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Abstract

The systematic and accurate description of protein mutational landscapes is a question of utmost importance in biology,
bioengineering, and medicine. Recent progress has been achieved by leveraging on the increasing wealth of genomic data
and by modeling intersite dependencies within biological sequences. However, state-of-the-art methods remain time
consuming. Here, we present Global Epistatic Model for predicting Mutational Effects (GEMME) (www.lcqb.upmc.fr/
GEMME), an original and fast method that predicts mutational outcomes by explicitly modeling the evolutionary history
of natural sequences. This allows accounting for all positions in a sequence when estimating the effect of a given
mutation. GEMME uses only a few biologically meaningful and interpretable parameters. Assessed against 50 high-
and low-throughput mutational experiments, it overall performs similarly or better than existing methods. It accurately
predicts the mutational landscapes of a wide range of protein families, including viral ones and, more generally, of much
conserved families. Given an input alignment, it generates the full mutational landscape of a protein in a matter of
minutes. It is freely available as a package and a webserver at www.lcqb.upmc.fr/GEMME/.
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Introduction
Understanding which and how genetic variations affect
proteins and their biological functions is a central ques-
tion for bioengineering, medicine, and fundamental biol-
ogy. In these fields, a fast and accurate assessment of the
effects of every possible substitution at every position in a
protein sequence (full single-site mutational landscape)
or of combinations of mutations (pairs, triplets, etc.)
would allow to reach some level of control over proteins,
needed to improve the treatment of diseases, the design
of new proteins, and the synthesis of molecular libraries.
Deep mutational scans (Fowler and Fields 2014) or multi-
plexed assays for variant effects (Gasperini et al. 2016)
have enabled the full description of the mutational land-
scapes of a few tens of proteins (see Riesselman et al.
[2018] for a list of proteins and associated experiments).
They have revealed that a protein contains a relatively
small number of positions highly sensitive to mutations,
where almost any substitution induces highly deleterious
effects (McLaughlin et al. 2012; Firnberg et al. 2014).
Although these methods represent major biotechnologi-
cal advances, they remain resource intensive and are lim-
ited in their scalability. Moreover, the measured
phenotype and the way it is measured vary substantially
from one experiment to another, making it difficult to
compare different measurements and/or proteins
(Boucher et al. 2016). These limitations call for the

development of efficient and accurate computational
methods for high-throughput mutational scans.

