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Although RNA-binding proteins (RBPs) coordinate many key decisions during cell growth and
differentiation, the dynamics of RNA–RBP interactions have not been extensively studied on a global
basis. We immunoprecipitated endogenous ribonucleoprotein complexes containing HuR and PABP
throughout a T-cell activation time course and identified the associated mRNA populations using
microarrays. We used Gaussian mixture modeling as a discriminative model, treating RBP
association as a discrete variable (target or not target), and as a generative model, treating RBP-
association as a continuous variable (probability of association). We report that HuR interacts with
different populations of mRNAs during T-cell activation. These populations encode functionally
related proteins that are members of the Wnt pathway and proteins mediating T-cell receptor
signaling pathways. Moreover, the mRNA targets of HuR were found to overlap with the targets of
other posttranscriptional regulatory factors, indicating combinatorial interdependence of post-
transcriptional regulatory networks and modules after activation. Applying HuR mRNA dynamics
as a quantitative phenotype in the drug-gene-phenotype Connectivity Map, we identified candidate
small molecule effectors of HuR and T-cell activation. We show that one of these candidates,
resveratrol, exerts T-cell activation-dependent posttranscriptional effects that are rescued by HuR.
Thus, we describe a strategy to systematically link an RBP and condition-specific posttranscrip-
tional effects to small molecule drugs.
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Introduction

RNA-binding proteins (RBPs) and non-coding RNAs are post-
transcriptional regulatory factors (PTRFs) that control the fate of
each mRNA species. Remodeling of multi-component ribonucleo-
protein (RNP) complexes through dynamic interactions between
PTRFs and mRNAs results in the coordination of posttranscrip-
tional events, including splicing, export, localization, stability, and
translation (Keene, 2007). Regardless of the complex patterns of
transcription, integration of the multiple layers of gene expression
is ultimately determined at the level of translation. Therefore,
global investigation of RNPs and their remodeling is critical for
understanding the coordination and control of gene expression.

Transcriptomics (profiling RNA expression levels) does
not discriminate between the various states in which each
single copy of an mRNA can exist within the ribonome. We
define the ribonome as the full complement of molecular
interactions among proteins and RNAs within the post-
transcriptional environment (Keene, 2001). The ‘state’ of
an mRNA can be defined as a function of its association with
one or more PTRFs that affect every aspect of the life of
an mRNA. Further, it is impossible to directly detect the
changes in the proportion of mRNA existing in a given
functional state by solely measuring the changes in mRNA
abundance. As RNP complexes are sites that dictate post-
transcriptional coordination and control of gene expression,
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it is crucial to evaluate the states of mRNA with regards to
their associations with RBPs in these complexes under a
given condition.

A strategy developed in our laboratory, termed ‘ribonomics,’
identifies and characterizes protein–RNA interactions of
endogenous RNP complexes en masse using a method called
RIP chip (ribonucleoprotein immunoprecipitation micro-
array). Ribonomic analysis has been used to discover
cis-elements (Gerber et al, 2004; Lopez de Silanes et al, 2004;
Morris et al, 2008) used by RBPs in trans, and data from
ribonomic studies show a modular organization (Tenenbaum
et al, 2000; Gerber et al, 2004; Hogan et al, 2008; Morris et al,
2009) of posttranscriptional networks. This functional organi-
zation at the RNA level gave rise to the posttranscriptional
RNA operon concept in which functionally related mRNAs are
dynamically and coordinately regulated temporally and
spatially through RNP-driven mechanisms that involve RBPs
and non-coding RNAs (Keene and Tenenbaum, 2002; Keene
and Lager, 2005; Keene, 2007).

Although messenger RNP complexes are highly dynamic
cellular environments (Brengues et al, 2005), very few studies
have focused on global RNA dynamics of RNPs across different
physiological conditions (Tenenbaum et al, 2000; Mazan-
Mamczarz et al, 2008a, b). Even though ribonomic profiling
has been widely used to identify mRNAs associated with a
given RBP (Keene, 2007; Halbeisen et al, 2008), the over-
whelming majority of these studies used RIP-chip experiments
from a single condition of growth or perturbation. This is in
part because of the lack of analytical approaches for modeling
RIP-chip data to determine targets and assign values of
condition-specific RNP association that allow systematic
comparisons across physiological conditions. Therefore, the
development of probabilistic models of RNP association will
allow a more thorough and systematic investigation of the
contribution of RNP dynamics to the molecular networks
activated during development or in response to perturbations.

Among the most extensively studied RNA regulatory
elements are the AU-rich elements (AREs), which are the
sequences of character that function as instability elements.
AREs are found in the 30 untranslated region (UTR) of mRNAs
encoding many immediate early genes, inflammatory cyto-
kines, and growth factors. A group of RBPs, collectively known
as ARE-RBPs, are typically negative regulators of the stability
and translation of ARE-containing mRNAs. In contrast,
members of the ELAV/Hu family of ARE-RBPs, including
HuR, have been shown to stabilize and promote translation of
mRNAs through interactions with AREs (Levine et al, 1993;
Jain et al, 1997; Fan and Steitz, 1998). However, HuR has been
shown to negatively regulate a few target mRNAs (Katsanou
et al, 2005). Therefore, understanding the interaction dy-
namics between these functionally diverse ARE-RBPs and
their associated ARE-containing mRNAs will be necessary to
identify factors controlling the expression of many cytokines
and growth factors.

Global studies of T-cell activation, a model for the
engagement of the T-cell receptor (TCR) complex by presented
antigens, have shown extensive posttranscriptional regula-
tion, specifically alteration of mRNA stability (Lam et al, 2001)
and alternative splicing (Ip et al, 2007). One study found that
more than half of the transcriptomic changes that occur during

T-cell activation are regulated at the level of mRNA stability
and not accompanied by any transcriptional change (Cheadle
et al, 2005). Furthermore, HuR (Atasoy et al, 1998) and ARE
containing mRNAs (Shaw and Kamen, 1986), many of which
are critical immune regulators, respond dynamically during T-
cell activation. For example, engagement of LFA-1, a b2 integrin
that is important for TCR complex signaling, results in HuR
nuclear export and stabilization of cytokine mRNAs (Wang
et al, 2006).

In this study, ribonomic analysis of the RBPs HuR and PABP
in mitogen-induced activation of Jurkat T cells was used to
achieve the following: (1) probabilistic mixture modeling of
condition-specific association for an mRNA with the RNP
being interrogated by RIP chip, (2) investigation of the
functional relationships and dynamics among RNP-associated
mRNAs, (3) usage of RNP dynamics as a quantitative
phenotype to identify and validate small molecule drugs that
mechanistically modulate RBP states. The results of this study
advance our understanding of the mechanisms that underlie
global posttranscriptional coordination and control of RNP-
driven modules consisting of functionally related mRNAs
important for determining phenotypic outcomes in this model
system.

