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The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on
analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on
either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated
threemainways to understand the functional biomolecules based on the topological features of drug targets.There are no significant
differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are
neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug
targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong
to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets
work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug
target efficiently and economically. By this way, a drug target’s homologue set containing 102 potential target proteins is predicted
in the paper.

1. Introduction

Drug target studies have been conducted in both dry and
wet labs from experimental designs to target identification
and validation steps. There are two ways for target discovery:
a system approach and a molecular approach [1, 2]. In
2006, Imming et al. [3] catalogued 218 molecular targets for
approved drug substances andOverington et al. [4] proposed
a consensus number of 324 drug targets for all classes
of approved therapeutic drugs. Rask-Andersen et al. [5]
analyzed trends in the introduction of drugs that modulate
previously unexploited targets and discussed the network
pharmacology of the drugs in our dataset. Yildirim et al.
[6] built a bipartite graph composed of US Food and Drug
Administration-approved drugs and proteins linked by drug
target binary associations. By using chemical 2D structural
similarity, Keiser et al. predicted new molecular targets for
known drugs [7]. Campillos et al. [8] used phenotypic side-
effect similarities to infer whether two drugs share a target.

The main molecular targets for drugs are proteins (mainly
enzymes, receptors, and transport proteins) and nucleic acid
(DNA and RNA). It is indeed gratifying that development of
research in cell biology, molecular biology, and biochemistry
produced a remarkable compendium of knowledge on the
function and molecular properties of individual proteins [9].
However, a protein usually carries out a typical function by
regulating other molecules. In other words, it rarely acts
alone. Therefore, in the past few years, with the emergence
of high-throughput technologies for omics data, like yeast
2 hybrid protein interactions, research of protein-protein
interactions (PPI) has been occurring with high frequency.
Bultinck et al. [10] concluded that a growing number of
functional PPI modulators are being reported and clinically
evaluated. PPI provides us with more information for under-
standing the relationship between drug targets and other
proteins in a systematic point of view.

Many researchers believe that topographical analysis of
the complex network of intercellular protein interactionsmay
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also lead to new avenues for target prediction [11]. Based
on the graph modeling theory in computer science, protein
networks are extensively being studied in the system biology
field. Royer et al. [12] used power graph analysis to explicitly
represent reoccurring network motifs. In a systematic point
of view, the gene regulatory network and drug targeted
protein network are different from their normal counterparts.
Currently, the interactions between drugs and targets have
also been studied as an interactive network. Chautard et
al. [13] described the high-throughput methods used to
identify new interactions and to build large datasets that
record the identified interactions. Yamanishi et al. [14] char-
acterized four classes of drug–target interaction networks
and revealed significant correlations between drug structure
similarity, target sequence similarity, and the drug–target
interaction network’s topology. The essential intentions of
these approaches are trying to take the time-specific or space-
specific information into account. Thus, these systems biol-
ogy approaches will lead to time-sensitive, space-sensitive,
and synergistic treatments taking the multidimensional use
of drugs into consideration [13].

These studies mainly focused on interactions of drugs
targets rather than the targets’ topological features. It is a
reasonable way to identify targets on which the typical drugs
work. However, the targets topological features are helpful to
predict new targets because most of them have similarity on
some topological features which are different from normal
proteins. To construct a panoramic view of drug targets, in
this paper, we examined the three main institutive views
about drug target characteristics: intermediaries, source of
the drug stimulus, and special topological features. Based on
the PPI network, we analyzed lists of the topological indices
related to the three traditional views above. The results show,
somewhat surprisingly, that the topology of a drug target is
not to help it as intermediary or be the source of the drug
stimulus. On the other hand, drug target proteins indeed
have some special topological features that are significantly
different than normal proteins.

The remainder of this paper is organized as follows. The
Data Collection elaborates the details about data sources
of drug target properties and the PPI network used in the
paper. The analysis on drug target protein topology under
three transitional points is in the Analysis. The Discussion
discusses the drug target’s topological characteristic and its
applications.This paper concludes in the Conclusionwith the
impact of the paper and our future work insights.

2. Data Collection

Proteins are the main catalysts, structural elements, signaling
messengers, and molecular machines of biological tissues
[15]. The interactions between proteins form the basis for
signal transduction pathways and transcriptional regulatory
networks. Therefore, it is very important in harmonizing the
events in a cell. Target proteins are functional biomolecules
that are addressed and controlled by biologically active com-
pounds. Currently, the main resource of protein interactions
is from five most widely used PPI databases (HPRD version
R9) [16], IntAct (2010-02-17 downloaded) [17], BioGRID

(version 2.0.63) [18], MINT (version 2010-05-05) [19], and
DIP (version 2009-12-30) [20]. The databases contained a
combined 65,785 nonredundant interactions.

