTM) (Box et al., 2015; Che et al., 2018;
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Greff et al., 2016; Palit and Popovic, 2006; Rivero et al., 2019; Tealab,
2018).

For the specific case of TB, TSF has been the subject of research in
different places around the world, mainly in high TB burden countries.
For example, studies conducted in China (Wang et al., 2017; Whang
et al., 2018) have involved hybrid techniques based on ARIMA and NAR
models. Furthermore, morbidity has been forecasted in the same region
by employing similar strategies (Zheng et al., 2015). Iraq is another
country that addressed the TB forecasting problem, proposing the pre-
diction of the number of smear positive TB cases. To this effect, tradi-
tional techniques have been applied, such as Box-Jenkins and nonlinear
models, as is the case of China (Moosazadeh et al., 2015; Moosazadeh
et al., 2014). Another country with a high TB burden is South Africa,
where a model based on seasonality was utilized to determine new TB
cases (Azeez et al., 2016). In Latin America, Brazil has been mentioned as
the most relevant country in terms of TB. There, studies based on TSF
have been reported, in which different univariate models have been
employed (Ribeiro et al., 2019). In addition, ARIMA and Holt-Winters
models have been used to analyze the incidence reported by the Brazil-
ian Unified Health System (Achcar et al., 2021), as well as the effec-
tiveness of the use of GeneXpert within TSF (Berra et al., 2021).
However, the use of AI tools is rather lacking in TSF applications to
determine TB incidence in the country, which is the largest South
America.

Colombia has conducted studies related to the TSF problem for spe-
cific diseases such as Zika and Dengue. In the first case, the number of
infections was analyzed based on a generalized Richards model using
data obtained from the Antioquia region (Chowell et al., 2016). As for
Dengue, some studies have dealt with weekly reported incidence cases
within a seven-year period (2008–2015), albeit by applying Bayesian
hierarchical dynamic generalized linear models (Martínez-Bello et al.,
2017). For the same disease, a forecasting model based on regression
models and climate data was used to understand how these variables
influence the number of new cases in the Risaralda region (Quinter-
o-Herrera et al., 2015). Unfortunately, despite the cited advances in
computer science worldwide, there is not enough information on TSF
studies based on public data which are specifically related to TB and the
use of artificial intelligence techniques in Colombia.

The objective of this work is to present a comparison between the
classical forecasting of reported new cases of TB based on ARIMAmodels
and the use of ANNs-based models for the same task. These strategies
make their contribution in the context of a developing country, where
precarious health infrastructure is the norm and alternative techniques to
identify effective interventions and control disease propagation from the
field of computational tools can be useful (Ghassemi et al., 2015; Mai
et al., 2015; Tealab, 2018; Thorve et al., 2018). This study was conducted
on dataset of publicly available data for the city of Bogot�a. This city has
the largest population in the country, with almost seven million people,
which implies an interesting group of study. Interdisciplinary pro-
fessionals, including expert physicians in TB diagnosis were involved.
This allowed understanding the potential of this type of analysis in the
detection of the disease.

2. Materials and methods

2.1. Database

Information extracted from the National Health Institute (Instituto
National de Salud, INS) was used during this study (de Salud, 2020).
The number of new reported cases related to pulmonary TB in Bogot�a
from 2007 to 2020 was employed in order to establish the time series
to be analyzed. According to the Colombian Public Health Monitoring
System (Sistema de Vigilancia en Salud Pública, SIVIGILA) all confirmed
cases must be reported to the INS, and then they are published on a
weekly basis in different channels of communication (e.g., the website).
Taking advantage of the public open data policies (Ministerio de
2

Tecnologías de la Informaci�on y las Comunicaciones, 2016), yearly
reports were collected in order to arrange the dataset. Figure 1 shows
the time series with data on weeks for the 2007–2020 period in
Bogot�a, Colombia.

A sequence of 694 values was taken into account during this study.
This average length was obtained from 52 weekly reports published per
year. A set of twelve complete years was chosen in order to use complete
registers and avoid biases due to incomplete information. In addition,
only the four first months of 2020 were considered, i.e., the months prior
to the national government's declaration of the sanitary emergency
caused by COVID-19.

