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Abstract

How we perceive our bodies is fundamental to our self-consciousness and our expe-

rience in the world. There are two types of interrelated internal body

representations—a subjective experience of the position of a limb in space (body

schema) and the subjective experience of the shape and size of the limb (body image).

Body schema has been extensively studied, but there is no evidence of the brain

structure and network dynamics underpinning body image. Here, we provide the first

evidence for the extrastriate body area (EBA), a multisensory brain area, as the struc-

tural and functional neural substrate for body shape and size. We performed a multi-

sensory finger-stretch illusion that elongated the index finger. EBA volume and

functional connectivity to the posterior parietal cortex are both related to the partici-

pants' susceptibility to the illusion. Taken together, these data suggest that EBA

structure and connectivity encode body representation and body perception

disturbances.
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1 | INTRODUCTION

The representation of our body is essential for how we interact with

our environment. These representations arise from multimodal sen-

sory inputs, including visual, tactile, proprioceptive, interoceptive,

nociceptive, and motoric inputs (Longo & Haggard, 2012). There are

at least two proposed implicit body representations: body schema,

which encodes the position of the body in space, and body image,

which refers to the subjective experience of the size, shape, and fea-

tures of the body (Head & Holmes, 1911; Longo & Haggard, 2012).

Paillard (2005) differentiates body schema from body image by

describing body schema as a vectorial coordinate map of sensorimotorMassieh Moayedi and Nasim Noroozbahari contributed equally to this study.
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actions, centered on the body, which accounts for physical constraints

(e.g., gravity). In contrast, body image is a dynamic map of the con-

scious experience within the spatial characteristics of the body

(de Vignemont, 2010; Paillard, 2005). Whether body image and body

schema are independent from each other and quite how they interact

is yet to be established (Pitron, Alsmith, & de Vignemont, 2018)—see

de Vignemont (2010) and Pitron et al. (2018) for a comprehensive

review. Nonetheless, considerably more research has been focused on

the body schema, whereas the study of body image is still in its

infancy (Pitron et al., 2018). This is because in most instances, body

image relies on body schema, making it difficult to extrapolate specific

neural and behavioral mechanisms that support violations of schema-

based expectations (Pitron et al., 2018).

On this basis, the structural and functional neural network repre-

sentation of body image requires further research. Both body and

hand illusion studies provide evidence that body image representation

is dynamic and plastic (Keizer, Smeets, Postma, van Elburg, &

Dijkerman, 2014; Keizer, van Elburg, Helms, & Dijkerman, 2016).

Here, we aim to determine the neural underpinnings of body image by

leveraging this dynamism and plasticity using a body illusion.

Illusion studies are a reliable method to disturb body image under

controlled conditions and are therefore powerful tools to investigate the

neural mechanisms underlying body image (Blanke, 2012). For example,

the Pinocchio illusion, and various derivatives of this unimodal illusion,

have been used to induce body perception disturbances in healthy indi-

viduals (de Vignemont, Ehrsson, & Haggard, 2005; Ehrsson, Kito, Sadato,

Passingham, & Naito, 2005). The illusory disruption of the body image

can be reinforced with cross-modal illusions, which simultaneously

manipulate two or more sensory channels (Meredith & Stein, 1986;

Shams, Wozny, Kim, & Seitz, 2011). For example, the addition of a tactile

stimulus can reinforce a visual illusion and subsequently enhance the

robustness of the illusion, and thus susceptibility to the illusion. Integrat-

ing tactile and visual information requires multisensory processing and

binding at several levels of the nervous system (Lemus, Hernandez, Luna,

Zainos, & Romo, 2010; Makin, Holmes, & Ehrsson, 2008). Indeed, brain

imaging studies of visuotactile illusions have identified the bilateral ven-

tral premotor cortex (PMv), left posterior parietal cortex (PPC), and

occipitotemporal areas (Cardini, Haggard, & Ladavas, 2013; Limanowski &

Blankenburg, 2016; Limanowski, Lutti, & Blankenburg, 2014; Makin

et al., 2008; Mancini, Longo, Iannetti, & Haggard, 2011; Petkova

et al., 2011) to be implicated in body representation. Unlike these previ-

ous illusion studies that modify body perception by targeting body

schema, here, we specifically and exclusively modify body image.

The finger-stretch illusion is a robust visuotactile illusion in

which participants experience alterations of their index finger in a

computer-mediated augmented reality system with congruent sen-

sory feedback from the experimenter (Newport et al., 2015); that is,

the participant's finger appears to be elongating while the experi-

menter pulls on the tip of the finger, and shortening back to actual

size while the experimenter pushes on the tip of the finger. An

advantage of the finger-stretch illusion is that, unlike other

visuotactile illusions (e.g., the rubber hand illusion [RHI]), the finger-

stretch illusion is applied to the participant's own body through

congruent manipulation of visual, proprioceptive and tactile stimuli

(Preston & Newport, 2011), rather than incorporating a nonbody

object. This allows us to specifically target body image and not body

schema, as the subject is not performing an action, nor interacting

with the surrounding environment. Rather, they are passively view-

ing their finger change in shape and size. Importantly, ownership is

not modified, and so multiple sensory channels are providing con-

gruent information about the shape change of the finger.