In this paper, the main information of drug targets
was extracted from the DrugBank database, in which the
approved targets set (version 3.0) [21] contains 1,604 proteins.
Then PISCES [22] was used to remove those sequences with
an identity larger than 20% for both the drug target and the
nontarget sequence. Using this method, we gained 517 drug
targets and 3,834 common proteins. The drug protein prop-
erties included single peptide cleavage [23], transmembrane
helices [24], low complexity region [25],N-glycosylation [26],
and O-glycosylation [27]. These chemical properties of the
amino acids of proteins determine the biological activity of
the protein. Therefore, they can provide us with information
that whether a protein is suitable to be a drug target protein.
The chemical and physical properties which were used in
our analysis are 26 amino acids (counted by Mole%) and
number of charged residues, basic residues, acidic average
molecular weight, and isoelectric point are used to train the
model and predict the potential drug targets [28]. Besides,
they are important clues aswell as the PPI topological features
for the judgement of which proteins could be targets. Here
we use pepstats, an online software from EMBOSS [29] to
calculate statistics of protein properties. A more detailed
information on these properties including hypothesis test is
in [30]. Finally, the proteins dataset contains 39 chemical and
physical properties.

After integrating the DrugBank target protein data and
the PPI data, we gained 1,361 proteins that have both network
properties and chemical-physical properties. Of the 1,361
proteins, 149 are known drug targets and the remaining
1,212 are yet to be tested. There are 10,197 proteins without
chemical and physical properties. Unfortunately, although
there are improved methods to reduce the protein-protein
interaction’s false positive rate [31, 32], the information of
protein-protein interactions is always incomplete so that
there are some isolated nodes (e.g., PDXP, ODZ1, NT5M,
and IL17F) and small components that only contained two
or three nodes (e.g., the component consisting of KLRG1
and LEPROTL1 and the component consisting of PCYT2
and JMJD5). Hereby, in order to reduce the effect from lack
of complete interactions, we used the maximal connected
component instead of the original PPI. It contains two types
of proteins, 138 drug targets (D) and 11,163 pending test
proteins (PT). The latter consist of 1,180 proteins with 39
chemical-physical properties (PT1) and 9,983 without any
properties (PT2).

Table 1 shows the overall description of the collected data.
It gives a summary of the data which were performed in
our manuscript. It shows the fact that the number of known
drug target proteins is far less than the number of pending
test proteins. It reveals the feasibility of this analysis and the
possibility that there are many potential drug targets in the
pending test data.The knownDTproteins whichwe collected
from the DrugBank database were removed from non-DT
proteins dataset. The proteins redundancy method [33] was
performed to obtain ourDT and non-DTprotein dataset.The
coverage ratio is calculated in the way using the used data
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Table 1: Summary of data.

Drug targets Pending test (PT) Proteins Edges Drug targets ratio Pending test ratio
(D) PT1 PT2 (P) (E) (DR = D/P) (PR = PT/P)

Original data 149 1212 10197 11558 65772 0.23% 99.77%
Used data 138 1180 9983 11301 65547 0.21% 99.79
Coverage ratio 92.6% 97.4% 97.9% 97.8% 99.7% 91.3% 100%

(the number of drug target or pending test proteins which is
used in the analysis) divided by the original data (the number
of drug target or pending test proteins acquired from the
public dataset).

3. Drug Target Network Topology Analysis

As stated in classical complex networks theory, the drug
targets network is represented as an undirected network 𝐺 =(𝑉, 𝐸), where 𝑉 denotes the protein in D set or PT set and 𝐸
is the interactions between each proteins pair. In the paper,
the drug targets network contains 11,301 nodes and 65,547
edges. For each node 𝑖 ∈ 𝑉, 𝑘𝑖 denotes the degree of it. 𝐴 is
the adjacency matrix for the network, where 𝐴 𝑖,𝑗 = 0 when
there are no interactions (no edge) between nodes 𝑖 and 𝑗.
Similarly, 𝐴 𝑖,𝑗 = 1 when there is an interaction between each
other.

The drug target is the native protein in the body whose
activity is modified by a drug resulting in a desirable
therapeutic effect. Different drugs act on molecular tar-
gets at different locations in the cell. In the human body,
all cells have membrane that enclose the cytoplasm. The
cell membrane consists of two identifiable layers, each of
which is made up of an ordered row of phosphoglyceride
molecules such as phosphatidylcholine. A phosphoglyceride
molecule consists of a small polar head group and two
long hydrophobic chains. In the cytoplasm, there are several
structures, one of which is the nucleus that acts as the control
center for the cell. There are also many other structures
within a cell, such as mitochondria, Golgi apparatus, and
the endoplasmic reticulum. As the drug targets are the
special proteins through which the drugs carry out their
specific functions, they are thought institutively as (1) the
intermediaries which play an important role on interactions
of the drug targets network; (2) the sources which receive
the drug stimulus and convert it into another stimulus that
can be responded to by normal proteins; (3) the proteins
which have special topological and functional significance.
According to these three points, we analyzed the listed topo-
logical features of the drug targets network, including degree
and betweenness for the intermediary function, eccentricity,
and average distance for the source function, modularity,
coreness, cluster coefficient, and eigenvector centrality for
special topology. However, from analyses of the PPI topo-
logical indices, the drug targets do not have the first two
characteristics. Actually, the results show they are similar
with other proteins on intermediary and source functions. In
comparison, there are some significant differences on special
topology.