Many computational methods predicting mutational
effects exploit information coming from protein sequences
observed in nature (Ng and Henikoff 2003; Capriotti et al.
2005; Cheng et al. 2005; Adzhubei et al. 2010; Dehouck et al.
2011; Sim et al. 2012; Ferguson et al. 2013; Mann et al. 2014;
Hart and Ferguson 2015; Barton et al. 2016; Figliuzzi et al.
2016; Flynn et al. 2017; Hopf et al. 2017; Louie et al. 2018;
Riesselman et al. 2018). They start from a multiple sequence
alignment (MSA) and rely on the assumption that rarely oc-
curring mutations induce deleterious effects. A straightfor-
ward way to estimate frequencies of occurrence is to treat
each position in the alignment independently from the
others. However, the amino acid residues comprising a pro-
tein are interdependent, and the effect of a mutation depends
on the amino acids present at other positions, a phenomenon
referred to as “epistasis” (Breen et al. 2012; McCandlish et al.
2016). By leveraging on the increasing wealth of genomic data,
recent developments have enabled modeling interdependen-
cies between positions and have significantly improved the
accuracy of mutational effects predictions (Ferguson et al.
2013; Mann et al. 2014; Figliuzzi et al. 2016; Flynn et al.
2017; Hopf et al. 2017; Louie et al. 2018; Riesselman et al.
2018). Specifically, some statistical methods estimate cou-
plings between pairs of positions (Ferguson et al. 2013;
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Mann et al. 2014; Hart and Ferguson 2015; Barton et al. 2016;
Figliuzzi et al. 2016; Flynn et al. 2017; Hopf et al. 2017; Louie
et al. 2018). They are very accurate in identifying a few strong
direct couplings responsible for the whole covariability ob-
served in homologous sequences and corresponding to phys-
ical contacts in protein structures (Weigt et al. 2009; Stein
et al. 2015; Louie et al. 2018). In the context of mutational
outcome prediction, the ensemble of all pairwise couplings is
used as a proxy to capture the influence of the whole se-
quence context on a particular position. One of the limita-
tions of these methods is that the explicit calculation of
higher-order couplings is computationally intractable. To cir-
cumvent this issue, a deep latent-variable model was pro-
posed where the global sequence context is implicitly
accounted for by coupling the observed positions to latent
(“hidden”) variables (Riesselman et al. 2018). The model is
fully trained on each studied protein family to generate
sequences likely to belong to the family. Deviations between
outputs and inputs are then used as estimates of the muta-
tional effects. The mutational landscapes of certain protein
families are very well captured by this deep learning approach,
but the results strongly depend on the variability of the input
data. More generally, the statistical inference of a large body of
parameters from a finite, and sometimes very low, sequence
sampling is a challenging problem (Barton et al. 2014; Haldane
and Levy 2019). It is particularly relevant in the case of viral
proteins whose sequences are often highly conserved. Several
technical advances employing regularization terms have im-
proved the accuracy of interresidue coupling estimation
when dealing with viral proteins (Ferguson et al. 2013;
Mann et al. 2014; Hart and Ferguson 2015; Barton et al.
2016; Flynn et al. 2017; Louie et al. 2018). Moreover, the usage
of very small position-specific amino acid alphabets has re-
duced the computational cost of the inference. These efforts
have allowed achieving very good agreement between the
fitness landscapes inferred from patient sequences and
in vitro experiments for several proteins from HIV and
HCV. Nevertheless, the available methods still remain com-
putationally costly and have only been evaluated against low-
throughput experimental data.

In this work, we present a fast, scalable, and simple algo-
rithm to predict mutational effects by explicitly modeling
interdependencies between all positions in a sequence. Key
to our approach is the notion of an evolutionary history re-
lating the sequences observed today in nature. We view each
sequence as an evolutionary solution selected with respect to
a mutation of interest. Our algorithm infers the evolutionary
relationships relating natural sequences by quantifying their
global similarities. These relationships, encoded in a tree, are
used to determine the extent to which each position is con-
served in evolution and to estimate the evolutionary fit re-
quired to accommodate mutations. Our measure of
conservation is markedly different from measures that quan-
tify frequencies of occurrence at single positions (columns) of
an alignment. Indeed, we infer conservation levels by recon-
structing phylogenetic trees from global similarities between
sequences. This means that the conservation level of one
position embeds the covariations between this position and

all other positions in the sequence. For a position to be
“conserved,” we ask that the letter(s) appearing at that posi-
tion is/are fully conserved in subtrees of ancient origin. Hence,
two positions can have the same distribution of letters but
different conservation levels. For example, this will happen if
one position displays all occurrences of the most represented
letter in a subtree of ancient origin, whereas the other displays
them in several subtrees. This notion of conservation was
inspired from that of evolutionary trace (Lichtarge et al.
1996; Mihalek et al. 2004). It is computed by the Joint
Evolutionary Trees (JET) method (Engelen et al. 2009), and
it proved to be useful in the identification of protein inter-
faces (Engelen et al. 2009; Laine and Carbone 2015; Ripoche
et al. 2017). We use the computed conservation degrees to
weight positions, the rationale being that changes occurring
at more conserved positions likely have bigger impacts on the
protein’s function (Karami et al. 2018). Then, to be able to
discriminate between different substitutions occurring at a
given position, we combine two quantities. The first one is the
relative frequency of occurrence of the mutation, relying on
physicochemical similarities rather than amino acid identities.
The second one is the minimum evolutionary fit required to
accommodate the mutation. Namely, we estimate how far
one has to go in the evolutionary tree to observe a natural
sequence displaying the mutation. We compare our predic-
tions with those of DeepSequence (Riesselman et al. 2018)
and EVmutation (Hopf et al. 2017), which are currently the
best state-of-the-art methods that have been evaluated on
high-throughput experimental data. We show that our algo-
rithm overall performs on-par with the nonlinear latent-
variable model of DeepSequence and better than the pairwise
epistatic model of EVmutation. The improvement over these
two methods is particularly significant for much conserved
protein families. We also show that our method’s predictive
performance is comparable with computational frameworks
well suited to treat viral sequences (Flynn et al. 2017; Louie
et al. 2018). Beyond prediction assessment, we provide a clear
readout of the contribution of epistasis by looking at how
sequences observed in nature are spread and evolutionary
related. Our method is implemented as a fully automated
tool, Global Epistatic Model for predicting Mutational
Effects (GEMME), available as a downloadable package and
as a webserver at www.lcqb.upmc.fr/GEMME/. We show that
GEMME is faster than state-of-the-art methods by several
orders of magnitude. Given an input alignment, the calcula-
tion of the full mutational landscape of a protein takes a few
minutes. Hence, GEMME makes possible the systematic study
of pairs or triplets of mutations appearing sequentially in time
and associated with drug resistance, for example, in viruses. It
could help in taking informed decisions regarding patients’
treatment and public health by enabling real-time analysis of
pathogenic sequence data (Neher and Bedford 2018).