We aim to use the finger-stretch illusion to identify the structural

and functional network underpinnings of changes to body image rep-

resentation. Here, we provide the first evidence for the extrastriate

body area (EBA), a multisensory brain area, as the structural and func-

tional neural substrate for body shape and size.

2 | MATERIALS AND METHODS

This study comprised two independent investigations: first, a behav-

ioral study to determine whether a distal versus a proximal perspec-

tive affects the effectiveness and features of the body illusion; and

second, an imaging study to identify the neural correlates of the

illusion.

3 | PARTICIPANTS

3.1 | Behavioral study (Experiment 1)

Twelve right-handed adults (7 women, 5 men), aged (mean ± SD)

23.6 ± 2.3 years were recruited for this study from the University of

Nottingham, Nottingham, UK. Participants provided written informed

consent to procedures reviewed and approved by the University of

Nottingham ethics committee in line with the Declaration of Helsinki.

3.2 | Imaging study (Experiment 2)

Twenty healthy adults were recruited from the University of Reading,

Berkshire, UK. Participants provided written informed consent to pro-

cedures reviewed and approved by the University of Nottingham

ethics committee in line with the Declaration of Helsinki, and were

compensated for their time. Nineteen participants were scanned as

one was excluded due to MRI contraindications. A further partici-

pant's dataset was excluded due to technical problems during the

scan. Therefore, of the final sample of 18 participants (10 women,

8 men), aged 24.3 ± 5.9 years, 17 were right-handed, and one was

left-handed.

4 | MRI DATA ACQUISITION

Functional brain images were collected on a 3 T MRI scanner

(Magnetom Trio; Siemens, Erlangen, Germany) using a 32-channel
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head coil. For each participant, four runs of a 162 whole brain image

time series (5 min 24 s) were obtained using a gradient-echo, echo-

planar scanning sequence (repetition time (TR) = 2 s, echo time

(TE) = 29 ms, flip angle = 90�, GRAPPA = 2, field of view

(FOV) = 272 mm2, 30 axial slices, slice thickness 3.5 mm, no gap,

voxel size = 2.1 � 2.1 � 3.5 mm3). A high-resolution anatomical scan

was also acquired (T1-weighted, three-dimensional magnetization-

prepared rapid acquisition gradient echo sequence scan, TR = 2 s,

TE = 2.99 ms, FOV = 250 mm, 192 sagittal slices, GRAPPA = 2, voxel

size = 1.0 � 1.0 � 1.0 mm3).

5 | EXPERIMENTAL DESIGN

5.1 | Behavioral study

We first sought to determine whether observing a finger-stretch illu-

sion in an MRI scanner—that is, a distal setup rather than a proximal

one—would affect the illusory experience. Participants underwent a

finger-stretch illusion under two conditions (Figure 1): (1) proximal and

(2) distal setup. In Setup 1, seated participants positioned their hand

within the MIRAGE device, a mediated virtual reality system

(University of Nottingham, Nottingham, UK). The Mirage device uses a

camera and mirror arrangement where one can view real-time video

images of their hand in the same perceived location as their actual

hand. Instantaneous digital manipulations to the visual input give rise

to a range of bodily illusions. We performed a finger stretch on the

index finger of the left hand. This decision was based on the physical

constraints in the MRI environment. Setup 2 was identical to Setup

1 with one key difference: the video image of the hand was on a screen

two meters in front of the participant, thus removing the egocentric

aspect of the illusion. This mimicked the setup inside the MRI scanner.

Participants received two stretches per condition. Both setups used

the same illusion on the participants' left index finger. Participants

rated six statements about each stretch on an 11-point Likert scale,

anchored at “not at all” and “extremely.” The statements included two

control statements: 1. “It felt like I had two left index fingers.” 2. “My fin-

ger was getting hot,” and four illusion susceptibility statements: 1. “I feel
like the finger I'm seeing belongs to me.” 2. “I feel like I'm watching

myself.” 3. “I feel like my finger is longer than normal.” 4. “It felt like my

finger was really being stretched” (Figure 1c). The experimental ques-

tions have been used by the authors in previous manipulations of the

index finger in a combined group of 91 participants (Perera, Newport, &

McKenzie, 2015; Perera, Newport, & McKenzie, 2017).