3.1. Drug Target as Intermediary. Diseases are regulated by
complex biological networks and depend on multiple steps
of genetic and environmental challenges to progress [34].
Disease-relevant intracellular PPI occurring at defined cellu-
lar sites possess great potential as drug targets. They permit
highly specific pharmacological interference with defined
cellular functions [35]. In other words, the drug targets seem
to be the proteins through which the drug effects tend to be
spread over the PPI to stimulate other related proteins. In this
paper, we studied the degree and betweenness to analyze the
intermediary function of the drug targets.

3.1.1. Degree. The degree of a node in a network (sometimes
referred to incorrectly as the connectivity) is the number of
connections or edges the node has to other nodes. In protein
interaction networks, the hubs are defined as ones that have
a higher degree than others; for example, Vallabhajosyula et
al. [36] suggested that some of the highest degree proteins
should be defined as hubs which have special topological and
functional significance. We analyzed the degree distribution
of the known drug targets and other proteins from Pending
Proteins (PT) shown in Figure 1, where the 𝑥-axis means the
degree and the 𝑦-axis means the proportion of the protein
with that degree. The right subfigure, the double logarithm
coordinate system, shows an obvious power-law distribution
with significant long tail characteristics for both groups. The
highest degree of the drug targets is 103 compared to 667 in
PT. The average of degree in drug targets is 13.3 compared to
11.6 of the proteins in PT.

Figure 1 shows the degree distributions of two types of
proteins during 𝑘𝑖 ∈ [1, 103] in which all of the known
drug targets distribute. The inset is the overall view of both
distributions. From Figure 1, the proteins with the highest
degree in the drug targets network are usually not drug
targets. On the contrary, the degree distributions are similar
between drug targets and themajority of other proteins.They
are following the well-known power law just with different
parameters, which seems to be counterintuitive. The result
implies that the drug target proteins are actually not “hub”
proteins but rather they probably carry specific functions at
a certain level of interactome as a common protein. Due to
robustness and resilience of the PPI network based power
law, the topological properties will not change if some small
degree nodes are removed. But for the hubs, Vallabhajosyula
et al. [36] referred that removement of the hubs would cause
significant change for the PPI network. According to it,
we analyze the change of degree after the drug targets are
removed.There is only decreasing from 11.6 to 11.4 after those
drug targets were removed. Therefore, the results imply that
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Figure 1: Degree distributions of two types of proteins.The inset is the overall view of both distributions. Drug targets and common proteins
are following the well-known power law just with different parameters. The highest degree of the drug targets is 103 compared to 667 in PT.
It indicates that the drug targets are not the hubs.

the degree distribution of the drug targets is not a significant
topological network feature. Actually, it is similar to cancer
research findings such as the findings of Barillot et al. [37]
which propose a notion about a router that is not necessary to
have a high connection like a hub. However, it always plays an
important role of propagating the biological signal to a local
hub or a global hub protein.

3.1.2. Betweenness. Betweenness is the number of times a
node is in the shortest paths between two other nodes. In
the PPI network, if the drug targets are the proteins that play
an important role on intermediary, they may have higher
betweenness than others. Actually, many studies show that
some interactions are more important in nonhub proteins
based on betweenness. For example, in the yeast proteins
network, the coordinated functionality is carried out by the
connectors which have high betweenness, even though they
have low degree [38]. Particularly, in the PPI network which
has undirected edges, Yu et al. [39] found the betweenness is
more essential than degree with gene essentiality and expres-
sion dynamics. Therefore, we try to study the intermediary
function of the drug targets based on betweenness.

The betweenness centrality of a node V is given by

Btwn (V) = ∑
𝑠 ̸=V ̸=𝑡

𝜎𝑠𝑡 (V)𝜎𝑠𝑡 , (1)

where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠
to node 𝑡 and 𝜎𝑠𝑡(V) is the number of those paths that pass
through V.

The normalized betweenness (NB) can be calculated
without a loss of precision
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Figure 2: Distribution of normalized betweenness of drug targets
proteins and pending test proteins. The betweenness of drug target
proteins is lower than others. The distributions of the two types of
proteins are similar. The inset shows there are few changes between
the betweenness distributions of the original PPI and the new PPI
with the known drug targets removed.

NB (V) = Btwn (V) −min (Btwn)
max (Btwn) −min (Btwn) . (2)

It results in max(NB) = 1 and min(NB) = 1. Figure 2 showed
the distributions of the drug targets and other proteins in the
PPI network.



BioMed Research International 5

PPI with drug targets
PPI without drug targets

Drug targets proteins
Pending test proteins

0.2 0.4 0.6 0.8 1.00.0

A

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.50.0

D
ist

rib
ut

io
n 

of
X

�

Eigenvector centrality X�

Figure 3: Distribution of eigenvector centrality. Drug targets and
other proteins have the same distribution of the eigenvector central-
ity. The inset shows that the amount of changes on the eigenvector
centrality after removing the drug targets is negligible. But the
average eigenvector centrality of drug targets is not lower than others
although the results of the analysis on degree and betweenness
implied the drug targets are not the hubs.