Results

Global identification of HuR-associated mRNAs
during T-cell activation

We used our established RIP-chip protocol to identify the
mRNAs associated with RNP complexes (Figure 1A) contain-
ing the RBPs HuR and PABP at 0, 4, and 12 h post-activation of
Jurkat cells with phorbol 12-myristate 13-acetate (PMA) and
phytohemagglutinin-A (PHA). RIPs for mRNAs associated
with HuR and PABP (a quality control for the RIP-chip
procedure) used earlier described methods and antibodies
(Tenenbaum et al, 2000; Penalva et al, 2004; Keene et al, 2006).
We conducted RIPs with PABP, a housekeeping RBP, as
another indication for the biochemical specificity of the HuR
IP, the primary focus of the study. Briefly, antibody-coated
Protein-A Sepharose beads were incubated with cell lysates,
thoroughly washed, and RNA was extracted from the pellets.
For each time point, three biological replicates each of HuR,
PABP, negative (IgG) RIP-chip pellets, and total cellular RNA
(totals) samples were analyzed using oligo microarrays that
interrogated 35K genes. To qualify for subsequent analysis and
be treated as ‘expressed’, a probe had to be twofold above local
background for all replicates in any of the IPs or the totals at
any time point. For all probes expressed (n¼14 789), t-scores
for HuR-IP versus negative-IP were calculated using gene set
enrichment analysis (GSEA) at each time point (Figure 1B,
ST1). Visual inspection of the t-score distributions indicated
two populations of mRNAs (Figures 1B and 2A): an enriched
population representing HuR-associated mRNAs and a non-
enriched population representing background mRNAs.

Gaussian mixture modeling (GMM), first devised in 1894 by
Karl Pearson to discriminate genetic subpopulations of prawns
based on carapace size (Pearson, 1894), was applied to
identify and quantify biochemically enriched populations of
mRNAs associated with HuR RNPs in a particular context of
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time or condition of treatment (Figure 1B) (Morris et al, 2008).
Each component of the mixture model corresponded to a
conditional probability of a t-score (the continuous variable)
given class membership, ‘target’ or ‘not target’ (the discrete
variable). Given the relative measure of enrichment, the
t-score, we assigned class membership, ‘target’ or ‘not target’,
based on the log of odds (LOD) ratio of the corresponding
inferred mixtures. First, we treated RNP association as a
discrete variable by modeling the continuous variable, the
t-score, conditioned on the class membership to ‘target’ or ‘not
target’. Second, we treated RNP association as a continuous

variable by providing a conditional probability for class
membership given a t-score. Invariably, the model with
the highest log-likelihood showed excellent fit to the data
(Figure 2A, red curves) and discriminated the HuR-associated
population (Figure 2A, blue curves) from background popula-
tions (Figure 2A, green curves) at all time points.

We generated values representing the probability of HuR
association for each probe at each time point by calculating
a LOD ratio comparing the weighted probability density
function for the HuR-associated distribution to the sum of all
background distributions based on a given probe’s t-score
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Figure 1 Overview of ribonomic analysis. (A) Isolation of HuR (blue) RNP complexes in parallel with IgG negative control, followed by extraction of mRNAs and
hybridization to microarray (RIP chip). (B) GMM, of HuR IP versus negative IP t-scores for three biological replicates of RIP chip, to identify and quantify biochemically
enriched populations mRNAs represented by probes. (C) LOD scores representing a condition-specific probability of HuR RNP association per probe. (D) Discrete
approach, LOD HuR40, defines a subset of probes associated with HuR in a given biological condition. Continuous approach, LOD score values to compare HuR RNP
mRNA dynamics across different biological conditions, with other data types or databases, and identify small molecule effectors of HuR. Both approaches identify
common functional groups or motifs associated with HuR.
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(Figure 1C, ST1). The HuR LOD scores provide a continuous
variable representing the condition-specific probability of HuR
RNP association for each probe, allowing us to determine and
to compare changes in the likelihood of HuR RNP association
throughout the activation. Further, to gain insight into the
similarities and differences of various layers of gene expres-
sion, we compared these LOD scores with other data types,
such as transcriptomic data, and incorporated other datasets,
such as other published RIP-chip experiments, into our
analysis (Figure 1D).

Probes with HuR LOD scores greater than zero, thus having
a higher likelihood of being within the HuR RNP-associated
population in comparison with the background population,
were considered to be a discrete population of mRNAs
associated with HuR. Downstream analysis of the enrichment
of an earlier reported and independently derived HuR-binding
element (see HuR COVE motif below) suggested that the
LOD40 cut-off was apt. Moreover, this threshold was
substantiated in the ribonomic analysis of human Pum1
(Morris et al, 2008). Of the 14 789 probes expressed in the
Jurkat cells, the number representing HuR targets increased
from 599 (4.05%) to 800 (5.41%) to 924 (6.25%) probes at 0,
4, and 12 h post-activation, respectively (Figure 2B). Alto-
gether, 1219 probes (the actual number of genes is lower, as
multiple probes map to the same gene) were determined to be

HuR targets for at least one of the time points. Of these, B1/3
(405) were HuR targets at all time points. This shows the
plasticity of HuR association during T-cell activation.

Complementarily to the comparisons of discrete values
(target or not a target) above, we examined the quantitative
differences in the mRNA content of HuR RNPs using
continuous values representing condition-specific HuR RNP
association for each probe (HuR LOD). As expected, for a given
condition, there was very high correlation among the three
independent biological replicates (average r¼0.89, 0.92, and
0.93 for comparisons within 0, 4, and 12 h, respectively),
showing the reproducibility of the RIP-chip method. Moreover,
there were marked differences in the 0, 4, and 12 h HuR LOD
scores as evidenced by the relatively low correlations between
them (r¼0.24–0.42), showing HuR-associated mRNA popula-
tion dynamics (Figure 2C, black numbers). In comparison, the
total mRNA levels were substantially more similar during
the activation (r¼0.82–0.86) (Figure 2C, white numbers),
highlighting the dramatic remodeling of HuR RNPs during
activation, as compared with the transcriptome. A more
detailed analysis of HuR RNP dynamics is presented below.

We examined the relationships between HuR association,
PABP association, and total mRNA expression level for probes
considered as HuR targets at any time point. The steady-state
PABP association resembled the transcriptome more than HuR
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association (Figure 2C, blue numbers) at each time point.
Notably, there was little to no correlation at 0, 4, or 12 h
between the probability of HuR association and mRNA
abundance (Figure 2C, red numbers), indicating that RIP chip
successfully isolated specific subsets of mRNAs that were not
quantitatively representative of total mRNA, consistent with
our earlier studies (Tenenbaum et al, 2000; Morris et al, 2008).