5.2 | Imaging study

All participants were naïve to the MIRAGE finger-stretch illusion

(Newport et al., 2015; Preston & Newport, 2011). As participants lay

supine in the scanner, an MR-compatible camera in the MR-environment

captured real-time digital images of the left index finger, to a computer in

the control room. Participants viewed the image of the left index finger

on a 32 in. fMRI compatible LCD screen (BOLDScreen, Cambridge

Research Systems, Rochester, UK) through a mirror mounted onto the

head coil. The experimenter stood next to the MRI table, holding the par-

ticipant's left index throughout the MRI scan. The participants' remaining

fingers were covered with a black, nonreflective cloth to be invisible in

the image. The MIRAGE finger stretching illusion was run in the LabView

Software package v 15.0 (National Instruments, Austin, TX) on an Apple

MacBook Pro (Retina, 13-in., Early 2015, Apple, Cupertino, CA), running

Windows 2008 (Microsoft, Seattle, WA). The illusion (“manipulation”
condition) comprised of three distinct phases: index finger elongation

(Figure 1a), maintenance of finger elongation, and shrinking the finger

back to normal size. During finger elongation, participants observed their

finger being lengthened while the experimenter simultaneously pulled

gently on the distal tip of their finger. During maintenance, participants

observed the experimenter holding the tip of the lengthened index fin-

ger. During shrinking, participants observed their index finger shrinking

back to normal size, while the experimenter simultaneously pushed the

tip of their finger. The experimenter was cued by an auditory signal on

which tasks to perform. Each phase was 3 s, and the whole illusion cycle

took 9 s. We also performed a control condition (nonmanipulation),

where the same three illusion phases occurred, but without the finger

being visually lengthened. Manipulations were identical across the group,

and both participants and experimenters were blinded to the condition.

During a 10 s period, 8 s after each illusion, participants rated the state-

ment: “I felt like my finger was really being stretched” on a 6-point rating

scale, where 0 represented “not at all” and 5 represented “extremely

lengthened”. The next illusion occurred 12 s after rating, with a pseudo-

randomized jitter of 0–3 s, (rectangular distribution). The experiment uti-

lized a block design, with four trials each of illusion and control condi-

tions presented in a pseudo-randomized and counterbalanced order

across four runs, for a total of 16 trials per condition.

6 | DATA PREPROCESSING

6.1 | Ratings

Each participant rated each trial of the finger stretch and the control

conditions. These ratings were averaged across all trials for each illu-

sion. Susceptibility scores were calculated by subtracting the control

ratings from the finger-stretch illusion ratings.

6.2 | Voxel-based morphometry

To examine gray matter correlates of the susceptibility scores, we per-

formed voxel-based morphometry (VBM) in the Statistical Parametric

Mapping (v12; (http://www.fil.ion.ucl.ac.uk/spm/software/spm)

DARTEL toolbox (Ashburner & Friston, 2007). Briefly, preprocessing

included setting the origin of the image at the anterior commissure of

each subject, affine spatial normalization, tissue segmentation. Next,

the various tissue classes were meaned, and were then aligned to cre-

ate a template. Deformations from this template to each of the
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individual images were computed, and the template was then re-

generated by applying the inverses of the deformations to the images

and averaging. This procedure was repeated several times. The

template was then normalized to Montreal Neurological Institute

(MNI)-152 space. Finally, warped images were generated, and spatially

smoothed with an 8 mm FWHM Gaussian kernel.

F IGURE 1 Behavioral experiment to determine whether the finger-stretch illusion can be performed within an MRI scanner with a different
egocentric setup. (a) The finger-stretch illusion is a visuotactile illusion in which participants experience their index finger elongating in a
computer-mediated augmented reality system with congruent sensory feedback from the experimenter. The progression of the illusion is shown

from the left panel to the right. As the image of the finger is elongated, the experimenter pulls on the tip to add tactile feedback. (b) The illusion
was tested in two experimental setups: (1) proximal (which is the original setup) and (2) distal (n = 12). The distal setup is similar to that which will
be performed in the MRI. In the distal setup, the participant is watching a digital image of their finger undergoing the finger-stretch illusion. The
screen is 2 m away from the participant. (c). Mean and SEM ratings of distal (magenta) and proximal (blue) setup are depicted. There were no
significant differences between ratings for the proximal and distal setups, indicating that the feeling that the participant's own finger was
stretched is similar and equally effective in the distal as the proximal setup (all related-samples Wilcoxon signed-rank tests p > .05. See Figure S1
and Table S1)