In Figure 2, there is a surprising result as the conclusion
from analysis of the degree. The drug target proteins do
not have high betweenness but rather lower than most
common proteins.The highest NB of the drug target proteins
is BCL2_HUMAN which is only 0.0497. Even though the
drug targets are all removed from the PPI network, the
betweenness of the remaining proteins is nearly unchanged
shown in inset of Figure 2. It also clearly shows that the drug
target proteins hold the similar distribution of betweenness as
other proteins.This implies that relevance of a drug protein as
an organizing regulatory molecule is fairly the same as other
proteins.

From the analysis on degree and betweenness, it implies
that the drug targets are not the important proteins from the
view of the connectivity of the PPI network. In a complex
network, the eigenvector centrality is a measure of the
influence of a node. It assigns relative scores to all nodes
in the network based on the concept that connections to
high-scoring nodes contribute more to the score of the node
in question than equal connections to low-scoring nodes
[40, 41]. We examined whether the eigenvector centrality 𝑥V
of the drug target is lower and the distribution is similar to the
normal proteins (Figure 3).The centrality score 𝑥V of vertex V
is defined as

𝑋V𝑖 = 1
𝜆 ∑
V𝑡∈𝑀(V𝑖)

𝑋V𝑡 = 1
𝜆 ∑
𝑉𝑡∈𝐺

𝐴 (V𝑖, V𝑡)𝑋V𝑡 , (3)

where𝑀(V𝑖) is a set of the neighbors of V𝑖 and 𝜆 is the greatest
eigenvalue of the adjacent matrix 𝐴.

Eigenvector centrality measures the centrality of a node
by judging howmany nodes it connected to with high degree.

The distributions of the drug target proteins and other pro-
teins are quite similar as shown in Figure 3. Even if the drug
targets are removed, the change of the eigenvector centrality
is so small that it can be ignored (see inset of Figure 3).
It seems to be the same as what degree and betweenness
imply. However, the average eigenvector centrality of drug
targets is 0.022, which is not lower than normal proteins
0.02. This conclusion seems to oppose the conclusion that
drug targets are not the important proteins from the view
of the connectivity based on the degree and betweenness. It
indicates that the drug targets have interactions with the high
degree proteins although they are not hubs of the network
as what degree and betweenness implied. Actually, it is the
important feature of the drug targets and is analyzed again
when we consider coreness of the PPI network.

Intuitively, the drug effects are spread by some special
proteins called drug targets which have either high degree
or high betweenness. Actually, in many studies on protein
interactions or gene interactions, the hubs or the nodes with
high betweenness are the important ones [42–44]. However,
the conclusions of our analysis are opposite: the drug targets
have lower degree and betweenness, but also there are no
significant differences on the distributions of both topological
indices between drug targets and other proteins. It implies
that the intermediary is not the main function of the drug
targets.There are many potential reasons for this. One reason
is that the drug design method is based on the ligand and
structure at present.Therefore, the drug’s stimulus is effective
for some specific proteins rather than a large amount of
proteins.

3.2. Drug Targets as Source. The drug actions depend on
the complex signaling transduction networks of cells or the
complicated profile of drug potency and selectivity [45]. In
most cases, if the different targets stimulated by a drug, the in
vivo effect on the signaling pathway should be changed and
the drug’s efficiency to inhibit the activity (usually measured
as phosphorylation level) will be different [46]. In other
words, it is possible that a drug target seems to be the source
which receives the drug stimulus and converts it into another
stimulus that can be responded to by normal proteins. If
so, the drug targets should be the sources from which it is
convenient to access other proteins in PPI networks. Even if
a protein has low degree and betweenness, it is possible for it
to have short distances with others. More generally speaking,
the convenience of the drug targets depends on the degree
and betweenness analyzed above but also the distances to
other proteins. In this paper, we studied the average distance
and eccentricity to analyze source functions of drug targets.

3.2.1. Average Distance. Average distance, also called average
path length, is a concept in network topology that is defined
as the average number of steps along the shortest paths for
all possible pairs of network nodes. Here, we consider an
unweighted graph 𝐺; let 𝑑(V𝑖, V𝑗) denote the shortest distance
between V𝑖 and V𝑗. Assume that 𝑑(V𝑖, V𝑗) = 0 if 𝑖 = 𝑗 or 𝐷𝐺
if V𝑖 cannot be reached from V𝑗, where 𝐷𝐺 is the diameter of
the PPI network. Note that it is different with the traditional
average distance which defines 𝑑(V𝑖, V𝑗) = 0 if V𝑖 cannot be
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Figure 4: Distribution of average distance. The known drug target’s
distribution of average distance is similar with common proteins.
The inset shows there are few changes on the average distance after
the protein targets were removed from the PPI network.

reached from V𝑗. However, we are concerned about how a
protein spreads the effects of the drug to others. If there are no
interactions between two proteins, the stimulus on each drug
is not transferred to the other.The distribution of the average
distance 𝑙(V𝑖) is shown in Figure 4.