Our results emphasize the usefulness of the information
encoded in the way certain positions, because of their func-
tional importance, are segregated along the topology of evo-
lutionary trees. A functionally important position is expected
to be associated with one or several subtrees of ancient origin
and homogeneous with respect to that position (all
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sequences in the subtree display the same amino acid). This
type of patterns is essentially what our measure of conserva-
tion captures. We demonstrate that this notion of
evolutionary-informed conservation is more pertinent than
conservation measures looking at individual positions inde-
pendently and that it constitutes a valid alternative to the
explicit estimation of pairwise couplings toward capturing
coevolution signals. Hence, this work paves the way to new
ideas and developments in sequence- and evolutionary-based
mutational outcome prediction.

New Approaches
Sequences observed in nature have been selected for function
through evolution. Hence, they can inform us on the con-
straints underlying evolutionary processes and help us esti-
mate mutational effects. To assess the impact of a given
mutation at a given position in a query sequence, we look
at an ensemble of sequences homologous to that query
(fig. 1a). These sequences can be organized in a tree based
on their global similarities (fig. 1b). The topology of the tree
reflects the evolutionary relationships between the sequences.
Our main contribution is to extract conservation patterns in
line with the topology of the tree and use them to determine
the extent to which a mutation will be deleterious for the
function of the query protein. For this, the first step of our
approach consists in estimating the biological importance of
each residue in the query by computing its evolutionary con-
servation (fig. 1c, first color strip). Highly conserved positions
are likely important for the protein stability and/or function
and thus likely sensitive to changes. For each position in the
query, we look at the level in the tree where the amino acid at
that position appeared and remained conserved thereafter.
To illustrate this notion of conservation, we consider a toy
example with two positions, namely i and j displaying S and G,
respectively (fig. 1a and b). In the tree, one can observe that
the amino acid G at position j was fixed much earlier in
evolution compared with S at position i (fig. 1b, compare
gray rectangles between the two panels). Hence, we will assign
a much higher conservation degree to the former than to the
latter. Since the tree is inferred from global similarities be-
tween entire sequences, the conservation degree of a given
position accounts for the way all other positions have di-
verged along evolution. Here, we deal with a potentially large
number of sequences, and the reconstruction of a unique tree
relating all of them may lead to an unreliable topology. To
cope with this issue, we sample the initial ensemble of
sequences to extract representative subsets and reconstruct
trees starting from these subsets (see Materials and Methods).
Conservation degrees are averaged over all reconstructed
trees to get statistically significant estimates. We then use
them to compare mutations occurring at the same position
and to compare different positions.