MOAYEDI ET AL. 3611



6.3 | Illusion task functional MRI analysis

All imaging analysis was performed using FSL (FMRIB's Software Library,

v.5.0, Oxford, UK) (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012), unless otherwise indicated. Prior to statistical analysis, non-

brain structures were removed from each participant's structural images by

Brain Extraction Tool (BET v.2.0). Preprocessing steps were performed

using the Multivariate Exploratory Linear Optimized Decomposition into

Independent Components (Beckmann & Smith, 2004) toolbox. The first

5 volumes were removed for each participant to allow for signal equilib-

rium, and a high-pass filter cut off of 100 s (0.01 Hz) was applied. Standard

preprocessing, including motion correction using MCFLIRT (Jenkinson,

Bannister, Brady, & Smith, 2002), slice timing correction, spatial smoothing

with a 5 mm (FWHM) Gaussian kernel was applied. The functional images

were registered to the MNI-152 template. Data were then ICA-denoised

by two independently trained raters (N. N. and A. Y.). To further denoise

the dataset, we performed aCompCor procedures (Behzadi, Restom, Liau, &

Liu, 2007). Briefly, signals from the cerebrospinal fluid (CSF) and white mat-

ter (WM) were extracted. The CSF and WM masks were 5 mm spheres

manually drawn in FSLview on the MNI-152 2-mm brain image. Principal

components analysis was performed on each of the time courses in

MATLAB v9.4 (MathWorks, Natick, MA), and the first five components

were regressed out of the fMRI data for each participant.

7 | STATISTICAL ANALYSIS

7.1 | Behavioral study

Ratings from the different setups were tested for normality using the

Shapiro–Wilk test. All behavioral statistical tests were performed using

SPSS Statistics v27 for Mac (IBM Corp., Armonk, N.Y.). Across both

setups, the illusion susceptibility ratings and the control ratings were not

normally distributed. A nonparametric related-samples Wilcoxon signed-

rank test was used to compare each rating between the two setups. Sig-

nificance was set to p < .05. Bonferroni correction was used to correct

for six comparisons, which adjusted the significance to p < .0083.

7.2 | Illusion task MRI ratings

Illusion and control ratings were tested for normality using the

Shapiro–Wilk test. Illusion ratings were normally distributed (p = .156),

while the control ratings were not (p < .0001). As a result, a nonpara-

metric related-samplesWilcoxon signed-rank test was used to compare

average ratings between conditions. Significance was set to p < .05.

7.3 | Voxel-based morphometry

A whole brain, voxelwise statistical analysis was performed using the

general linear model (GLM) to determine which gray matter regions

correlated with susceptibility scores. The model included a regressor

for group (to model the intercept), and demeaned susceptibility

scores. Statistical images were thresholded at a cluster-corrected

pFWE < .05, with a cluster-forming height threshold p < .001.

7.4 | Illusion task functional MRI analysis

A GLM analysis was carried out on the preprocessed and denoised

data using FEAT (FMRI Expert Analysis Tool) version 6.00 of FSL

(FMRIB's Software Library). Three different contrasts were modeled

in the design matrix: finger-stretch, control, and finger-

stretch > control. Motion parameters were not included in the model,

as motion-related artifacts were corrected in preprocessing. A fixed-

effect analysis was used to calculate a mean for each contrast across

the four fMRI runs. Group-level analyses were performed using

FLAME 1 + 2 (FMRIB's Local Analysis of Mixed Effects) for each con-

trast. Statistical images were thresholded using a corrected-cluster

p < .05 (cluster-forming height threshold Z > 3.1). We also performed

a conjunction analysis to identify brain regions that were activated by

both the finger-stretch and control conditions (Nichols, Brett,

Andersson, Wager, & Poline, 2005). Briefly, the script identifies

regions of significant overlap across two statistical images. Signifi-

cance was set at a corrected-cluster p < .05 (cluster-forming height

threshold Z > 3.1).

7.5 | Psychophysiological interaction analysis

We sought to understand which set of brain regions were related to

changes in body image. After identifying the regions of interest that

displayed altered activation during the finger-stretch illusion task, a

psychophysiological interaction (PPI) (Friston et al., 1997) analysis was

performed to identify other voxels in the brain that displayed coupled

activation with activity of these regions (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/PPI). The advantage of using a PPI analysis is that it not only

allows us to identify the brain network activated during the visual illu-

sion, but correlations with the susceptibility ratings allow us to deter-

mine which brain regions are functionally connected during changes

to the body image and relate to the susceptibility to that change. Seed

ROIs were the peak functional activations from the group-level analy-

sis for the illusion > control contrast. We selected peak activations [all

coordinates are reported in MNI152 space (X,Y,Z)] within each ROI.

Specifically, if a cluster spanned multiple ROIs, then the highest statis-

tical peak within the region was selected as the ROI. The coordinates

for each ROI are: left PPC (�46, �40, 54), left EBA (�42, �74, �2),

left fusiform body areas (FBA; �46, �58, �16), and left PMv (�46,

10, 30); right PPC (51, �26, 38), right EBA (48, �64, 4), and right FBA

(48, �60, �12). Spheres (5 mm radius) centered around these peak

coordinates were created and transformed to individual space using a

linear transformation (FLIRT) to extract the time series (Jenkinson

et al., 2002; Jenkinson & Smith, 2001).