The average distance shows the overall convenience of
the proteins to communicate and/or affect their reciprocal
function. It is also a sign of functional convergence [47]. In
PPI networks, the special proteins with low average distance
cause many diseases. For example, when the cancer related
proteins are compared with normal proteins, the average
distances are lower [42]. But in our study, the drug targets
do not have this feature. Figure 4 shows that the distribution
of average distance is similar with other proteins. Meanwhile,
even if the protein targets are removed from the PPI network,
the distribution of average distance hardly changed. Hence,
the drug targets stimulated by a special drug do not havemore
significant convenience of propagating the effects to other
proteins.

3.2.2. Eccentricity. The eccentricity 𝜖(V) of a vertex V is the
greatest geodesic distance between it and any other vertex
[48]. It can be thought of as how far a protein is from the
proteins farthest from it in the graph [49]. Indeed, if the
eccentricity of the node V is low, the other nodes are in
proximity. On the contrary, if it is high, it implies that there
is at least one node (and all its neighbors) that is far from
node V. Let 𝑑(V𝑖, V𝑗) denote the distance (number of edges
connected) between vertices 𝑖 and 𝑗; then the eccentricity𝜖(V) = maxV𝑖 ,V𝑗∈𝑉𝑑(V𝑖, V𝑗). Figure 5 shows the distribution of
the eccentricity.

The eccentricity shows the easiness of a protein to be func-
tionally reached by all other proteins in the network. Thus, a
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Figure 5: The distribution of eccentricity. It shows that the dif-
ference in eccentricity between drug targets and others is not
remarkable although most targets’ eccentricity is 9 and the normal
proteins’ eccentricity is 9 and 10. However, the eccentricity is
changed apparently after removing the drug targets from PPI
networks.

protein with low eccentricity is subject to a more stringent or
complex regulation so that it could easily influence several
other proteins. Similar to the average distance, there are
few observed differences on the distribution of eccentricity
between known drug targets and other proteins (Figure 5).
However, after removing the drug target proteins from the
original proteins network, the eccentricity of most proteins
reduced to 8 compared with 9 and 10 in the network with
drug targets (Figure 5). In a network, the eccentricity 𝜖(V)
should be increased if the hubs or some important connectors
are removed. Hence, the results above including analysis of
the intermediary showed, somewhat surprisingly, that the
drug targets are not the proteins that play the important
role on connectivity of the PPI networks. On the contrary,
most of them are stimulated by drugs and this modification
on their activities is spread to other proteins. Therefore
we hypothesized that the drug mainly fulfills effects on
some special targets, rather than stimulating other proteins
through drug targets. For example, if avoiding the host’s
defense mechanisms and inhibiting nonspecific distributions
in the liver and spleen by targeted drug delivery, a cardiac
tissue system can reach the intended site of action in higher
concentrations [50].

3.3. Drug Targets Topological Structure Characteristics.
According to analysis on intermediary and source functions
of the drug targets, there are few significant characteristics
with respect to targets discovery. These results indicate that
the function of spreading drug stimulus seems not to be
as important as the traditional view for the drug targets.
Actually, several studies show that drug effects only depend
on some special proteins rather than impacting most of
proteins. For a specific drug, the physical and chemical
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properties of the target proteins are exactly important for
response on the drug stimulus. Moreover, these proteins
with different physical and chemical properties often have
different topological features.

The process of finding a new drug against a chosen target
for a particular disease usually involves high-throughput
screening (HTS), wherein large libraries of chemicals are
tested for their ability to modify the target [51]. For example,
if the target is a novel GPCR, compounds will be screened
for their ability to inhibit or stimulate that receptor (see
antagonist and agonist): if the target is a protein kinase, the
chemicals properties will be tested for their ability to inhibit
that kinase. The physicochemical properties associated with
drug absorption include ionization (pKa) and solubility;
permeability can be determined by PAMPA and Caco-2.
PAMPA is attractive as an early screen due to the low
consumption of drug and the low cost compared to tests
such as Caco-2, gastrointestinal tract (GIT), and Blood-brain
barrier (BBB) with which there is a high correlation. Another
importantmethod for drug discovery is drug design, whereby
the biological andphysical properties of the target are studied,
and a prediction is made of the sorts of chemicals that might,
for example, fit into an active site. One example is fragment-
based lead discovery (FBLD) [52]. Novel pharmacophores
can emerge very rapidly from these exercises. In general,
computer-aided drug design is often but not always used
to try to improve the potency and properties of new drug
leads.

Meanwhile, eigenvector centrality also implied that the
drug targets may have the special structure that causes their
roles on connectivity to be equal to or even more important
than other proteins with higher degree and betweenness.
Some structures are found to link with significant proportion
of proteins. In the yeast proteins interaction networks, the
protein pairs inside some special subnetworks corresponding
to protein complexes tend to show interactions maps of
specific biological processes [53]. In breast cancer prognosis,
the changes of network modularity may be a defining feature
of tumor phenotype that determines patient prognosis [54].
Moreover, the average clustering coefficient values of the
cancer proteins interaction networks were lower. It implies
that the proteins have a lower tendency to form clusters
[42]. Similarly, the clustering coefficient of the drug targets
(0.06) is lower than other proteins (0.12) in drug proteins
interaction networks as well. Furthermore, most drug targets
distribute during 0 to 0.1. As eigenvector centrality, it implies
the drug targets may be in some special subnetworks. In
this section, beside the physical and chemical properties,
we examined which topological characteristics of the PPI
networks contribute for response to the drug stimulus based
on modularity and coreness.