In order to avoid saturation in the weights of the neural models, the
time series was normalized into an interval [0, 1] through the following
formula:

ynormalized ¼ yi � ymin

ymax � ymin
(1)

where yi is the original value, and ymin and ymax are the minimum and
maximum values of the time series, respectively. In order to generalize
the analysis of the obtained models, it was necessary to implement a
holdout validation technique to evaluate the ability to process unseen
inputs. This technique was applied by dividing the entire time series into
a portion for training and another for testing. The training subset was
obtained by using 70% of the series, fixing a 10% to validate the training
to avoid overfitting in the models. The testing subset was generated by
using the 30% of the sequence, which corresponds to 208 values from the
2016 to 2020.

2.2. Autoregressive integrated moving average

ARIMA or Box-Jenkins models have been traditionally used for TSF in
different sectors, such as those related to the economy, the industry, or
the environment, among others. However, the medical field can benefit
from the application of this kind of models (Box et al., 2015; Helfenstein,
1996). In this way, the ARIMA approach is commonly used to analyze
data representations that depend on consecutive measurements. There-
fore, the representation of TSF based on ARIMA models was taken as
reference in this work.

ARIMA models can be interpreted as autoregressive moving average
(ARMA) models with a previous preprocessing based on differentiated
values from the original time series. In this way, it is possible to express
these models as follows:

di ¼ cþ
Xp
k¼1

aidi�k þ
Xq
k¼1

biεi�k þ ε (2)

where di represents the differentiated time series y� yi�k, ai are the co-
efficients associated to the p-order values of the AR model, and bi is
related to the q-order values of the moving average (MA) model, which
are based on the computation of values of the white noise ε. i corresponds
to the time samples of the time series. Thus, the ARIMA (p,d,q) is a model
composed of the AR(p) and MA(q) models applied to the differentiated
(d) time series.

Box and Jenkins proposed a technique to determine orders p, q, and
d in the models from autocorrelation and partial correlation functions
(Helfenstein, 1986, 1996). However, in this case, the available compu-
tational resources were exploited in order to find the best model, modi-
fying the orders from one to ten for the p and q values, as well as from
zero to five for the d value. Finally, the models were implemented for
econometric and statistical modeling via the statsmodels tool in Python
(Seabold and Perktold, 2010).

2.3. Nonlinear autoregressive model (NAR)

The applications of ANNs vary according to their ability to learn and
detect patterns to perform approximations of functions, especially



Figure 1. Number of reported TB new cases in Bogot�a for the 2007–2020 period. Information is collected weekly by the National Health Institute in Colombia.
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nonlinear ones (Haykin, 2009; Palit and Popovic, 2006). In the field of
time series, forecasting is one of such applications, where NAR models
are employed to obtain the series behavior from data.

As in autoregressive (AR)models, the past values of the time sequence
yi are utilized to adjust the ai coefficients:

yi ¼ tanh

 Xp
k¼1

aiyi�k þ b

!
(3)

where yi is the current time output estimation, and ai are the coefficients
of the model, which are known as synaptic weights (aij) in the proposed
ANN model. Parameter b is employed in the model as a bias and helps
improve the estimation. The main difference to the AR model is that the
NAR model is nonlinear, which holds this nonlinearity in the hyperbolic
tangent (tanh) in Eq. (3). It is also known as a transfer function of the
units or neurons in the neural model. The inputs used to train the NAR
model are delayed samples of time series yi-k, the hidden layer sets the
nonlinear computation, and the output is computed just by one time unit,
which results in the future value (forecasting) of sequence yi.

In order to obtain the number of inputs and units in the hidden layer,
a heuristic process was followed. For a comparison with the ARIMA
model, delays caused by lags and hidden unit values from one to ten were
tested. Then, the model with the lowest error was preferred. For training,
the development subset and the use of a resilient backpropagation al-
gorithm were selected due to their performance when compared to other
training algorithms in terms of speed (Günther and Fritsch, 2010). The
maximum number of epochs was adjusted to 50 according to experi-
mental findings in the error curve during training, and, in this way, the
model was compared to other ANN proposals with the same training
parameters.
3

2.4. Long short-term memory model (LSTM)

LSTM is based on recurrent neural networks, where feedback
connections within the architecture evidence its main differences with
NAR models with feedforward weights. In addition, this model can
be considered to be a deep learning one, which depends on the
number of layers. However, only one hidden layer was employed in
this case.