Functional characteristics of HuR-associated
mRNAs during activation

To identify the salient characteristics of the mRNA components
of HuR RNPs at 0, 4, and 12 h post-activation, we analyzed the
following (Figure 1D): (1) common sequence characteristics
and motifs, (2) functional relationships among the proteins
encoded by the HuR-associated mRNAs, and (3) interconnec-
tivity between targets of microRNAs and RBPs, and the HuR-
associated mRNAs.

Sequence characteristics and motifs enriched in HuR
RNP mRNAs
As HuR typically binds elements in the 30 UTR of transcripts,
we searched for unique characteristics common among the 30

UTR of HuR targets. Indeed, these transcripts have exceedingly
long (1.54 kb, Po0.0001) and AU-rich (62.6%, Po0.0001) 30

UTRs compared with randomly selected sets of UTRs (1.00 kb,
57.3%) (SF1). In addition, though HuR-associated mRNAs
were enriched for the presence of computationally identified
subclasses of AREs (Bakheet et al, 2001), there was no
difference in propensity toward any subclass. Given that our
results show that 30 UTR length and AU content are good
predictors of HuR association, and that HuR has no preference
for any ARE subclass, combining global ARE RBP-target
interaction data combined with computational approaches
that use sequence and structural features may improve
classification of AREs.

As noted above, an earlier study discovered a potential
structural RNA motif for HuR binding by using covariance

modeling (COVE) on 30 UTR sequences of mRNAs identified
from an HuR RIP-chip experiment in a different cell line and
condition (Lopez de Silanes et al, 2004). We observed
significant enrichment for all COVE-based metrics in the
HuR-associated mRNAs at all time points (SF2). Surprisingly,
the enrichment of COVE-based metrics for 30 UTR sequences
of HuR-associated mRNAs that had been randomized, while
preserving dinucleotide frequencies, were not different from
the enrichment for actual 30 UTR sequences of HuR-associated
mRNAs (SF2). This indicates that the HuR COVE motif does
not identify a unique RNA structure, but rather strongly
preferred sequence characteristics of 30 UTRs that are capable
of HuR binding.

Next, we used GSEA to determine how mRNAs that contain
at least one HuR COVE motif in their 30 UTR are distributed in
the 0, 4, and 12 h lists ranked by HuR LOD scores. Enrichment
profiles showed the usage of the COVE model for identifying
elements in common to HuR RNP mRNAs (Figure 3),
consistent with the results above. Moreover, the running
enrichment score of the COVE motif peaked after LOD¼0 for all
time points (Figure 3), supporting the validity of the LOD40
cut-off and indicating that it may be somewhat conservative.

Common functional groups enriched in HuR mRNA
targets
As our experimental model is T-cell activation, we examined
the HuR-associated mRNAs for encoded proteins with func-
tions known to be critical in TCR engagement and local
signaling, which involves adapter molecules, signal trans-
duction, and cytoskeletal remodeling at the immunological
synapse. HuR associated with 26 mRNAs critical to each of
the aspects listed above (ST3). Moreover, all 26 mRNAs had
at least one HuR COVE motif in its 30 UTR. These data predict
that HuR may help coordinate dynamic events directly
downstream of TCR engagement after T-cell activation.

To determine if the proteins encoded by HuR-associated
mRNAs were functionally related, we used Panther, InnateDB,
and GSEA, which explore known relationships among a list of
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genes (Figure 1D). InnateDB and Panther analysis revealed
significantly enriched pathways (Figure 4) vital to cellular
function, for many of which regulation by HuR has been
shown for individual members. These pathways include
‘Wnt signaling’ (Briata et al, 2003; Lopez de Silanes et al,
2003), ‘metabotropic glutamate receptor group 1’ (Tiruchina-
palli et al, 2008), and ‘p53 feedback loop 2’ (Mazan-Mamczarz
et al, 2003). GSEA on HuR LOD scores also identified pathways
and perturbations in which HuR has known roles, such as
aging (Wang et al, 2001), induced UVC stress (Wang et al,
2000b), and HCMV infection (Gealy et al, 2005) (for full list see
ST2 ). Biological processes that HuR has been shown earlier to
be involved in, such as the cell cycle (Wang et al, 2000a), and
cell proliferation and differentiation (Atasoy et al, 1998), were
also significantly enriched (Figure 4). ‘Hedgehog signaling’
and the ‘circadian clock’ represent novel pathways that may
involve regulation by HuR. HuR-associated messages were
also enriched for ‘transcription’, ‘other transcription factors’,
‘mRNA processing’, and ‘other RBPs’ (Figure 4); a defining

characteristic of these categories is that they represent proteins
that have important regulatory consequences for gene expres-
sion (Keene, 2007; Mansfield and Keene, 2009).

Highly interconnected and combinatorial nature of HuR
RNPs and posttranscriptional modules
We next explored mutual relationships between HuR RNPs
and the ribonome, specifically focusing on regulatory RBPs
and microRNAs. We asked the following questions: (1) Is there
a bias for mRNAs of RBPs among the population of mRNAs
associated with HuR RNPs, implicating HuR as a regulator of
PTRFs? (2) Is the population of mRNAs associated with HuR
enriched for known targets of ARE-RBPs and predicted targets
of microRNAs, indicating that these mRNAs may be subject to
combinatorial regulation?

First, we examined the hypothesis that HuR functions as a
regulator of regulators in Jurkat cells, specifically of the group
of adaptive mRNA subset-specific regulatory RBPs (Mesarovic
et al, 2004; Penalva et al, 2004; Keene, 2007; Pullmann et al,
2007). We used a convenient catalog of RBPs that were
compiled by Silver and co-workers identifying RBPs based on
the presence of known RNA-binding domains, primarily RRM
(RNA recognition motif) and hnRNP K homology domains
(McKee et al, 2005). GSEA of HuR LOD scores showed that
mRNAs encoding these RBPs were significantly enriched in
HuR RNPs at all time points (Table I, ST4). Further, more
than one half of the mRNAs encoding RBPs that associate with
HuR were unique to at least one time point. The potential
to regulate and coordinate mRNAs of regulatory RBPs
indicates that HuR has a substantial role in the homeostasis
and modulation of posttranscriptional regulatory networks
(Mansfield and Keene, 2009).

The potential influence of other ARE-RBPs on HuR-asso-
ciated mRNAs was assessed by creating gene sets for targets
of TTP in activated mouse macrophage cells (RAW264.7)
(Stoecklin et al, 2008), TIAR (Kim et al, 2007), and HuR
(Lopez de Silanes et al, 2004) in human colon carcinoma
cells (RKO). As HuR, TTP, and TIAR are all ARE-RBPs, and,
therefore, putatively use similar cis-regulatory elements, we
expected significant enrichment of lists ranked by HuR LOD
scores. This was the case for RKO HuR RNP mRNAs (Table I,

Figure 4 Coordination of HuR RNP-associated functional modules during
T-cell activation. Analysis of HuR-associated mRNAs (LOD40) at each time
point was conducted using Panther and InnateDB. Relative enrichment of
functionally related groups (must have a Bonferroni corrected Po0.05 for at
least one time point) are represented as profiles and heatmap. **Functional
groups that represent regulation of DNA and RNA.