3.3.1.Modularity. Modularity is the degree to which the com-
ponents of the networks may be separated and recombined.
The definition of modularity varies in different fields with
similar essence. In biology, modularity refers to the concept
that organisms or metabolic pathways are composed of
modules. In the paper, we studied modularity𝑄 of networks,
which is a benefit function defined as (4) that measures the
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Figure 6: The distribution D(𝑖) and PT(𝑖) of the communities.
There are 15 main protein communities consisting of 11,099 proteins
detected in PPI. The majority of the drug targets are in the three
communities 5, 10, and 13.

quality of a division of a network into groups or communities
[55].

𝑄 = 1
2𝑚∑
𝑖,𝑗

(𝐴 𝑖,𝑗 − 𝑘𝑖𝑘𝑗
2𝑚 )𝛿 (𝑐𝑖, 𝑐𝑗) , (4)

where the degree of node 𝑖 assigned to community 𝑐𝑖 is 𝑘𝑖,
if there is no interaction between proteins 𝑖 and 𝑗, and 1
otherwise, 𝑚 = (1/2)Σ𝑖,𝑗𝐴 𝑖,𝑗, and 𝛿(𝑐𝑖, 𝑐𝑗) is 1 if 𝑐𝑖 = 𝑐𝑗 and
0 otherwise.

There are many effective algorithms to detect commu-
nities by maximizing the modularity based on (4). In the
paper, we used the method in paper [56] and detected 34
communities. There are 15 main protein communities con-
sisting of 11,099 proteins detected in PPI. The distributions
D(𝑖) and PT(𝑖) of the communities are shown in Figure 6,
whereD(𝑖) is the percentage of the drug targets in community𝑖 to the amount of known drug targets. Similarly, PT(𝑖) is
the percentage of the pending test proteins detected into
community 𝑖.

However, if a community has most of the proteins, it also
probably contains most of the drug targets. Such community
should not be considered as a target-like community which
mainly consists of drug targets. Furthermore, we calculate
rd(𝑖) = D(𝑖)/PT(𝑖) as the degree to which community 𝑖 is
likely to be a target-like community. Because D(𝑖) = 𝑖D/|D|
and PT(𝑖) = 𝑖PT/|PT|, rd(𝑖) = (D(𝑖)/PT(𝑖))/(|D|/|PT|), where𝑖D and 𝑖PT are the amounts of the drug targets and other
proteins in community 𝑖, respectively, and |D| and |PT| are
the amounts of the set D and of the set PT.

Therefore, rd(𝑖) > 1 indicates that 𝑖D/𝑖PT > |D|/|PT|.
In other words, community 𝑖 tends to be as a target-like
community. Similarly, if rd(𝑖) < 1, community 𝑖 is closer to
nondrug target proteins.
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Figure 7: rd(𝑖) of the communities. When rd(𝑖) > 1, it indicates that
the community 𝑖 tends to be a target-like community. Similarly, if
rd(𝑖) < 1, the community 𝑖 is closer to nondrug target proteins.

Figure 8: The full view of communities 5 and 10.

Figure 6 shows 15 communities which contain the most
drug targets. In particular, the known drug target proteins
mainly gathered around communities 5, 10, and 13. These
three communities account for almost 66% known drug
targets. In contrast, the pending test protein is flatter and
more spread out for several communities. It implies there are
less nontarget data around the communities in which drug
target data mainly clustered together. In particular, Figure 8
shows communities 5 and 10 inwhich the drug target proteins
most mainly distribute. In Figure 8, the drug target is not
always the one with highest degrees in either whole protein
network or communities they mainly cluster.

These three communities also have highest rd(𝑖) in
Figure 7. In addition, community 15 is the other significant
target-like community as well. Meanwhile, the nondrug
targets are clustered in communities 4, 8, 9, and 14.The results
based on modularity imply there are target-like communities
existing in the PPI networks. It is helpful to study which
proteins are the potential drug targets and to understand how
the drug targets work. Actually, some approaches have been
explored for drug discovery by specific structural and physic-
ochemical properties to ensure efficacious, bioavailability,
and safety. They propose the concept of druggable proteins
to bind potentially effective drug-like small molecules. One
example is to identify metabolic enzymes as drug targets by

searching for similar structural properties of known drug
targets in other organisms [57].