This architecture is composed of a cell with input, output, and forget
gates. The latter has a function for determining what information must be
remembered by the network. Three gates are used to control the flow of
information that enters and exits the cell (Greff et al., 2016). The ex-
pressions of the LSTM model are formulated as follows:

iðtÞ¼ θiðWxixðtÞþWhihðt� 1ÞþWcicðt�1ÞÞ (4)

f ðtÞ¼ θf
�
Wxf xðtÞþWhf hðt�1ÞþWcf cðt�1Þ� (5)

cðtÞ¼ f ðtÞcðt� 1Þ þ iðtÞθcðWxcxðtÞþWhchðt�1ÞÞ (6)

qðtÞ¼ θq
�
WxqxðtÞþWhqhðt�1ÞþWcqcðtÞ

�
(7)

hðtÞ¼ qðtÞθhðcðtÞÞ (8)

where i(t), f(t), q(t), and c(t) in Eqs. (4), (5), (6), and (7) correspond to
the input, forget, and output gates, as well as the cell activation vectors of
the same size for the hidden vector h(t) (8). The θ symbol labels the
activation functions.

Traditional recurrent models suffer from the gradient vanish prob-
lem when the backpropagation algorithm is used for training, which is
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due to its deep connections over long periods in time. LSTM shows an
improved behavior with regard to this problem, employing a cell
structure based on control gates that do not affect the training (Greff
et al., 2016; Sutskever et al., 2014). For the sake of comparison with the
NAR approach, the number of training epochs was the same in this
present case (50).

As in NAR model, the delays caused by lags and the number of
hidden cells for the network were varied from one to ten in order to
compare the models using the same values for the parameters to be
adjusted.
2.5. Radial basis functions (RBF)

The RBF architecture is based on three layers, similar to the NAR
model, but it can be regarded as linear combinations from nonlinear
functions with a radial basis, which is represented in the hidden layer
(Haykin, 2009). To obtain these combinations, n functions are proposed
as follows:

yi ¼
Xn
k¼1

akρðkx� ckkÞ (9)

where ρ is the radial basis function –commonly a Gaussian function– and
ak are the weights associated to each unit or neuron k. As the functions
have a radial basis, ck represents the center of the n functions. The
nonlinear function is applied to the distance of each input x in relation to
the center c. In this case, as a comparative method, this number of
functions was modified from one to ten, finding the best parameters in
the training process.

As with the previous models, the parameters to find the best perfor-
mance were experimentally found. The number of lags or inputs and the
number of radial basis functions or hidden layer units were modified
within the same interval: from one to ten. To maintain the training pa-
rameters controlled for comparison, 50 epochs were employed to adjust
the weights.

All neural networks models were implemented by using classes of the
Keras API in the Google Colab environment (Chollet & others, 2015;
Manaswi, 2018).
Table 1. Results for the ARIMA model.

Type of Error Training Set

Value Model

RMSE 4.010 ARIMA (7,0,9)

MAE 3.155 ARIMA (7,1,7)

MAPE 34.138 ARIMA (7,2,2)
2.6. Evaluation methods

The prediction accuracy was evaluated by determining the root
mean square error (RMSE), the mean absolute percentage error
(MAPE), and the mean absolute error (MAE), which are employed to
assess forecasting models (Shcherbakov et al., 2013). These values can
be computed according with expressions (10), (11), and (12).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðbyi � yiÞ2
N

s
(10)

MAPE¼ 1
N

XN
i¼1

jyi � byi j
yi

100% (11)

MAE¼ 1
N

XN
i¼1

jeij (12)

where N is the number of the values or points in the sequence, byi is the
forecasted series, yi is the original series, and ei is the error between
samples of the series.

For the three techniques described, and according to the parameter
exploration, the best model was chosen based on three error metrics in
the training set. Then, the data from the test subset was applied to assess
model generalization. This allowed determining whatmodel provides the
best performance when unseen data are used.
4

3. Results and discussion

Table 1 shows the results for the best ARIMA models according to the
RMSE, MAPE, and MAE values. The parameters of the best model are
presented in terms of the p, d, and q orders employed in the adjusting
process. Tables 2, 3, and 4 show the ANN proposals, visualizing the re-
sults for the NAR, LSTM, and RBF models. Here, the information is
similar to Table 1, albeit with units and cells in the hidden layer and the
number of input lags employed in the training.