Table I Enrichment of ribonomic gene sets in HuR RNP

Gene Sets Anlayzed LOD HuR 0hr LOD HuR 4hr LOD HuR 12hr 

ENRICHED NES FDR NES FDR NES FDR 

Regulatory RBPs 3.03 0.0002 3.11 0 2.83 0 
TTP RNP (Activated 
RAW) 2.53 0.0006 2.64 0 2.89 0 

HuR RNP (RKO) 1.62 0.0550 1.54 0.0809 2.03 0.0075 

DEPLETED NES FDR NES FDR NES FDR 

TIAR RNP (RKO) -2.29 0.0015 -1.54 0.0657 -2.00 0.0099 

GSEA analysis was conducted on LOD HuR scores for each time point using a gene set representing all regulatory RNA-binding proteins and experimentally derived RBP
target gene sets. Normalized enrichment scores (NES) and the false discovery rate (FDR) q-value per gene set are shown. Red represents enriched, blue represents
depleted.
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ST5), which were significantly enriched (NES¼2.03, false
discovery rate (FDR)¼0.0075) in the 12-h HuR RNPs and
showed strong, but not statistically significant, enrichment
(NES¼1.62 and 1.54, FDR¼0.0550 and 0.0809) in the 0 and
4 h HuR RNPs (Table I). As anticipated, TTP targets were
significantly enriched (NES¼2.53–2.89, FDR¼0–0.0006) in the
Jurkat HuR RNPs, suggesting that TTP RNPs and HuR RNPs
are likely to contain many of the same mRNA species, and that
TTP and HuR may in some cases co-occur on the same
individual transcript. In contrast, the significant depletion
(NES¼�1.54 to�2.29, FDR¼0.0015 to 0.0657) of TIAR targets
(Table I) was consistent with the C-rich motif identified in
TIAR target mRNAs, rather than AREs as initially believed
(Gueydan et al, 1999).

A potential caveat to this comparative analysis was that each
experiment was performed under different conditions and in
different cell types, thus these observations could be explained
by variations in condition-specific mRNA–RBP association.
However, the consistency and strength of the enrichment for
RKO HuR RNP mRNAs indicated that condition-specific
association, although evident, did not confound interpretation
of these RNP enrichment results. This indicates that cell-type
and condition-specific differences in association do not
explain the significant depletion of the TIAR-associated
mRNAs, as the TIAR RIP-chip experiments were also per-
formed using RKO cells. Thus, the dichotomy between
global TIAR mRNA targets and the more similar HuR and
TTP mRNA targets provides insight into the organization
of posttranscriptional regulatory networks.

In addition to the analysis of RBP targets, we used gene sets
corresponding to predicted targets of microRNAs (from
MSigDb, http://www.broad.mit.edu/gsea/msigdb/) to obtain
a comprehensive evaluation of the potential targeting of
microRNAs to mRNAs associated with HuR RNPs. At all three
time points, over 90 different microRNA target gene sets
(Figure 5, ST6) were significantly enriched in HuR RNPs. The
enrichment of microRNA target gene sets is especially striking
when compared with the number of enriched gene sets
representing transcription factor targets or curated gene sets
(representing signaling pathways or experimental perturba-
tions). Importantly, the biased enrichment of microRNA target
gene sets compared with other classes of gene sets in the
HuR IP was not recapitulated in either the PABP IP or the
transcriptome (data not shown). Therefore, these analyses
show that both microRNAs and regulatory RBPs have a high
potential for combinatorial regulation of HuR RNP mRNAs,
suggesting that the population of HuR-associated mRNAs
represents a class of highly regulated transcripts.

RNP dynamics during activation

As the RNP LOD scores are condition specific, we calculated
the difference between 0 and 4 h and 4 and 12 h for both
HuR and PABP LOD scores to generate values representing
changes in RNP association of these mRNAs. To assess
changes in total mRNA, we generated t-scores comparing 0
to 4 h and 4 to 12 h time points. We excluded probes that had a
low probability of being associated with HuR (LODo0 at all
time points), as they would confound interpretation of
changes across conditions.

Functional characteristics of ribonomic and
transcriptomic dynamics during activation
We examined the similarity between HuR RNP, PABP RNP, and
transcriptomic dynamics for 0 to 4 h (early) or 4 to 12 h (late)
activation intervals. As expected, these values did not show
strong correlations for early or late changes (r¼�0.12–0.20)
(Figure 6, black numbers), showing that each sample had
unique overall gene expression dynamics. Importantly, the
changes in HuR association were unique and were not
explained by changes in mRNA abundance. Combined with
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Figure 5 HuR RNPs are enriched for predicted targets of microRNAs. GSEA
analysis was conducted on LOD HuR scores for each time point using the
following three classes of gene sets for pathways, transcription factor targets
(TF), and predicted microRNA (miRNA) target. Positively enriched gene sets
were rank ordered and plotted by FWER P-values. Only results for 4 h are shown;
0 and 12 h results are similar.

Figure 6 Gene expression dynamics show unique changes in mRNA
subpopulations. Upper triangular matrix of Spearman correlation coefficients
for all pair-wise comparisons of DLOD HuR, DLOD PABP, and totals t-scores
for 0 to 4 h and 4 to 12 h dynamics.
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the earlier observation of cell-type and condition-specific
differences in HuR association, we found no evidence that
potential adventitious re-association (Mili and Steitz, 2004)
was a concern in these data. As noted earlier (Keene et al,
2006), published criticisms (Ule et al, 2005) directed at this
RIP-chip procedure were inappropriately applied by exploiting
results from a different method that showed re-association of
an HuR target from one cell to another in a sonicated extract
(Mili and Steitz, 2004). Indeed, RIP chip has been used
effectively by many laboratories without cross-linking, re-
viewed in Morris et al (2009). Within each data type,
particularly PABP, there were reciprocal patterns of mRNA
dynamics between early and late intervals (Figure 6, white
circles). This may suggest a recovery from the activation and
that increased temporal resolution would be informative.
Although intriguing, the dynamics and the contrast of PABP-
association profiles with the mRNA abundance profiles are
outside the scope of this study.

