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Introduction
The population based cancer registry evidently shows from the various statistics, that 
the incidence of breast cancer is rapidly rising, amounting to a significant percentage 
of all cancers in women. Breast cancer is the commonest cancer in urban areas in India 
and accounts for about 25–33% of all cancers in women. Over 50% of the breast cancer 
patients in India, being in stages 3 and 4 will definitely face the survival problem (Hassan-
ien and Ali 2011). The survival rate can be increased only through early diagnosis. Image 
processing technique together with data mining is used for extraction and analysis of the 
ROI. Tumor can be classified into three categories normal, benign and malignant. A nor-
mal tumor is a mass of tissue which exists at the expense of healthy tissue. Malignant 
tumor has no distinct border. They tend to grow rapidly, increasing the pressure within 
the breast cells and can spread beyond the point from which they originate. Thus they 
grow faster than benign tumors and cause serious health problems if, left unnoticed. 
Benign tumors are composed of harmless cells and they have clearly defined borders. 
They can be completely removed and are unlikely to recur. MRI mammogram images 
taken after the appropriate segmentation of the tumor make classification of tumor into 
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malignant, benign and normal a difficult task, due to complexity and variation in tumor 
tissue characteristics like its shape, size, grey level intensities and location. Effective seg-
mentation techniques results in accurate classification of such cancerous masses.

Data acquisition
A database of 1,528 mammograms, originating from the mammography image analysis 
society (MIAS), digital database for screening mammography, University of South Flor-
ida DDSM Resource, LLNL/UCSF database (Lawrence Livermore National Laboratories 
(LLNL), University of California at San Francisco) and Nijmegen digital mammogram 
database were used for the study.

Methodology
Image preprocessing and enhancement

The main objective behind the preprocessing step is to enlarge the intensity difference 
between objects and background. Preprocessing technique increases the optical inspec-
tion of an image. The proposed approach improves the image data by suppressing 
unwanted distortions and enhance the important image features. This will produce reli-
able representations of breast tissue structures. The fuzzy transformation function for 
computing the fuzzy plane value P is defined as follows:

• • α = min
• • β1 = (α + γ)/2
• • β2 = (max + γ)/2
• • γ = max/2

The histogram equalization of the gray levels in the original image can be charac-
terized using five parameters:(α, β1, γ, β2, max). The aim is to decrease the gray levels 
below β1, and above β2. Intensity levels between β1 and γ, and β2 and γ are stretched in 
opposite directions towards the mean γ (Fig. 1).

Procedure:
Step 1: Fuzzification:
The following fuzzy rules are used for contrast enhancement:

Rule-1:
If α ≤ ui < β1 then P = 2 ((ui − α)/(γ − α))2

Fig. 1  Histogram of the input image.
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Rule-2:
If β1 ≤ ui < γ then P = 1 − 2 ((ui − γ)/(γ − α))2

Rule-3:
If γ ≤ ui < β2 then P = 1 − 2((ui − γ)/(max − γ))2

Rule-4:
If β2 ≤ ui < max then P = 2 ((ui − γ)/(max − γ))2

where ui = f(x,y) is the ith pixel intensity

Step 2: Fuzzy Modification

Step 3: Defuzzification

The quality of the preprocessed image is to be checked with the following parame-
ters like peak signal to noise ratio (PSNR), noise standard deviation (NSD), mean square 
error (MSE), equivalent number of looks (ENL).

Image segmentation and ROI extraction

The region of interest i.e. the tumor region is segmented using the Graph cut method. 
The main purpose of using this method for segmentation is that it segments the mam-
mogram into different mammographic densities. It is useful for risk assessment and 
quantitative evaluation of density changes. Apart from the above advantage it pro-
duces the contour (closed region) or a convex hull which is used for analyzing the 
morphological and novel features of the segmented region. The above technique 
results in efficient formulation of attributes which helps in classification of the ROI 
into benign, malignant or normal. Graph cuts have been used in recent years for inter-
active image segmentation (Hassanien and Badr 2003). The core ideology of graph cuts 
is to map an image onto a network graph, and construct an energy function on the 
labeling, and then do energy minimization with dynamic optimization techniques. 
This study proposes a new segmentation method using iterated graph cuts based on 
multi-scale smoothing. The multi-scale method can segment mammographic images 
with a stepwise process from global to local segmentation by iterating graph cuts. The 
modified graph cut approach used by K. Santle Camilus (Hassanien and Badr 2003) is 
implemented in this project.