The ARIMA model exhibited the use of seven lags or inputs and
differentiated time series of one and two orders. The best RMSE result
was achieved without any differences computed by the time series and an
order of nine for the MAmodel associated with white noise. In the case of
the NAR model, the best performance, taking the RMSE as reference, was
reached by a neural network with nine inputs and seven units in the
hidden layer. For the LSTMmodel, a recurrent neural network with eight
inputs and eight cells in the hidden layer obtained the best result in terms
of the RMSE. Finally, the RBF model employed an architecture based on
eight inputs and nine units (functions) in the hidden layer.

The difference between the ANN models was reflected on the inputs,
with a minimum eight inputs for LSTM and RBF models, compared to
nine lags for the NAR model. In addition, the number of units in the
hidden layer showed a minimum of seven with the NARmodel, as well as
a maximum of ten cells for the LSTM. The RBF model required nine
functions for forecasting.

The ARIMA models obtained higher error values for the RMSE and
MAE metrics, but a slightly lower complexity for the models, employing
just seven lags from the time series. Despite this, the performance of the
three models was computed for the test subset, choosing the best model
based on the three metrics. A comparison of the errors in the test subset is
shown in Table 5 for the selection based on RMSE, where the lowest
values were reached by the ARIMA (7,0,9) model. However, the error
difference was not more than one unit for the RMSE and MAE metrics,
obtaining more than six units with regard to the MAPE metric. Tables 6
and 7 show the comparison of the three metrics for model selection based
on MAE and MAPE values, taking the model column in Tables 1, 2, 3, and
4 as reference. There, it can be observed that, for the NAR and RBF
models, the result was the same when the RMSE and MAE metrics were
considered.

Figure 2 shows the segment of series used to test the models. The
black series corresponds to the original data, the red time series is
associated with the results of the ARIMA model. This segment is
compared to the best forecasts of the NAR (blue), LSTM (green) and RBF
models (purple). In this Figure, it is difficult to observe differences in the
performance of the three models. The ANN proposals managed to fore-
cast the details from the original series regarding trend and speed
changes. These models did not reach the high values of the original series
in the test set, thus failing to obtain peak values of incidence higher than
25 TB cases. This can be explained by the division of the sequence (for
training and testing), an aspect visible in the training series, with 486
week values with no points higher than 25 TB cases, as seen in Figure 1.
The TB incidence changed abruptly in the test set before week 100
(Figure 2), reaching peaks with more than 35 TB cases in the last samples.
This means that the models do not reach the highest values in the training
due to the division made, even after the normalization process. Never-
theless, the ARIMA model could obtain values higher than 25 new cases,



Table 2. Results for the NAR model.

Type of Error Training Set

Value Model

RMSE 3.9001 Lags: 9 Units: 7

MAE 3.0491 Lags: 9 Units: 7

MAPE 37.4935 Lags: 1 Units: 9

Table 3. Results for the LSTM model.

Type of Error Training Set

Value Model

RMSE 3.9058 Lags: 8 Cells: 8

MAE 3.0599 Lags: 8 Cells: 10

MAPE 38.7197 Lags: 3 Cells: 1

Table 4. Results for the RBF model.

Type of Error Training Set

Value Model

RMSE 4.0154 Lags: 8 Units: 9

MAE 3.1404 Lags: 8 Units: 9

MAPE 37.0049 Lags: 1 Units: 7

Table 5. Comparison of results for all models in the test subset when the RMSE
was considered.

Type of Error Models

ARIMA NAR LSTM RBF

RMSE 5.8916 6.4775 6.5928 7.2267

MAE 4.5547 4.9573 5.0602 5.5030

MAPE 26.9366 36.1461 33.6701 31.2997

Table 6. Comparison of results for all models in the test subset when the MAE
was considered.

Type of Error Models

ARIMA NAR LSTM RBF

RMSE 5.7444 6.4775 7.2643 7.2267

MAE 4.4707 4.9573 5.5583 5.5030

MAPE 26.9926 36.1461 32.7088 31.2997

Table 7. Comparison of results for all models in the test set when the MAPE was
considered.