To compare different mutations at a given position, we
estimate the amount of changes required to accommodate a
mutation over the entire sequence. This amount can be
viewed as a proxy to quantify the “evolutionary fit” associated
with the mutation of interest. We compute it by looking at

how far natural sequences displaying the mutation are from
the query sequence in the evolutionary tree. Our working
hypothesis is that the more distant these sequences, the
more deleterious the mutation. For the sake of simplicity,
let us consider two mutations at position i, namely S-to-T
and S-to-A, which we want to compare, and see how they are
associated with changes at another position j (fig. 1a).
Although the S-to-T mutation is sometimes associated with
the wild-type G at j (sequences in blue), the S-to-A mutation
is systematically accompanied by a mutation at j (namely G-
to-V, sequences in green). Since position j is much more
conserved than i, this will result in sequences bearing S-to-
A at i being much further away in the tree, with respect to the
query, than sequences bearing S-to-T at i (fig. 1b, compare the
locations of the green and blue sequences). Intuitively, this
observation suggests that it will be more difficult for the query
to accommodate A compared with T at position i, and hence
that S-to-A will be more deleterious than S-to-T. We can
easily generalize this reasoning over two positions to the
whole sequence. For this, we define an evolutionary distance
between the query q and some sequence s which explicitly
accounts for the conservation degrees of all variable positions
between q and s (see Materials and Methods and fig. 1c). For
each studied mutation, we look for the closest sequence to q
displaying that mutation, and we use its evolutionary distance
to estimate the minimal evolutionary fit associated with the
mutation. We combine evolutionary fits with site-
independent frequencies calculated using a reduced amino
acid alphabet to get more precise estimates (see Materials
and Methods).

Then, to be able to compare mutations occurring at
different positions, we rely on the hypothesis that more
conserved positions will be more sensitive to any mutation
than less conserved positions. To implement this idea, we
reweight the predicted mutational effects by the evolution-
ary conservation degrees (fig. 1c, compare the two matrices).
As a result, highly deleterious mutations will be mainly
found at highly conserved positions (fig. 1c, second matrix,
dark squares are mainly localized at conserved positions,
highlighted by arrows). In our toy example, although the
evolutionary distance computed for the G-to-V mutation at
j is lower than that computed for the S-to-A mutation at i
(fig. 1b, compare the locations of the starred orange se-
quence on the right and the starred green sequence on
the left), the former will be predicted as more deleterious
than the latter because position j is much more conserved
than position i.

GEMME’s predictive model globally accounts for epistasis
by explicitly looking at the whole sequence context when
assessing the effect of a particular mutation. It is applicable
to single-site mutations and also to combinations of muta-
tions (see Materials and Methods).

Results
We assessed GEMME’s predictive power against experimental
measures collected from 41 high-throughput mutational
scans of 33 proteins and 1 protein complex, representing
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657,840 mutations (supplementary table S1, Supplementary
Material online). Among them, 38 scans deal with single-site
mutations. One scan describes the complete 2-point muta-
tional landscape of a 96-residue long protein, and 2 scans
contain multiple mutations. The largest scan reports meas-
ures for 496,137 mutants, where the number of variable posi-
tions between each mutant and the wild-type query ranges
between 1 and 26. The average Spearman rank correlation
computed between all predicted and experimental values is
�q ¼ 0:5360:13. The best agreement is obtained for the bac-
terial b-lactamase, with a correlation of 0.74 (fig. 2a). There is
a only a weak correlation between the proportion of disrup-
tive mutations in the experiment and GEMME’s predictive
performance (fig. 2b). Compared with the state-of-the-art
methods DeepSequence and EVmutation, GEMME performs
equally well or better (fig. 2a). Namely, its overall performance
are similar to those of DeepSequence (Riesselman et al. 2018)

(DqGEMME�DEEP � 0 in 19/41 scans, with an average of
0.02 6 0.12 and a median of –0.01) and significantly better
than those of EVmutation (Hopf et al. 2017)
(DqGEMME�EVmutation � 0 in 32/41 scans, with an average of
0.03 6 0.05 and a median of 0.03). Importantly, GEMME
achieves much higher correlations for the five viral sequences
of the data set (fig. 2a, on the right, and fig. 2b, orange dots),
up to Dq¼ 0.5 compared with DeepSequence and Dq¼ 0.1
compared with EVmutation. The input alignments for these
proteins display a very low degree of diversity, with >60% of
sequences sharing>60% of identity with the query sequence
(fig. 3a, underlined proteins). More generally, the lower the
diversity of the input alignment, the higher the improvement
of GEMME over the two other methods (fig. 3a).