PPI analysis was initially performed on individual datasets by

extracting deconvolved MR signals from each seed ROI. This
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extracted time course represents an approximation of neural activity

which was centered and multiplied by a psychological factor (task con-

dition). The PPI regressor was determined by the interaction between

the time course and the psychological regressor (onset of the finger-

stretch illusion). Both psychological and physiological regressors along

with the PPI term were used in a GLM analysis. The GLM analysis

resulted in a PPI connectivity map at the first level, which captured

regions whose time series was correlated with the PPI regressor,

above and beyond (orthogonal) to the main effect of the task.

Individual linear contrasts of PPI were subsequently grouped at

the subject level (second level) using a fixed-effect analysis. At the

group level, a mixed-effect analysis (FLAME 1 and 2) was performed

to compare connectivity maps between participants. Statistical

threshold was set at a corrected-cluster p < .05 (cluster-forming

height threshold Z > 3.1). Bonferroni correction was used to correct

for the seven PPI analyses run, which led to an adjusted p-value

of .007.

Next, we investigated the relationship between resulting clusters

of task-based functional connectivity during the illusion condition and

the susceptibility ratings. We followed previously outlined methods

(O'Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012). Briefly,

we extracted the connectivity values from the following PPI results:

right EBA connectivity clusters: right PPC, right vlPFC, and R SMA;

left EBA connectivity clusters: right PPC, right vlPFC, right SMA, and

right FBA; left PMv connectivity cluster: right insular cortex; Right

PPC connectivity cluster: left precuneus (see Supporting Information

for left PMv and right PPC). A Shapiro–Wilk test was used to test the

normality of connectivity values and susceptibility ratings. Susceptibil-

ity ratings were normally distributed (p = .072) and connectivity

values to the right EBA were normally distributed (all p > .05). Con-

nectivity values for the left EBA were normally distributed (right PPC:

p = .325; right SMA: p = .167, right FBA: p = .981), with the excep-

tion of the right vlPFC (p = .047). Pearson correlations were per-

formed to test the relationship between right EBA connectivity values

(to right PPC, vlPFC, and SMA) with susceptibility ratings. Spearman's

correlations were performed to correlate left EBA connectivity values

(to right PPC, SMA, FBA, and vlPFC) with susceptibility ratings. Signifi-

cance was set to p < .05, Bonferroni-corrected. The critical R2 value

with n = 18 for an adjusted p < .017 for the right EBA (Bonferroni

corrected for three comparisons) is R2 = .31, and the R2 critical value

for an adjusted p < .0125 for the left EBA (Bonferroni-corrected for

four comparisons) is R2 = .33.

8 | RESULTS

8.1 | Behavioral study

First, we sought to determine whether exposure to a finger-stretch

illusion (see Figure 1a) in an MRI scanner with a different egocentric

perspective to the usual direct and proximal perspective would

affect the illusory experience. Thus, 12 healthy participants under-

went the original finger-stretch illusion (with a proximal setup) and a

modified finger-stretch illusion with distal setup akin to that used in

the MRI environment (see Figure 1b). There were no significant dif-

ferences in the experience of the two illusion setups (all Wilcoxon

signed-rank tests p > .05; Figure 1c, Figure S1, and Table S1).

Therefore, the MRI setup was not significantly different from the

proximal setup.

8.2 | Imaging study

Eighteen participants experienced a finger-stretch illusion in a 3 T

MRI scanner. During the illusion, the participant's left index finger

was visually elongated with congruent tactile input. A control

condition included all the same procedures without visual elonga-

tion. Participants provided trial-by-trial ratings of the extent to

which they felt that their finger was actually being stretched in

both conditions. Ratings were significantly greater during the illu-

sion compared to the control condition (Z = 3.528, p < .001),

indicating that participants were susceptible to the illusion

(Figure 2a).

8.3 | Voxel-based morphometry

We created a susceptibility score based on the average difference

scores between the illusion and control trials for each participant.

Individual differences in behavioral measures have been shown to be

reflected in brain structure (Kanai & Rees, 2011). To determine the

structural gray matter underpinnings of individual differences in sus-

ceptibility, we performed a whole brain VBM analysis. We found that

the bilateral EBA (part of the occipitotemporal cortex—OTC [Down-

ing, Jiang, Shuman, & Kanwisher, 2001]) volumes were positively cor-

related with susceptibility (r2 = .74; pFWE < .05, with a cluster-forming

height threshold p < .001; Figure 2b,c, and Table S2). In other words,

the greater EBA volume, the more susceptible the participant was to

the finger-stretch illusion.