Type of Error Models

ARIMA NAR LSTM RBF

RMSE 5.8509 7.5124 9.6832 7.8548

MAE 4.5748 9.3237 7.7452 7.4045

MAPE 28.1752 34.1471 36.5180 36.1315
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showing a lower difference after the week 100, with a performance
higher than that of the ANNs. This allows observing that the ARIMA
model had a better generalization of the time series phenomena than the
ANN models.

Despite this last disadvantage, the obtained models could be useful in
applications where the behavior of the phenomenon is more important,
especially in critical situations requiring the healthcare system to work
better, anticipating actions in the form of policies or educational stages.
In other words, the identification of possible changes in the tendency and
5

obtaining information about important slopes regarding the number of
TB cases is preferable for institutions and administrative entities involved
in healthcare. Moreover, it can be seen that the models learned the
seasonal behavior of the series, providing the necessary incidence data to
establish timely control strategies. According to this, it was observed that
the models with the best results required between seven and nine lags in
the input for TSF, which implies that information for at least two months
(eight weeks) is required before the possible intervention to modify the
new TB cases time series. This is important to determine the effective
design of strategies to control TB incidence in terms of possible new
cases.

The differences in the results for both employed ANN models can be
explained by the characteristics of each architecture. The explorations of
the training parameters were similar for both models, and the number of
epochs and stopping criteria were the same. The lags in the input and
units in the hidden layer were modified using the same intervals. The
LSTM model had a larger architecture, with ten units in the hidden layer
and comparable results, which indicates that the forecasting task was
more difficult. Previous works have shown how the NAR model is
adequate for obtaining information on TB (Wang et al., 2017; Whang
et al., 2018). The LSTM did not have a smaller architecture, as could be
expected due to its recurrent behavior. Despite this, the errors in Tables 2
and 3 show a minimal difference between both analyzed ANN proposals.

In terms of the RMSE and MAE values, these errors were close to four
to five units regarding new TB cases in the training set, and they reached
about six to eight units in the test subset –almost nine for the LSTM. This
means that the differences between the forecasted series can be inaccu-
rate with respect to the original series around this number, but it is also
important to understand the performance of the series in order to identify
periods or moments for interventions related to control or health policies
–which, in this case, requires an interval of eight weeks.

The results obtained from the neural model proposals compared to
traditional strategies were unsatisfying, as the ARIMA model showed a
better performance. However, the simplicity of the models can explain
the results, which were employed to assess the possibility of using AI
techniques without any complications. The results from traditional and
AI techniques were contrasted, concluding that the statistical methods
were better (Makridakis et al., 2018). Moreover, the results depend on
the application in terms of data quality, quantity, length, and availability,
but, at the same time, on the interactions of the specific field (Ray et al.,
2021), namely the healthcare area.

The novelty of this work is the use of ANN techniques such as
recurrent neural networks and nonlinear autoregressive models to
analyze the TB incidence time series. There are similar studies in the
region, where context similarities can be applied; for example, models
based on statistical models such as ARMA, ARIMA, simple exponential
smoothing, Holt-Winters, and its modified exponential smoothing were
studied in Brazil, reaching the best results with the implementation of the
ARIMA (4,1,5) model (Ribeiro et al., 2019). In addition, a complemen-
tary study compared the effectiveness of the GeneXpert technology with
an ARIMA (5,0,0) model (Berra et al., 2021). Nevertheless, AI strategies
to propose or obtain this kind of model have not been reported in the
same region. This study presented the comparison of two ANN models to
carry out this task, as well as to determine the advantages and disad-
vantages AI techniques in this context. Furthermore, based on this pro-
posal, the researchers believe that interdisciplinary work in the field can
be effective, as it involves synergy between the establishment of the
models and their application with direct users, with the purpose of
improving models, methods, and performances. Physicians believe that
the results could be beneficial for TB diagnosis in locations with lacking
resources, where the advantages of employing neural networks models
have been evidenced (Orjuela-Ca~n�on et al., 2018).