We also assessed GEMME’s performance against 128 ex-
perimental measures coming from 9 low-throughput muta-
tional studies of two HIV proteins, namely the envelope

FIG. 1. Principle of the method. (a) Ensemble of sequences related to a query sequence, on top and in red. The query displays a serine (S) at position i
and a glycine (G) at position j. Some sequences are colored according to the amino acids they display at the two positions: T-G in blue, T-V in
purple, X-V in orange (X stands for any amino acid, except for T and A), and A-V in green. (b) Tree representing the evolutionary relationships
between the related sequences. The color code is the same as in (a). Information concerning positions i and j is reported on the left and on the right,
respectively. The red dots and dotted gray lines indicate the levels where S and G appeared at positions i and j and remained conserved thereafter.
The associated subtrees are highlighted by gray rectangles. The stars indicate the closest sequences to the query displaying the S-to-T mutation at i
(left, in blue), the S-to-A mutation at i (left, in green) and the G-to-V mutation at j (right, in orange). (c) Workflow of the method applied on the
third PDZ domain of PSD95 (DLG4). The color strip on top gives conservation levels computed for the query sequence q. Positions highlighted by
arrows are highly conserved. A homologous sequence s is displayed below, with its mutations highlighted in red. The second color strip indicates
the squared conservation levels for the positions of the mutations. The two matrices give the predicted effects and NPEs, respectively, for all
possible substitutions at all positions in q.
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protein gp160 and the protease (supplementary fig. S1,
Supplementary Material online). The input alignments for
these proteins are composed of sequences coming from
patients (see Materials and Methods) and sharing >60% se-
quence identity with the query. The considered mutants con-
tain between 1 and 46 mutations. GEMME’s Spearman rank
correlations range from 0.43 to 1, with a weighted averaged
value of 0.70. These results are similar to those obtained by
two coevolution-based computational frameworks (Flynn
et al. 2017; Louie et al. 2018) recently applied to viral sequen-
ces (compare supplementary fig. S1a–g, Supplementary
Material online, with supplementary fig. S1 in Louie et al.
[2018] and supplementary fig. S1h and i, Supplementary
Material online, with fig. 3A in Flynn et al. [2017]). In partic-
ular, we obtain a weighted correlation of 0.70 against seven
experiments performed on gp160, whereas Louie et al. (2018)
reported a value of 0.74. The difference in performance be-
tween the two methods varies significantly from one exper-
iment to another (fig. 2c). This may be explained by the
relatively small number of measures (a few tens at most)
coming from each experiment.

Epistasis Helps Discriminate between Equally
Frequent Mutations
To compare different mutations occurring at the same posi-
tion, GEMME’s model combines two contributions, namely
the minimal evolutionary fit required to accommodate each

mutation and the relative frequency of occurrence of the
mutation (see Materials and Methods). The first term
accounts for intersite dependencies and can thus be qualified
as “epistatic,” whereas the second term is computed in a site-
independent manner. If a mutation is rare and appears far
away in the evolutionary tree, then both terms will be high
and the mutation will be predicted as deleterious. On the
contrary, if a mutation is frequent and found in sequences
very close to the query, both terms will be small and hence,
the predicted impact of the mutation will be small. The two
terms will disagree in case of a rare mutation appearing in a
sequence very similar to the query, or in case of a frequent
mutation appearing only in highly divergent sequences. By
default, GEMME puts a higher weight on the epistatic term
(see Materials and Methods).