3.3.2. Coreness. A 𝑘-core of a graph𝐺 is amaximal connected
subgraph of 𝐺 in which all vertices have degree 𝑘 at least.
There is a way to determine a 𝑘-core by iteratively pruning
nodes with a degree lower than 𝑘 and their incident links [58].
The coreness of a protein is 𝑛 if this protein is in the 𝑛-core
of the PPI network but not in the 𝑛 + 1-core. We examined
rcD(𝑘) and rcPT(𝑘) defined as follows for drug targets and
other proteins in 𝑘-core, respectively.

rcD (𝑘) = 𝑝D
𝑘

DR

rcPT (𝑘) = 𝑝PT
𝑘

PR
,

(5)

where 𝑝D
𝑘 and 𝑝PT

𝑘 denote the proportion of the drug targets
and other proteins in 𝑘-core of the PPI network, respectively.
DR and PR are the drug target’s ratio and pending test ratio
in Table 1, respectively.

As rd(𝑖) is used in analysis of the modularity above,
rcD(𝑘) > 1 indicates that the drug target proportion is higher
than global level. In other words, the 𝑘-core tends to be a
target-dominated subnetwork. In turn, if rcD(𝑘) < 1, the 𝑘-
core mainly consists of nondrug target proteins. Figure 10
shows rcD(𝑘) and rcPT(𝑘) of the drug targets PPI networks.

Coreness poses a systematic way to consider the local
and global significance of a protein, which indicates the
inherent layer structure of the PPI network. Its biological
significance has been found in several studies. For example,
the functions of some function-unknown proteins of E.
coli are predicted based on coreness [59]. The probability
of yeast proteins both being essential and evolutionary
conserved successively increases toward the innermost cores
[60]. Disease-resistant domains have higher coreness than
other and disease-susceptible domains [61]. In our study, the
coreness shows significant difference between drug targets
and normal proteins (see Figure 10). The drug target proteins
are mainly in 6, 9, 12, 16, and 18 cores. In contrast, other
proteins are evenly distributed over all the possible cores.

The proteins in the innermost 𝑘-cores, which are not
necessarily among the highest connected ones, can interact
with most high connection proteins [60]. As shown in
Section 3.1, eigenvector centrality of the drug targets is not
lower than normal proteins even though the known drug
targets have lower degree and betweenness. For example,
degrees of the drug targets PSMD1 and TOP2A are 33 which
are less than normal proteins EWSR1 (135) and ATXN1 (171).
But they are all in the 17 cores of the PPI network (see
Figure 9). Moreover, the coreness of PSMD1 and TOP2A is
18 while coreness of EWSR1 (135) and ATXN1 is 17. Figure 9
shows the neighbors of the drug targets PSMD1 and TOP2A
are less but have higher degree than normal proteins EWSR1
and ATXN1.

More generally speaking, coreness and eigenvector imply
that the drug target proteins may not be the hub in the PPI
network but they are able to propagate the affection to some
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Drug target proteins
Pending test proteins

Figure 9: 17-core subnetwork of the drug targets PPI network. As shown in four ego networks of the known drug targets (PSMD1, TOP2A)
and normal proteins (EWSR1, ATXN1), the neighbors of a drug target are less but those neighbors have higher degree than normal proteins. It
implies a very important drug protein’s reaction mechanism, that is, the drug target protein’s interaction with most high connective proteins,
though few of them are the hubs as important bridges of the PPI network.

hub-like proteins and spread the transcription signal to other
related proteins through them. One of the possible reasons
is that, in the cancer network, for example, only a part of
the interactions among the related proteins may be active
at a specific condition [62]. Therefore, the original hub is
very likely to change into a normal protein. On the other
hand, although the drug signal may be spread widely through
hubs to inhibit the disease function, it is almost inevitable
that it becomes an obstacle for many essential functions. But
if drug stimulus is diffused indirectly, the drug signal may
be more suitable for the tradeoff. According to the analysis
about drug target structure characteristics, although the drug
targets have few significant functions as intermediary and
source of the drug, it is possible to identify potential drug
targets based on their special structure characteristics.

4. Discussion

To understand the mechanism of drug targets at the molec-
ular level where most drugs work, we studied the topological
characteristics of the drug targets with three plausible views
from which a drug target is known as (1) the intermediaries
which play an important role on interactions of the drug
targets network; (2) the sources which convert drug stimulus
into the desirable therapeutic effects and spread to other
proteins; (3) the proteins which have special topological and
functional significance. From a series of their topological
indices, we found somewhat surprising conclusions.

One conclusion was that known drug targets do not have
the privilege of the first two roles although the drug fulfills
its function by interactions with a target protein. In other
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Table 2: The results of the experiments (10-fold cross-validation).

Algorithm

Using all features
(8 topological features)

Using particular characteristics
(3 topological features)

Accuracy Positive
predictive value

Negative
predictive value Accuracy Positive

predictive value
Negative

predictive value
C4.5 65.2% 63.4% 66.5% 68.7% 67.7% 69.5%
Logistic regression 54.2% 52.8% 56.0% 67.6% 63.4% 68.0%
Naive Bayes 56.8% 54.4% 58.2% 67.3% 64.9% 68.0%
Bayes network 64.5% 63.4% 65.0% 70.6% 67.3% 71.5%
SVM 65.8% 60.2% 67.4% 72.0% 69.7% 73.4%
Radom forest 63.2% 60.4% 65.5% 69.6% 66.4% 70.5%
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Figure 10: rcD(𝑘) and rcPT(𝑘) of the drug targets PPI networks. The
drug target proteins are mainly in the 6-, 9-, 12-, 16-, and 18-core
subnetworks, while the pending test proteins that represent normal
proteins are evenly distributed across all core subnetworks.