Next, we identified common functional groups exhibiting
HuR-association profiles that depending on condition, are
either very similar to or very different from the transcriptomic
profiles using rank-ordered pair-wise correlation profiles from
all time points. We found that ‘translation factors’ were
significantly enriched for negative correlation (ST7). There-
fore, mRNAs encoding translation factors had HuR-association
profiles that were the opposite of their transcriptomic profiles
across the T-cell activation interval.

We made the analogous comparison between HuR-associa-
tion profiles and PABP-association profiles. We observed two
gene sets that were significantly enriched (ST7) and positively
correlated, which was interesting, as both of these RBPs have
been shown to be positive regulators of translation. One gene
set represented transcripts that were up-regulated by the
NF-kappa B transcription factor, a molecule critical to T-cell
activation. The other gene set represented transcripts that were
up-regulated at 4 h after PMA treatment and that discriminate
PMA from other stress agents, as would be expected. This
gene set was also enriched when examining early HuR RNP
dynamics.

Functional characteristics of HuR RNP state dynamics
during activation
Next, we identified functionally related mRNAs that exhibited
common HuR RNP dynamics. GSEA analysis of HuR RNP
dynamics was carried out for early changes (0 to 4 h) and
late changes (4 to 12 h). For the early dynamics, the only
significantly enriched gene set was the PMA-induced gene set,
exhibiting increased HuR association from 0 to 4 h (ST7). For
late dynamics, two gene sets were significantly enriched (ST7):
(1) genes enriched in mouse neural stem cells compared with
differentiated brain and bone marrow cells, which decreased
in HuR association from 4 to 12 h and (2) genes with LEF1
promoter elements, which showed increased HuR association
from 4 to 12 h. Interestingly, HuR LOD scores for LEF1 went
from �0.29 at 0 h, to 1.37 at 4 h, to 1.13 at 12 h and the HuR
promoter contains a predicted LEF1-binding site. The latter
result raised the fascinating possibility of a translationally
and transcriptionally coupled regulatory loop between HuR
and LEF1.

Identification and validation of small molecule
effectors of HuR

We hypothesized that HuR RNP dynamics could serve as a
quantitative phenotype to explore the link between HuR and
the physiological state of these cells. To test this possibility, we
used the Connectivity Map (Lamb et al, 2006) (CMAP) to
identify small molecules that could potentially modify func-
tional states of HuR (Figure 1D). The CMAP is a tool that
begins with a biological state of interest, specifically an a priori
defined gene expression signature, and scans a database of
perturbagen-induced transcriptomic profiles to connect the
query signatures with small molecules based on correlation of
gene expression dynamics. We used the 50 most dynamic
mRNAs, those showing the greatest increase in HuR associa-
tion and greatest decrease in HuR association, as a quantitative
phenotype of HuR RNP mRNA dynamics to be compared with
the CMAP profiles. The small molecule candidates that were
identified for both early and late HuR RNP dynamics (Table II)
may either mimic HuR functionality or act through HuR by yet
to be determined mechanisms; using the 100 most dynamic
mRNAs yielded very similar results (data not shown).

Many of the candidate HuR effectors fell into drug classes
that have overlapping mechanisms of action, including PI3K,
COX, HDAC, and Hsp90 inhibitors. HDAC inhibitors, which
exert global effects on gene expression through chromatin
remodeling, showed significant negative correlation with both
early and late HuR-RNP dynamics. A negative correlation
indicates that when the small molecule was tested in the set of
cell lines used to prepare the CMAP, it induced changes in
mRNA levels that were in the opposite direction of our
observed changes in HuR association. Trichostatin A (TSA), a
reversible HDAC inhibitor, has been shown to induce cell cycle
arrest in Jurkat cells (Blagosklonny et al, 2002). Importantly,
the identification of TSA represents an independent validation
of our approach, as it has been shown to affect mRNA stability
by decreasing the amount of cytoplasmic HuR in MCF7
(Pryzbylkowski et al, 2007) and RKO cells (Wang et al,
2004), breast and colon cancer lines, respectively, without
affecting the total amount of HuR in the cell.

To further validate the outcomes of the CMAP analysis, we
extensively examined a novel candidate from our list, resvera-
trol. First, we examined the effects of pretreatment with
resveratrol on the subcellular distribution of HuR 0, 4, and
12 h post-activation. Regardless of pretreatment with resvera-
trol, overall levels of HuR protein did not change during the
activation (data not shown). However, pretreatment with
resveratrol resulted in an accumulation of endoplasmic reticu-
lum/outer nuclear envelope (ER/ONE)-localized HuR and a
concomitant depletion of nuclear-localized HuR 12 h post-
activation (Figure 7). Thus, resveratrol pretreatment modulates
the subcellular distribution of HuR during T-cell activation.

Next, we tested if resveratrol could have effects on
posttranscriptional gene expression. We designed luciferase
reporter constructs containing regions of the 30 UTR from several
of the top 50 most dynamic mRNAs that were used in the CMAP
analysis (TNF-a, CSF2, ANP32A, and NAB2). Activation of the
Jurkat cells induced a twofold or greater increase in expression
(Figure 8A) for three of the four reporters (TNF-a, CSF2, and
ANP32A). Pretreatment with resveratrol resulted in an B20–
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30% decrease in TNF-a, CSF2, and ANP32A reporter expression
only in activated cells (Figure 8A). This suggests that resveratrol
suppresses activation-induced increases in gene expression
through one or more posttranscriptional mechanisms. However,
resveratrol pretreatment did not suppress reporter expression of
activated Jurkat cells when co-transfected with HuR (Figure 8B).
Therefore, these data indicate that HuR can partially rescue
resveratrol-mediated posttranscriptional suppression of reporter
expression in activated Jurkat cells, suggesting that HuR has a
role in the effects of resveratrol on these cells.

In summary, the results of our analysis of HuR RNP
dynamics using the CMAP led to the following conclusions:
(1) quantification of HuR RNP dynamics from ribonomic
profiling-identified effectors capable of modulating HuR; (2) as
we defined our biological state of interest based on HuR RNP
dynamics rather than transcriptomic signature, this represents
a novel application of the CMAP; and (3) small molecule drugs
can have posttranscriptional consequences for cells that are
largely unknown and uninvestigated.