8.4 | Whole brain activation during illusion

We determined whole brain activation in response to the finger-

stretch illusion, compared to the control condition, and found that

multisensory brain areas—the bilateral occipitotemporal junction, in

the area of the EBA and FBA, the bilateral PPC, the bilateral lateral

occipital cortex, and left PMv—showed greater activity during the

illusion (Figure 3, Figures S2 and S4, Tables S3 and S4)

(Carey, 2000; Lloyd, Shore, Spence, & Calvert, 2003; McDonald,

Teder-SÑlejÑrvi, & Ward, 2001; Petkova et al., 2011). Notably, EBA

did not show significant activation in the control condition

(Figures S2 and S4, and Table S5). The activation of multisensory

areas in response to the finger-stretch illusion is in line with

other illusions (Limanowski et al., 2014; Limanowski &

Blankenburg, 2016).
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F IGURE 2 Susceptibility to illusion and neural correlates. (a) Individual participant ratings of the finger stretch illusion and control condition in
the MRI scanner. These ratings (between 0 and 5) represent the susceptibility of the participants to the illusions. Mean (±SE) of ratings to the
statement “The extent to which you feel that your finger is actually being stretched” (n = 18). Participant ratings were based on 16 trials of each
condition and were averaged across all trials for each condition. Susceptibility scores were calculated by subtracting the control ratings from the
finger-stretch illusion ratings. Ratings for the illusion were significantly higher than the control condition (p = .00009; Cohen's d = 1.19671).
(b) Bilateral temporo-occipital gray matter volumes correlate with finger-stretch illusion susceptibility (the difference between the illusion and
control conditions). Statistical images are cluster-corrected p < .05 family-wise error, with a cluster-forming height threshold of p < .001.
(c) Significant correlation of the right extrastriate body area gray matter volume with susceptibility ratings (r2 = .74). Note that both EBA were
significantly correlated with susceptibility, and the right EBA is shown for simplicity. Blue lines represent 95% confidence intervals. LOC, lateral
occipital cortex; R EBA, right extrastriate body area

F IGURE 3 Contrast and conjunction analyses between finger-stretch and control conditions. (a) Brain activations in response to the finger-
stretch illusion compared to the control illusion (n = 18). (b) Conjunction map showing overlap of regions that show activation in both the finger-
stretch illusion and the control illusion. Statistical images are cluster-corrected pFWE < .05 (cluster-forming height threshold Z > 3.1). EBA,
extrastriate body area; FBA, fusiform body area; LOC, lateral occipital cortex; PMv, ventral premotor cortex; PPC, posterior parietal cortex.
Images are shown in radiological convention
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8.5 | Functional connectivity during illusion

Following our structural and functional brain imaging findings of a

relationship between the EBA and bodily illusion (Figures 2 and 3), we

performed a PPI to determine which brain regions were functionally

connected during the finger-stretch illusion. Given our a priori

hypothesis about the role of the bilateral EBA in body image and sus-

ceptibility ratings, we report results for the remaining regions in

Tables S9 and S10. We found that the left and right EBA were func-

tionally connected to the right PPC, the right supplementary motor

area, and the right ventrolateral prefrontal cortex (vlPFC; pFWE < .05,

cluster-forming height threshold Z > 3.1; Figure 4a, Figure S5, and

F IGURE 4 Functional connectivity during illusion with susceptibility scores. (a) Psychophysiological interaction of the right extrastriate body

area (EBA; shown in green) during the illusion condition. The EBA was significantly connected to the primary somatosensory cortex/posterior
parietal cortex (S1/PPC), the supplementary motor area (SMA) and the ventrolateral prefrontal cortex (vlPFC). The statistical threshold includes a
cluster corrected threshold of p < .05 (p < .007, Bonferroni-corrected for psychophysiological interactions [PPIs] performed) using a cluster
forming threshold Z > 3.1. Note that bilateral EBA showed functional connectivity to these regions, but the right is shown for simplicity, and
because it is contralateral to the illusion. (b) Positive correlation between right EBA–PPC task-based functional connectivity during the illusion
condition and susceptibility scores (R2 = .32, p < .017; Bonferroni-corrected p < .05 divided by three tests). Blue lines represent 95% confidence
intervals. a.u., arbitrary units. Images are shown in radiological convention

MOAYEDI ET AL. 3615



Tables S6 and S7). The left EBA was also functionally connected to

the right FBA (Figure S5, Table S7). The left PMv was functionally

connected to the right insular cortex (pFWE < .05, cluster-forming

height threshold Z > 3.1; see Supporting Information, Table S9) and

the right PPC showed decreased functional connectivity to the left

precuneus (pFWE < .05, cluster-forming height threshold Z > 3.1; see

Supporting Information, Table S10).

Most notably, we report that the connectivity between the right

EBA and the right PPC was significantly correlated with susceptibility

to the illusion (r2 = .32, p = .014; Figure 4b, Table S8).

9 | DISCUSSION

We utilized a multimodal finger-stretch illusion to examine the behav-

ioral and neural correlates of body image. We showed that the struc-

ture of the lateral occipitotemporal cortex, in the region of the EBA,

was significantly correlated to how susceptible participants were to

the illusion (Figure 2), and that multisensory regions were activated by

the finger-stretch illusion (Figure 3), including bilateral lateral

occipitotemporal cortex, in the region of the EBA (see Figures 3 and

S4), PPC and PMv. Finally, we show that the task-based functional

connectivity of the occipitotemporal cortex—the putative EBA—with

the PPC is significantly correlated with susceptibility scores (Figure 4).