We systematically assessed the predictive power of each
contribution taken separately (see Materials and Methods,
fig. 4a, and supplementary table S1, Supplementary
Material online). Overall, the predictions issued by the epi-
static contribution were found in better agreement with the
experimental measures than those from the independent
contribution (average Dq¼ 0.04 6 0.09, median Dq¼ 0.02).
Yet, in about one third of the cases (11/35), it is better to rely
on site-independent frequencies rather than evolutionary dis-
tances (fig. 4a, on the right). Hence, the predictive power of
the information coming from epistasis varies substantially
from one protein to another. Such variability may arise
from some intrinsic properties of the studied proteins, the

FIG. 2. Comparison of predictive performances between GEMME and state-of-the-art methods. (a) Spearman rank correlation coefficients q
between predicted and experimental measures for 35 high-throughput experiments corresponding to 34 proteins (see Materials and Methods).
Scans comprising multiple mutations are highlighted by a gold rectangle. (b) Spearman rank correlation coefficients in function of the proportion
of disruptive mutations in the experiment. Disruptive mutations were defined as those displaying an experimental measure below l – r, with l the
mean and r the standard deviation. (c) Spearman rank correlation coefficients q between predicted and experimental measures for seven low-
throughput experiments performed on gp160 from HIV. The size of each point indicates the number of mutants.
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experimental setup (e.g., measured phenotypes) and/or the
properties of the input alignment. The bacterial DNA meth-
yltransferase HaeIII and the nonstructural protein 5A (NS5A)
from Hepatitis C virus provide two archetypal examples that
help understand the influence of the input alignment. Both
proteins display much contrasted performances between the
two contributions, but although the epistatic term is the best
one for the bacterial methyltransferase (fig. 4a, on the left),
the most accurate predictions for the viral NS5A are issued
from the independent term (fig. 4a, on the right). In the first
case, a lot of mutations are rather frequent in the input align-
ment (fig. 4b, on the left, in blue). More precisely, half of the
mutations are at least 22% as frequent as the wild-type amino
acid. By contrast, in the second case, half of the mutations are
very rare (<0.03% as frequent as the wild-type amino acid) or
simply not found in the alignment (fig. 4b, on the left, in red).
More generally, as the mutation average frequency of occur-
rence increases, so does the gain of the epistatic contribution
over the independent one (fig. 4b, in the middle, Pearson
correlation coefficient R¼ 0.61). The shape of the mutation
frequency distribution is also a good indicator (fig. 4b, on the
right, R ¼ –0.60 with the distribution’s skewness). The best
case scenario for the epistatic contribution is when a large
body of mutations are rather frequent, and few mutations are
rarer than average and widely spread (see the long left tail of
the distribution in blue in fig. 4b, on the left). Hence, when
dealing with equally frequent mutations, looking at the over-
all divergence of the sequences where they appear, as

quantified by our evolutionary fit, helps improving the dis-
crimination between them.

Evolutionary Conservation Is a Valid Proxy for
Position-Specific Sensitivity to Mutations
Besides providing full protein mutational landscapes, muta-
tional scans can be used to determine which positions in the
protein are particularly sensitive to mutations. Such positions
typically represent a small portion of the protein and can be
viewed as its “weak” spots. The sensitivity of a position can be
estimated by averaging its mutational outcomes over the 19
possible substitutions. In GEMME’s predictions, this average is
strongly correlated to the position’s degree of conservation
(supplementary fig. S2, Supplementary Material online). This
is expected as GEMME reweights positions according to their
evolutionary conservation to compare mutations occurring
at different positions (see Materials and Methods). This
results in highly conserved positions displaying overall higher
predicted mutational effects than lowly conserved positions.
We found that the conservation degrees alone provide esti-
mates of position-specific sensitivities to mutations that are
only slightly less accurate than the averages computed from
GEMME’s full predicted matrices (fig. 5a). This indicates that
our conservation measure is already a good indicator of the
extent to which a position will be sensitive to mutations.
Importantly, this holds true even when the variability of the
available sequence data is low. This means that we are able to