Discussion

GMM is one of the many diverse approaches to analyze RIP-
chip data (Tenenbaum et al, 2000; Gerber et al, 2004; Lopez de
Silanes et al, 2004; Townley-Tilson et al, 2006; Stoecklin et al,
2008). The advantage of probabilistic mixture modeling, such
as GMM, is the full specification of the distribution generating
the data. In our case, this results in the specification of a
Gaussian distribution for each mixture and the probability of
an mRNA belonging to each mixture. Using this model, we
can discriminate HuR-associated mRNAs from background
mRNAs, as well as generate condition-specific probabilities of
association. This is especially useful for assessing condition-

f

Figure 7 Resveratrol affects subcellular localization of HuR during activation.
(A) Representative immunoblot of subcellular localization of HuR protein 0, 4,
and 12 h post-activation of Jurkat cells using PMA and PHA with or without
resveratrol pretreatment. Proteins were analyzed by immunoblot using anti-HuR,
anti-b-tubulin as a cytosolic (Cyto) marker, anti-TRAP-a as an ER/ONE
marker, and anti-histone h4 as a nuclear (Nuc) marker. Fourfold more Cyto and
ER/ONE fraction extract was loaded compared with Nuc fraction extract.
(B) Quantification of relative fold change in HuR after resveratrol pretreatment.
HuR levels were normalized to the appropriate loading control for each fraction.
Normalized HuR levels for resveratrol pretreated samples were compared with
mock pretreated samples. The means and standard error of the means (s.e.m.)
are represented from three independent experiments. Paired t-testes were used
to calculate P-values (*Po0.05).

Table II Candidate small molecule HuR effectors derived using CMAP

∆HuR-RNP LOD scores 0hr to 4hr 4hr to 12hr 
Small Molecule Mechanism ES p-val ES p-val 
Acetylsalicylic acid  COX inhibitor -0.709 0.0492 0 1 
Sirolimus  mTOR Inhibitor -0.574 0.0014 -0.417 0.0463
17-AAG Hsp90 Inhibitor -0.557 0.0001 0.301 0.0594
Resveratrol  COX Inhibitor -0.511 0.1007 -0.562 0.0495
LY-294002 PI3K Inhibitor -0.446 0.0015 0.33 0.0374
Deferoxamine  Iron Chelator -0.415 0.5649 0.817 0.0133
Valproic acid HDAC Inhibitor -0.414 0.0021 0.301 0.0617
Wortmannin PI3K Inhibitor -0.353 0.2172 0.49 0.0277
Trichostatin Aa HDAC Inhibitor -0.315 0.1549 0.747 0
Monorden Hsp90 Inhibitor -0.189 0.802 0.451 0.0237
Rofecoxib COX Inhibitor 0 1 -0.552 0.0299
Vorinostat HDAC Inhibitor 0 1 0.943 0.0063
Geldanamycin  Hsp90 Inhibitor 0.326 0.4547 0.728 0.0008
Raloxifene  SERM/Estrogen Inhibitor 0.547 0.2355 0.753 0.0309
Ikarugamycin  Endocytosis Inhibitor 0.779 0.0221 0.684 0.0635

Sign of enrichment scores (ES) represents whether changes in HuR association across the time course were either positively or negatively correlated with transcriptomic
changes. Significant P-values (o0.05) listed in red.
aKnown effector of HuR. Common classes of compounds are highlighted, Hsp90 inhibitors (blue), HDAC inhibitors (yellow), PI3K inhibitors (orange), and COX
inhibitors (green).
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specific differences in the likelihood of RNP association for all
mRNAs detected. Such a probabilistic framework is particu-
larly appealing given the stochasticity in gene expression
among individual cells and the consequent heterogeneity
within a population of cells implicit in most biological
experiments (Newman et al, 2006; Wilkinson, 2009).

Our results show dramatic remodeling of HuR RNPs during
T-cell activation, especially compared with transcriptomic
expression dynamics (Figure 2). RNP remodeling of function-
ally related mRNAs was observed earlier with HuB, another
member of the ELAV/Hu family, during retinoic acid-induced
neuronal differentiation of P19 embryonic carcinoma cells
(Tenenbaum et al, 2000). In this study, we uncovered
temporally coordinated changes in populations of HuR-
associated mRNAs whose encoded proteins are functionally
related and necessary for T-cell activation (ST3) and Wnt
signaling (Figure 4), consistent with the PTRO model.

HuR-associated functional modules

Our data predict that HuR has a role in coordinating post-
transcriptional events imminent to TCR signaling (ST3).
Signaling elicited by TCR engagement results in the formation
of supramolecular activation clusters at the immunological
synapse and in T-cell selection. Our prediction was validated
by the finding of TCR signaling defects-obstructed activation-
driven positive selection in a thymus-specific knockout of HuR
in mouse (Papadaki et al, 2009). Further corroborating the
importance of HuR in T-cell activation, chemical inhibition of
HuR–mRNA interaction has been shown to inhibit nucleo-
cytoplasmic redistribution of HuR and to block T-cell activa-
tion (Meisner et al, 2007).

Our data suggest that HuR may regulate many members
of the Wnt pathway during T-cell activation, consistent with the
earlier studies showing regulation of the b-catenin mRNA by
HuR (Lopez de Silanes et al, 2003; Thiele et al, 2006). Moreover,
Wnt signaling induces the stabilization of the PITX2 transcrip-
tion factor and downstream target mRNAs through an increase
in association with HuR (Briata et al, 2003). Similarly, we found
another transcription factor involved in Wnt signaling, LEF1,
and its downstream targets increase in HuR association from 4
to 12 h (ST7). The Wnt signaling pathway is a key regulator of
T-cell development in the thymus (Staal and Clevers, 2003);
however, its role in T-cell activation, to our knowledge, has not
been examined. Therefore, the interdependence between HuR
and the Wnt pathway during T-cell activation warrants further
investigation in cellular and animal models.

HuR-association dynamics

Posttranslational modifications and changes in sub-cellular
concentrations of HuR may be potential mechanisms driving
our reported population dynamics. Thus far, each posttrans-
lational modification identified has been accompanied by
changes in the subcellular localization of HuR, as well as
functional implications for mRNA stability and/or translation
of one or more target mRNAs (Li et al, 2002; Abdelmohsen
et al, 2007; Doller et al, 2007; Kim et al, 2008). However, a
recent study showed differences in association without
a difference in subcellular localization (Silanes et al, 2009).
PKC-a-mediated phosphorylation of HuR is particularly
significant to our study, as PMA is a potent stimulator of
PKC activity. Furthermore, one of the two sites critical for
phosphorylation by PKC-a is in the second RRM of HuR and
may affect RNA binding by HuR. In addition, Chk2-induced
phosphorylation of HuR results in differential association and
expression of an mRNA target, SIRT1 (Abdelmohsen et al,
2007). Therefore, we hypothesize that posttranslational
modification of HuR is a mechanism that contributes to HuR-
association dynamics during T-cell activation.