Together, these multimodal data indicate that the lateral

occipitotemporal cortex, in the region of the putative EBA, encodes

body image perception.

Our findings further support the theory that body image repre-

sentations are dynamic. Unlike the body schema, which depends on

previous body experiences, the body image is free of physical con-

straints, as the shape and size of the body need not be realistic in

order for perception and ownership to occur. This is supported by the

results of our finger-stretch illusion, which stretched the index finger

into a physically impossible size and shape, and yet participants still

claimed body ownership to such manipulations. This suggested that

body ownership was not constrained to the physical body or the

experience of body, indicating that body image is indeed plastic. While

alterations in EBA activity have been previously reported (Limanowski

et al., 2014; Limanowski & Blankenburg, 2015, 2016) little is known

about the relationship between EBA gray matter volume and body

image in healthy participants. We demonstrate that individual differ-

ences in body image perception correlate with bilateral EBA gray mat-

ter volume, suggesting that the EBA plays an important role in the

extent of susceptibility to illusion and sensitivity to changes in body

image. Our research is one of few studies that have depicted the asso-

ciation between the structure of EBA and body image. Previously,

Suchan et al. (2010) reported the first evidence of altered EBA struc-

ture in women with anorexia nervosa. Interestingly, in those with

anorexia nervosa, EBA gray matter density was negatively correlated

to body size misjudgment. Our findings support the notion that struc-

tural alterations of EBA are associated with body image and perceived

body shape.

We successfully demonstrated that body image perception can

be manipulated by a finger-stretch illusion, which is in line with both

hand and full body illusions that have been shown to improve the dis-

turbed experience of body size in patients with anorexia nervosa

(Keizer et al., 2016).

The EBA is an occipitotemporal region activated by congruent

spatial and synchronous tactile stimuli (Limanowski &

Blankenburg, 2016, 2017). The EBA has been shown to respond to

various stimuli, including human touch, action, and motion (Astafiev,

Stanley, Shulman, & Corbetta, 2004; Buchholz, David, Sengelmann, &

Engel, 2019; Downing, Peelen, Wiggett, & Tew, 2006; Limanowski

et al., 2014). Additionally, the EBA is involved in visual perception, the

processing of human body parts, and the body as a whole (Downing

et al., 2001; Suchan et al., 2010). Previous studies have identified

selective disruption of body perception upon interference by trans-

cranial magnetic stimulation (TMS) to the EBA (Calvo-Merino, Urgesi,

Orgs, Aglioti, & Haggard, 2010; Pitcher, Charles, Devlin, Walsh, &

Duchaine, 2009). Bilateral EBA activation would thus be expected to

occur during the congruent visuotactile finger-stretch illusion and the

control condition performed in the present study. The enhanced EBA

activation in the illusion condition suggests that the EBA response is

not only due to processing congruent visuotactile stimuli, but plays a

direct role in body perception, more specifically in upper limb

perception.

Enhanced PMv activity was observed during the illusion com-

pared to the control condition. The PMv houses neurons with both

visual and tactile receptive fields (Rizzolatti, Fogassi, & Gallese, 2002)

and is important for the detection of visuo-proprioceptive congruence

(Downing & Peelen, 2016; Limanowski & Blankenburg, 2016). Our

finding is in line with previous studies examining neural correlates of

visual illusions, such as the RHI (Ehrsson, Spence, &

Passingham, 2004; Limanowski & Blankenburg, 2015). In addition, the

PMv is thought to relate to higher-level processing of upper limb rep-

resentation and the surrounding (peri-personal) space (Makin

et al., 2008). Studies have sought to elucidate the role of the PMv in

the illusory experience and proprioception by utilizing a variety of

tasks, such as arm positioning (Limanowski & Blankenburg, 2016) and

RHI manipulations (Ehrsson, Holmes, & Passingham, 2005;

Limanowski et al., 2014). The arm positioning task identifies brain

regions active during congruent positioning of the participant's own

unseen arm and a virtual realistic arm (Limanowski &

Blankenburg, 2016). The RHI paradigms manipulate either visual or

tactile inputs, which control for the visualization of the rubber hand

(somatic RHI) (Ehrsson, Holmes, & Passingham, 2005) and the inter-

ference of the experimenter (automated RHI) (Limanowski

et al., 2014), respectively. The PMv responds to the somatic RHI

(Ehrsson, Holmes, & Passingham, 2005) and arm positioning task

(Limanowski & Blankenburg, 2016), but not to the automated RHI

(Limanowski et al., 2014), suggesting that this region is involved in

processing tactile and proprioceptive inputs independent of human

touch and action, as well as integrating congruent visual and proprio-

ceptive information about arm position. The enhanced PMv activation
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observed in the present study therefore supports the role of the PMv

in the integration of multisensory, visuotactile information in response

to the finger-stretch illusion. This activation could support the role of

the PMv in upper limb proprioception that is involved in body schema,

by updating proprioceptive information upon receiving new

visuotactile information.