words, the function of spreading drug stimulus seems not to
be important for the drug targets. Meanwhile the drug targets
have special topological structures that are different with
normal proteins. We suspect that these special topological
structures may help drug targets to respond to drug stimulus.
Actually, the fact has been shown in some studies. For
example, Overington et al. [4] suggested that most drugs
depend on multiple specific motifs of the PPI networks.
Hopkins [63] reported that it is necessary tomap drug targets
into integrated biological networks to identify the optimal
points of protein-protein interactions for drug discovery.
Ma’ayan et al. [64] argued that several classes of proteins
with some special network statistics in the human genome
appear to be better targets for drugs. Nacher and Schwartz
[65] found that drugs usually have a high centrality value
in the drug-therapy network and act on multiple molecular
targets in the human system. Sakharkar et al. [66] showed that
proteins with single-exon gene architecture are more likely to
be targetable.

As the toy example shows the effectiveness of the features
we discussed in the paper, we just use some traditional
methods to detect drug targets with the features we discussed.
These experiments concern two cases. One is to use all
features including degree, betweenness, eigenvector cen-
trality, average distance, eccentricity, modularity, clustering
coefficient, community, and coreness, and the other is to
use the drug target proteins’ particular features. These three
features were eccentricity, modularity, and coreness. This
shows that the accuracy of the classifiers can benefit from
using these particular features no matter what methods used
to build classifier. All of the algorithms were performed on
the original collected dataset with the help of Weka [67]. The
details on results can be found in Table 2.

Although the causes are unknown currently, it is very
helpful for drug discovery by reducing potential drug target
proteins. Because at present the chemical and physical prop-
erties of knowndrug targets can be found but nondrug targets
cannot, the prediction of drug targets is one classification
problem for which there is no good solution. Currently, most
studies usually use pending test proteins as nondrug targets,
but they inevitably contain proteins that subsequently turn
out to be drug targets although the majority of the proteins
are normal proteins [28]. Therefore, there is an alternatively
reasonable way to collect a more accurate nondrug targets
dataset based on the drug targets structure characteristics.

Here we use modularity and coreness by naive Bayes
to select nondrug targets from PT1 in which every protein
consists of 39 chemical and physical properties. Assume that
each protein has a 50% probability as a drug target in the
pending test dataset. From 1,180 proteins in PT1, we selected1,180 ∗ 0.5 = 590 proteins as the nondrug target dataset
by the probabilities calculated by naive Bayes. By using the
drug target dataset (D) andnondrug target dataset, we trained
the drug target classifier based on support vector machines
(SVMs) by Weka [67]. Finally, 102 proteins are predicted
as potential drug target proteins from PT1. The accuracy of
the classifier is 82.01% by 10-fold cross-validation. Positive
predictive value is 72.7% and negative predictive value is
82.4%.These results indicated that SVMs could be reasonable
in the prediction of drug target proteins. Particularly, some
of the prediction results were found as published new drug
targets recently. For example, CTBP1 is listed by Cancer
Resource [68], and TASP1 is also a drug target, which is used
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to combat novel diseases whose candidate genes are targeted
by HNF4alpha splice variants in hepatocellular carcinomas
[69], as well as PNKP and RAG2 [70].

5. Conclusion

Protein-protein interactions are a better way to understand
the biological functions through systemic view, which have
been widely examined in many research studies under the
molecular level. In this paper, the contrastive analysis on the
topology of PPI networks between drug target proteins and
other proteins provided a systemic biological mechanism of
drug target protein interactions.

We found that 5 topological indices (degree, betweenness,
eigenvector centrality, average distance, and cluster coeffi-
cient) are quite similar between drug target proteins and
other proteins in the PPI network. It implies that known
drug target proteins do not have the privilege of being a
drug effect intermediary and/or source. It is different with
some traditional views that intuitively consider a drug target
protein as a hub of the PPI network.

On the other hand, a drug target protein has its own
particular characteristics on the other 3 topological features
including eccentricity, modularity, and coreness. It implies
a drug target protein may have the capability to interact
with some hub proteins, which pass their biological stimulus
to other related proteins. These topological characteristics
are helpful to understand how the drug target proteins
work and test new drug effects. For example, one of the
usages is to identify the new drug target. At present, there
is no nondrug target dataset like the drug target dataset
that records chemical and physical properties. However,
according to these topological characteristics, the nondrug
target proteins can be gathered. Hence, prediction of drug
target proteins becomes a classic data mining problem which
can be solved by many supervised learning algorithms. In
the paper, 102 potential drug target proteins are predicted by
SVMs, some of these have been published recently. It is just
a simple example. One of the further works is to improve
the prediction by examining these chemical and physical
properties combined with topology. On the other hand,
although there are improved methods to reduce the protein-
protein interactions false positive rate [32, 71], the protein-
protein interactions network always has a fairly high false
positive rate. New high-throughput data and PPI database
updates are important in the future.
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