Steps involved in graph cut segmentation are:

1.	 Form a graph
2.	 Sort the graph edges
3.	 Merging regions based on threshold

From the mammogram image a graph G =  (V, E) is constructed such that V repre-
sents the pixel values of the 3 ×  3 image and E represents the edges defined between 
the neighboring pixels. The weight of any edge W(Vi, Vj) is a measure of dissimilarity 
between the pixels Vi and Vj. The weight for an edge is measured by means of considering 
the Euclidian distance between the two pixels Vi and Vj (Ertas et al. 2001; Shah et al. 2011; 
Masek et  al. 2001; Thamaraichelvi and Yamuna 2013; Jayadevappa et  al. 2009; Benfield 
et al. 2007; Elnakib et al. 2011). It is represented by the equation
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Procedure:

1.	 Sort the edges in ascending order of their weights such that W(e1) ≤ W(e2).
2.	 Pick one edge ei in the sorted order from ei to en where ei is between two groups of 

pixels which determines whether to merge the two groups of pixel to form a single 
group or not. Each vertex is considered as a group. The two groups which satisfies 
the merge criteria are merged together. The different groups of pixels representing 
different regions or objects are obtained.

3.	 Determining the merge criteria: When the pixels of a group have intensity values 
similar to the pixels of the other group, then intuitively the calculated IRM between 
these groups should be small. The expected smaller value of the IRM to merge these 
two regions is tested by comparing it with the dynamic threshold. Hence, the merge 
criterion, to merge the two regions, R1 and R2, is defined as:

Figure 2 specifies the weighted calculation applied to the input image. Figure 3 shows 
how graph cut method is applied on a 3 × 3 image. Figure 4 shows the stage by stage 
output of the proposed method and the segmented region is shown in Fig. 5.
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Fig. 2  Weight calculation for the 3 × 3 matrix.
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Fig. 3  Graph cut approach.

Fig. 4  a Input image, b ROI, c segmented boundaries, d edge, e pectoral muscle identification indicated by 
red color, f ground truth value represented by white.
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Performance analysis
Performance measure of the proposed mathematical approach at each stage was estimated.

Preprocessing

Tabulation in Table 1 clearly shows a high PSNR value which shows that the image is 
highly enhanced (Camilus et al. 2010).

Segmentation

The Table  2 below depicts the interpretation between the two approaches using the 
quantitative measures to determine the overall classification accuracy (Zhang et al. 2012; 
Annamalai et al. 2009; Ramaswamy and Rose 2009; Peng et al. 2010; Artan et al. 2012).

Fig. 5  Segmented image.

Table 1  PSNR tabulation

PSNR RMS H γ MSE Nature of filter

87.65 2.97 0.2111 0.0086 8.83 FHQ

Table 2  Segmentation technique comparision

Parameters Hassanien method Proposed method

Target to background contrast measure based on standard deviation 0.71 0.83

Target to background contrast measure based on entropy 0.76 0.90

Index of fuzziness 0.2892 0.010

Fuzzy entropy 0.1056 −0.001

PSNR 86.75 90.88
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Segmentation accuracy

Segmentation accuracy is depicted in Table 3.

Computational efficiency

Table 4 clearly depicts the computational efficiency of the proposed method is efficient 
compared to the other existing technique.

Metrics for evaluating the segmentation technique includes

The region-based criteria mutually compare the machine segmented regions with the 
correct ground truth regions.

Let A(I, J) denote the machine segmented region and B(I, J) denotes the ground truth 
region then the region overlap acceptance is controlled by the threshold k = 0.75 then

Region overlap Local refinement error

Edgel matching Overlay the original with segmented image and compute correspond-
ence via min-cost assignment on bipartite graph.

The F-measure value is shown in Fig. 6.

Conclusions
The proposed mathematical approach yields a high level of accuracy within a minimum 
period of time that confirms the efficiency of the algorithm. The GUI based CAD sys-
tem was developed using Scilab and R2. The segmentation speed accounts to 6 ms using 
graph cut based Otsu’s thresholding. The main goal of classifying the tumors into benign, 
malignant and normal is achieved with a great accuracy compared to other techniques 

E(A, B, k) =
∣

∣R(A, k)/R(B, k)
∣

∣

/

R(A, k)

Table 3  Segmentation accuracy metrics

Specificity 95.5%

Sensitivity 97.3%

Positive prediction value 89%

Accuracy 98.9%

Area under curve 0.98

Negative prediction value 98%

Table 4  Computational efficiency of the proposed method

Methods References System specification Computational 
time based on  
implementation

Rough set approach Hassanien and Ali (2011) Intel Pentium®  
CPU B950 Processor

2 GB RAM
32-bit OS
Windows 7

2′19″

Mathematical
Morphological

Bojar and Nieniewski (2008) 2′50″

Shape and texture feature Zakeri et al. (2012) 8′21″

Shape, edge-sharpness,  
and texture features

Mu et al. (2008) 0′45″

Proposed method Angayarkanni et al. (2002) 0′03″
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because of the implementation of the accurate segmentation technique employed. The 
proposed technique is computationally efficient as specified in the tabulation above. Fur-
ther the complexity of the algorithm in asymptotic sense is equivalent to o(log n).

Authors’ contributions
A mathematical model for effective detection and segmentation of cancerous masses has been proposed. All authors 
read and approved the final manuscript.
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