Our second major finding shows significantly enhanced func-

tional connectivity of the bilateral EBA to the PPC, supplementary

motor area, and vlPFC during the finger-stretch illusion. Most nota-

bly, we report that the connectivity between the right EBA and the

right PPC was significantly correlated with susceptibility to the illu-

sion. This finding is consistent with Limanowski and

Blankenburg (2017), who reported increased functional connectivity

between the EBA and PPC during a visuo-proprioceptive RHI. How-

ever, the possibility of visual and proprioceptive integration occurring

in the PPC rather than the EBA was not ruled out in their study. The

PPC is thought to maintain a dynamic estimate of the perceptual rep-

resentation of the body, in particular the hand region (Wolpert,

Goodbody, & Husain, 1998; Zimmer & Macaluso, 2007), that can be

updated through multisensory integration (Gentile, Petkova, &

Ehrsson, 2011; Petkova et al., 2011). Although other RHI studies

have demonstrated increased EBA–PPC functional connectivity

(Gentile, Guterstam, Brozzoli, & Ehrsson, 2013; Limanowski &

Blankenburg, 2015), they were unable to attribute it to the visuo-

proprioceptive illusion. Rather than EBA–PPC connectivity, one RHI

study demonstrated increased functional connectivity between the

bilateral EBA and the primary somatosensory cortex (S1) (Limanowski

et al., 2014). Inhibitory stimulation of the S1 hand region by repeti-

tive TMS in healthy participants resulted in an overestimation of the

perceived size of their hand (Giurgola, Pisoni, Maravita, Vallar, &

Bolognini, 2019), suggesting that the S1 plays a role not only in

somatosensation, but in the perception of body size—which is in line

with the fine representation of the hands in S1, compared to coarser

representations in higher order brain regions, such as the PPC (Yau,

Kim, Thakur, & Bensmaia, 2016). A previous study proposed that the

intraparietal sulcus (IPS), which separates the superior and inferior

parietal lobules, minimizes mismatch between the incoming sensory

information by integrating this visual information with tactile infor-

mation. Specifically, the IPS integrates the somatosensory reference

frame with the visual reference frame to minimize mismatch, and

consequently increases its connectivity to the EBA (Limanowski &

Blankenburg, 2015). Taken together, the connectivity of the EBA to

other parietal multisensory regions underlies body shape and size

during multisensory illusions. In line with these previous findings, we

demonstrate that EBA–PPC functional connectivity is related to a

person's susceptibility to the finger-stretch illusion.

10 | LIMITATIONS

Our study has a few limitations that must be considered. Primarily,

the study has a relatively small sample size. Future studies in larger,

independent samples are required to reproduce our results.

Nonetheless, our study demonstrates the structure and function of

the EBA in the neural underpinnings of body image using a finger-

stretch illusion and rigorous statistical thresholds. Furthermore, our

study is correlational in nature, and future studies should use causal

techniques, such as neurostimulation, to confirm the role of the EBA

in body image encoding.

11 | CONCLUSIONS

Information from multiple sensory channels is integrated in higher

cognitive areas to construct a body representation (Dijkerman & de

Haan, 2007). Specifically, the convergent somatosensory, proprio-

ceptive and visual inputs to the EBA are integrated and underlie

human body shape perception (Downing et al., 2001; Urgesi,

Berlucchi, & Aglioti, 2004). Our data suggest that the structural and

functional connectivity of the EBA not only encodes the shape of

body parts, but also how susceptible a participant is to disturbances

of shape and size. Our structural and functional connectivity find-

ings are the first to demonstrate the role of the EBA in perceiving

changes to body shape using a multisensory illusion that manipu-

lates the participant's own body in real time. More importantly, the

structure of the EBA, and its functional connectivity to the PPC are

correlated to the participant's susceptibility to changes in body

shape—that is, body image. Body image disturbances—that is, body

perception disturbances—have been reported in multiple disorders

(Longo & Haggard, 2012), including anorexia nervosa, bulimia

nervosa, chronic pain (Lewis, Kersten, McCabe, McPherson, &

Blake, 2007; Lotze & Moseley, 2007; Moseley, 2008; Moseley, Par-

sons, & Spence, 2008; Sundermann, Flink, & Linton, 2020), and

somatoparaphrenia (Vallar & Ronchi, 2009). Our results suggest that

disorders of body image may be associated with changes in the

structure of the EBA and its functional connections to other body

encoding regions, such as the PPC. In summary, we have shown for

the first time that the susceptibility to change in an individual's own

body is correlated to the structure and function of the brain, specifi-

cally the structure of the EBA and functional connectivity between

the EBA and the PPC. We found that the EBA is the structural and

functional neural underpinning of body image using the finger-

stretch illusion, which promotes multisensory integration using the

participant's actual hand.
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