The limitations of this study are associated with the results obtained
from the ARIMA model in comparison with the ANN ones. Traditional
strategies to fit the ARIMA models are based on analyzing total and
partial correlation, in addition to complementary techniques for



Figure 2. Results of the time series forecasting comparison for the three employed models. The ARIMA model showed the best performance, as represented by the
red line.
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obtaining the final model to represent the data. However, the main
objective of this work was to compare ANN models to the common
techniques used for the TSF problem. To this effect, the methodology
sought equality in the adjusting/training process for all considered
models. Additionally, some problems that were not examined are related
to the review of data acquisition issues. The TSF problem is affected by
spurious events that modify the time series without a natural behavior. In
other words, the COVID-19 pandemic could have affected TB services;
the reported new cases may show drops in the notifications collected by
national healthcare institutions (Organization & others, 2021). Due to
this, this study took values from before the pandemic.

4. Conclusions

In order to obtain a model for time series forecasting of the reported
new cases of TB for the city of Bogot�a, Colombia, models based on arti-
ficial neural networks were employed. A comparison between NAR, RBF
and LSTM models was performed in order to determine which had the
best performance, taking the traditional ARIMA model as reference.

According to the results obtained, the LSTM models exhibited an
architecture smaller than that of NAR with similar results; RMSE values
of 6.59 and 6.39 were obtained, respectively. The ARIMAmodel obtained
an RMSE of 5.89, the best performance among the analyzed models. This
means that traditional models are better than AI-based strategies in this
context. Regardless, the information gathered from the implementation
of different strategies for TSF is useful in decision-making processes, and
it allows planning interventions to mitigate the propagation of TB,
especially when national vigilance institutions declare emergencies. In
this case, the results allowed establishing an interval of seven to eight
6

weeks for TSF, due to the fact that this value yields the best results for the
studied models.

Finally, these preliminary results allowed determining the useful-
ness of the aforementioned neural models in the study of TB incidence
as observed by a time series based on the weekly number of new TB
cases. As it was seen, ANN models can be a starting point to continue
with proposals for forecasting new reported TB cases. As future work,
deep learning models could be employed which are based on LSTM
networks, as they control backpropagation vanishing. In addition,
hybrid proposals that include traditional and AI-based models could be
analyzed.

Declarations

Author contribution statement

Alvaro David Orjuela-Ca~n�on: Conceived and designed the experi-
ments; Performed the experiments; Analyzed and interpreted the data;
Contributed reagents, materials, analysis tools or data; Wrote the paper.

Andres Leonardo Jutinico Alarc�on and Mario Enrique Duarte
Gonz�alez: Performed the experiments; Contributed reagents, materials,
analysis tools or data; Wrote the paper.

Carlos Enrique Awad García: Conceived and designed the experi-
ments; Analyzed and interpreted the data; Contributed reagents, mate-
rials, analysis tools or data; Wrote the paper.

Erika Vergara: Analyzed and interpreted the data; Contributed re-
agents, materials, analysis tools or data; Wrote the paper.

Maria Ang�elica Palencia: Analyzed and interpreted the data;
Contributed reagents, materials, analysis tools or data.



A.D. Orjuela-Ca~n�on et al. Heliyon 8 (2022) e09897
Funding statement

This work was supported by Ministerio de Ciencia, Tecnología e
Innovaci�on - Miniciencias, in Colombia (123380762899).

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors would like to acknowledge Universidad del Rosario,
Universidad Antonio Nari~no, and Subred Intregrada de Servicios de Salud
Centro-Oriente and its Unidad de Servicios de Salud Santa Clara for their
support, as well as Minciencias.

References

Achcar, J.A., Oliveira, R.P., Barili, E., 2021. The incidence of tuberculosis in Brazil from
2001 to 2018: use of polynomial regression combined with a stochastic volatility
model. Int. J. Clin. Biostat. Biom. 7, 35.

Azeez, A., Obaromi, D., Odeyemi, A., Ndege, J., Muntabayi, R., 2016. Seasonality and
trend forecasting of tuberculosis prevalence data in Eastern Cape, South Africa, using
a hybrid model. Int. J. Environ. Res. Publ. Health 13 (8), 757.

Berra, T.Z., Gomes, D., Ramos, A.C.V., Alves, Y.M., Bruce, A.T.I., Arroyo, L.H.,
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