Dynamics in HuR association could also be influenced by
the abundance or availability of target mRNAs. Owing to the
lack of correlation between HuR association and mRNA
abundance, it is unlikely that differences in the amount of
target mRNA is the sole determinant of HuR mRNA population
dynamics (Figures 2 and 6). Conversely, we observed a high
potential for HuR targets to be combinatorially regulated by
other PTRFs, for example microRNAs and TTP (Figure 5;

Figure 8 Activation-dependent effects of resveratrol and HuR on 30 UTR
luciferase reporters. (A) Firefly to renilla ratio of each reporter normalized to the
control 30 UTR reporter, pLuc, for each condition. Activation significantly
increases reporter expression through specific sequences. Furthermore,
resveratrol significantly blunts this increase. (B) The fold change of the
normalized firefly to renilla ratio for the indicated condition (activa-
tionþ resveratrol or activationþ resveratrolþHuR) compared with the normal-
ized firefly to renilla ratio for its matched mock-treated control. As shown in (A)
resveratrol inhibits activation-mediated increases in reporter expression;
however, (B) shows that HuR overexpression antagonizes resveratrol-dependent
inhibition. The means and standard error of the means (s.e.m.) are represented
from 7 to 10 independent experiments. Paired t-tests were used to calculate
P-values (*Po0.05, **Po0.01).

Probabilistic states of HuR mRNPs
N Mukherjee et al

10 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited



Table I). Therefore, competition by other PTRFs may affect the
availability of target mRNAs for HuR and may be a mechanism
influencing the observed HuR-association dynamics.

HuR and small molecules

On the basis of HuR RNP dynamics, we identified classes of
small molecule candidates that can modulate HuR function-
ality using the CMAP (Table II). We show for the first time that
RNP dynamics can be used as a quantitative phenotype to
systematically identify compounds that exert posttranscrip-
tional effects and modulate the corresponding RBP, in this
case, HuR (Figures 7 and 8).

Hsp90 inhibitors are a class of small molecule drugs for
which multiple candidate compounds were identified, speci-
fically geldanamycin, monorden, and 17-AAG. It was shown
earlier that during LPS activation of macrophages, treatment
with geldanamycin resulted in decreased production of
inhibitory cytokines (Wax et al, 2003) by negatively affecting
stability and translation of cytokine mRNAs, including those
known to be regulated by HuR.

We found that resveratrol, a COX inhibitor that exhibits anti-
inflammatory and chemopreventive effects, modulates the
subcellular localization of HuR during activation (Figure 7). In
addition, our data show that resveratrol can suppress activation-
induced gene expression (Figure 8). Similarly, an earlier study
showed that resveratrol suppresses TNF-dependent activation of
transcription factors in PMA-treated Jurkat cells (Manna et al,
2000). However, our results reveal a posttranscriptional
component to effects of resveratrol. Interestingly, as we show
resveratrol suppresses activation-induced increase in TNF
reporter expression, this could be a mechanism working
upstream of TNF-dependent activation of transcription factors
during T-cell activation. Furthermore, we observed that HuR
antagonized the resveratrol-mediated effects on gene expres-
sion. Therefore, we can systematically identify compounds that
modulate RBP function, and have posttranscriptional conse-
quences for gene expression, and whose effects can be rescued
by the RBP being examined.

In addition, resveratrol, which is found in red wine, exhibits
anti-aging properties putatively through activation of sirtuin-1
(SIRT1), a known HuR target. Indeed, overexpression of HuR
in senescent cells restores a ‘younger’ phenotype (Wang et al,
2001). Studies using models of senescence showed correlated
decreases in both HuR levels and the stability of target mRNAs
involved in aging, including SIRT1 (Abdelmohsen et al, 2007).
Not only did we find SIRT1 as an HuR target (ST1), we also
found that genes reported to have reduced expression in the
brains of human beings after the age of 40 (Lu et al, 2004) were
significantly enriched as HuR targets (ST2). Given our results,
earlier studies, and the promise of resveratrol as a compound
to prevent aging, cancer, and inflammation, it will be critical to
understand the posttranscriptional effects of resveratrol and
the role of HuR and other PTRFs in these effects.

Combinatorial Interdependence and the PTRO
model

Our data establish that HuR-associated mRNAs are signifi-
cantly enriched for predicted targets of over 90 microRNAs and

TTP targets (Table I, Figure 5, ST6). As HuR can promote
mRNA stability and translation, the presence of microRNAs
and RBPs, such as TTP, which promote mRNA degradation
and/or translational repression, in HuR RNPs suggests
competition with HuR, resulting in opposing functional
outcomes. Indeed, competition between HuR and TTP has
been shown for individual mRNAs, specifically IL-3 (Ming
et al, 2001) and TNF-a (Katsanou et al, 2005). In addition, HuR
was shown to be essential for the relief of microRNA-mediated
repression of the CAT-1 mRNA in stressed cells (Bhattacharyya
et al, 2006). Interestingly, miR-181 targets are one of the most
enriched microRNA target gene sets for HuR association and
the most depleted for PABP association. Similar to HuR, miR-
181a has been shown to modulate TCR signaling and T-cell
selection (Li et al, 2007). Our data suggest that the targeting of
these functionally antagonistic mechanisms is more wide-
spread than currently believed, yet specific to subsets of
transcripts. This is consistent with the PTRO model that
predicts combinatorial interactions by RBPs and microRNAs
that either compete or cooperate to determine the final
functional outcomes that are shared by a subset of functionally
related mRNAs (Keene and Lager, 2005; Keene, 2007).

Regulation of gene expression involves two linked, but very
different processes: control and coordination. Although
posttranscriptional ‘control’ indicates a distinct outcome for
a single transcript directed by one or more trans-factors,
‘coordination’ involves orchestration across multiple control
functions, temporally and spatially, of multiple transcripts to
achieve harmonization. It is a challenge to determine
mechanisms of control across entire sets of transcripts when
most molecular interactions are combinatorial (Table I;
Figure 5) and yet to be discovered. Therefore, these inter-
actions need to be understood on a global basis before one
can understand how gene expression systems can be both
balanced and agile in response to biological signals. Prob-
abilistic modeling of mRNA states, as described in this paper,
will help provide a better understanding of mRNA coordina-
tion as well as control functions. More importantly, global
patterns of control functions could be used to infer the
coordination logic of the proposed PTRO model.

Materials and methods

Cell culture

Jurkat cells were cultured in RPMI 1640 supplemented with 10% FBS
(GIBCO). For activation, cells were treated with 50 ng/ml PMA and
2 mg/ml PHA (Calbiochem, San Diego, CA, USA). Cells were pretreated
with 50mM resveratrol for 2 h and then subject treated with PMA/PHA.

Immunoprecipitation assays and RNA isolation

Lysates were prepared from samples collected at 0, 4, and 12 h post-
activation as described, with the addition of 10% glycerol to the
polysome lysis buffer (PLB) and resuspension of harvested cells in
PLB. RIP of endogenous HuR and PABP RNP complexes were used to
assess association of endogenous target mRNAs. Assays were
performed as described (Tenenbaum et al, 2000; Penalva et al,
2004). RIPs used 100ml pre-swollen and packed Protein-A Sepharose
beads (Sigma) loaded with 30 mg of anti-HuR (3A2), anti-PABPC1
serum and anti-PABPC4 serum (sera generated in Penalva et al, 2004),
and mouse IgG1. Antibody loaded beads were incubated with 3 mg cell
lysate for 4 h at 4 1C, washed four times with ice-cold NT2 buffer
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(50 mM Tris pH 7.4/150 mM NaCl/1 mM MgCl2/0.05% Nonidet P-40)
followed by three washes with ice-cold NT2 supplemented with 1 M
Urea. Extraction of associated RNA was performed as described, and
total RNA was isolated using the Trizol (Invitrogen).

Microarray analysis

Arrays were printed at the Duke Array Facility using the Genomics
Solutions OmniGrid300 Arrayer and contained Human Operon v3.0.2
oligo set (Oligo Source) consisting of B35k unique 70-mers. RNA
quality was checked using an Agilent2100 bioanalyzer (Agilent
technologies) for total RNA samples only. For all arrays, RNA was
assayed using direct labeling of experimental samples (Cy 3) and
Stratagene Universal Human Reference RNA (Cy 5). Array data were
submitted to the GEO, GSE11989. All arrays were subject to loess
normalization within each array and scale normalization across arrays
using the Array Magic (Buness et al, 2005). Replicate probes were
collapsed to the median value. To be considered for subsequent
analysis, probes had to be two times greater than the local background
in all biological replicates for any of the RIPs or the totals at any
time point.

Determining RNP association

GSEAwas used to calculate t-scores comparing the RNP IP to matching
the IgG IP. GMM was performed multiple times on the t-score
distributions to estimate the mean, standard deviation, and weight of
each component using the Mixtools package in R (Young et al, 2007).
The number of components was determined by visual inspection. As
this implementation of GMM used expectation maximization, which is
prone to convergence on local optimum, multiple runs of GMM were
conducted that initialized at different points. The parameters from the
model with the highest likelihood were used to create LOD scores of
HuR association by comparing the weighted probability density
functions of the HuR-associated versus the background distribution
or in the case of multiple ‘non-enriched’ populations the sum of the
background distributions.

Ribonomic-transcriptomic comparisons

For values representing mRNA abundance, we calculated a signal-to-
noise (S2N) ratio (to account for variance across replicates) for the
three biological replicates per time point. The Spearman correlation
coefficient between HuR-association, PABP-association, and mRNA
abundance profiles across all time points were calculated per probe.
GSEAwas used to calculate t-scores per probe representing differential
expression between 0 and 4 h and 4 and 12 h. Upper triangular matrix
color maps were made using JMP 7.0 (SAS).

Sequence characteristics

We used a local pipeline to retrieve high quality 30 UTR sequence for all
transcripts expressed (Majoros and Ohler, 2007). The AU content and
length of each UTR was calculated. We mapped the ARED 3.0 database
to refseqs to determine which transcript contained either class I or
class II AREs. COVE-LS was used to search sequences using the HuR
COVE model and the following statistics were calculated: at least one
match, number of matches, maximum score, sum of all scores, and the
average of scores. Significance of the enrichment of each HuR COVE
model statistic was tested using random sampling. Null distributions
were created for each characteristic listed above by calculating the
average of randomly chosen sets from total expressed population
(10 000 random sets, with the same # of UTRs as HuR-associated set)
and compared with the average value for the HuR-associated mRNAs
to determine statistical significance. Null distribution for assessing the
contribution of secondary structure to HuR COVE model statistics was
created by calculating the average of randomly generated dinucleotide
shuffled sequence from 30 UTRs associated with HuR (1000 sets) and
compared with the average value calculated above for the actual
30 UTR sequence of HuR-associated mRNAs to determine statistical
significance.

Functional enrichment

GSEA (Subramanian et al, 2005), Panther (Mi et al, 2007), and
InnateDB (Lynn et al, 2008) were used for enrichments. A gene set had
an FDR q-value o0.05 or family-wise error rate (FWER) o0.1 to be
considered significant for all GSEA analysis. For non-Gaussian data,
the classic enrichment statistic was used. For Panther and InnateDB
analysis, gene sets were required to have a Bonferroni corrected
P-value o0.05.

Plasmids

The Firefly-UTR reporters used for this study were generated by
cloning the UTR fragemts into the NotI and ApaI sites of pCDNA3-Luc.
Fragments of the UTRs were created using the following primers:

TNF ARE-Fwd TCCAGATGTTTCCAGACTTC
TNF ARE-Rev TGAGCCAAGGCAGCTCCTAC
CSF2-Fwd TGATACAGGCATGGCAGAAG
CSF2-Rev TACGGTAAAACATCTTGAATAAATATG
ANP32A-Fwd AGTGGAATAACCTATTTTGAAAAATTC
ANP32A-Rev CATTCTTTTTACAATACGACAAACAAA
NAB2-Fwd AGGGTTGGACTGGTGTCTTC
NAB2-Rev GCCATAAAATAAATTTTATTCCAAA
pRL, pCDNA3-HuR, and pCDNA3 were used in this study as well.

Transfections

Transfections were performed using Lipofectamine 2000 (Invitrogen)
using the standard protocol. Briefly, 1.6mg of total DNA was diluted in
100 ml of Opti-MEM I (GIBCO) and mixed with 4 ml of Lipofectamine
2000 diluted in 100ml of Opti-MEM I and incubated at room
temperature for 30 min. 1�106 Jurkats were plated in fresh media in
12-well plates. The re-plated cells were then immediately and mixed
with the DNA/Lipofectamine 2000 complexes. The Luciferase reporter
plasmids were transfected in equimolar amounts, 20 pmoles for each
of the Firefly-UTR constructs and 10 pmoles for the Renilla construct.
0.5mg of pCDNA3-HuR was co-transfected in indicated experiments
and the remainder of the transfection mix was brought to 1.6 mg using
the pCDNA3 vector.

Cell fractionation

Cells were collected, washed with PBS and then subject to an earlier
described fractionation protocol (Atasoy et al, 1998). Cytoplasmic, ER/
ONE and nuclear fraction control antibodies included anti-B–Tubulin
(Harlan Sera-Lab), anti-TRAP-a (kindly provided by Chris Nicchitta),
and Histone H4 (Abcam), respectively. Protein bands were quantified
using GelEval (Frog Dance Software).

Luciferase assay

Luciferase assays were performed using the Dual-Luciferase Reporter
Assay System (Promega). Transfected cells were pretreated with 50 nM
Resveratrol for 2 h and then activated with 50 ng/ml PMA and 2 mg /ml
PHA for 4 h. The cells were then collected and washed with PBS
and then lysed with 100ml of 1� passive lysis buffer. For both cell
fractionation and luciferase experiments, paired t-tests were per-
formed in GraphPad Prism (GraphPad Software).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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