FIG. 3. Influence of the input alignment on the predictive performance. (a) Sequence identities of the input alignments. The percentages of
sequences sharing <40%, between 40% and 60%, between 60% and 80%, and >80% with the query sequence are reported. Viral sequences are
underlined. The dots at the bottom indicate the gain of performance of GEMME with respect to DeepSequence (DqGEMME�DEEP) and EVmutation
(DqGEMME�EVmut). The size is proportional to the absolute value of Dq and the color depends on the sign. Dq is positively correlated with the
proportion of sequences sharing >60% identity with the query (Pearson correlation coefficient R¼ 0.71 for DqGEMME�DEEP and R¼ 0.48 for
DqGEMME�EVmut). (b) Comparison of Spearman rank correlations obtained by GEMME when the conservations levels are computed from the whole
ensemble of input sequences (x axis) or with only sequences displaying >60% identity with the query (y axis). (c) Comparison of Spearman rank
correlations obtained by GEMME starting from the full input alignment (x axis) or from a subset of the alignment containing 5L sequences (chosen
randomly from the full alignment), where L is the length (number of residues) of the query (y axis).

GEMME: Global Epistatic Model predicting Mutational Effects . doi:10.1093/molbev/msz179 MBE

2609

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz179#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz179#supplementary-data


capture meaningful signals in contexts where the content of
information is poor. Moreover, our conservation measure
compares well with the predictions issued by
DeepSequence and EVmutation (fig. 5a). In several cases, it
better reflects experimentally determined mutational sensi-
tivities than the averages computed from these predictions
(fig. 5a, points highlighted in blue). Finally, calculating conser-
vation levels only from sequences close to the query (>60%
identity) instead of the full ensemble of input sequences does

not significantly affect the quality of the predictions in most
cases (fig. 3b).

GEMME’s Results Are Robust and Its Model Is
Transferable to Other Proteins
To assess the transferability of GEMME’s model to other
systems, we systematically evaluated the influence of its
two main parameters and of the input alignment’s depth
on the quality of the predictions. The first parameter is the

FIG. 4. Comparison of predictive performances between the epistatic and independent contributions of GEMME’s model. (a) On the x axis,
proteins are divided in two groups according to the contribution yielding the highest correlation with experimental data (epistatic contribution on
the left, independent one on the right). (b) Left panel. Examples of distributions for the mutations’ site-independent relative frequencies of
occurrence. For each mutation, the reported value is the log-odd ratio between the number of sequences displaying the mutation over the number
of sequences displaying the wild-type amino acid (see Materials and Methods). Middle and right panels. Difference in Spearman q coefficient in
function of the mean (in the middle) and the skewness (on the right) of the log-odd ratio distribution. The skewness reflects the asymmetry of the
distribution (positive skewness indicates a left tail, whereas negative skewness indicates a right tail). The dots corresponding to the proteins taken
as examples on the left panel are encircled.
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relative importance given to the epistatic and independent
contributions. We observed that our default model, where
the epistatic contribution is given more weight, systematically
achieves similar or better correlation with experiments than
each contribution taken alone (fig. 5b, compare red dots and
black dashes). In cases where the independent contribution
performs better than the epistatic one, combining the two
leads to only slightly lower performances. Moreover, varying
the relative weights of the two terms around their default
values has a very small impact on the quality of the predic-
tions in most of the cases (fig. 5b, blue segments). The second
degree of freedom is the choice of the amino acid alphabet.

GEMME relies on similarities between amino acids rather
than identities to compute the mutations’ frequencies of
occurrence. By default, we consider seven classes of amino
acids, grouping together the aromatic ones (F, W, Y, H), the
hydroxyl-containing ones with alanine (C, A, S, T), the ali-
phatic hydrophobic ones (I, L, M, V), the positively charged
ones (K, R), and the polar and negatively charged ones (N, Q,
D, E). Glycine and proline are in a separate class each. We
tested 164 different alphabet reduction schemes (see
Materials and Methods and supplementary table S2,
Supplementary Material online) and found that the impact
of the alphabet’s choice on the predictive performance is

FIG. 5. Analysis of GEMME’s parameters and computing time. (a) Differences in position rank correlation between the evolutionary conservation
degrees computed by GEMME and the mutational effects predicted by GEMME, DeepSequence, and EVmutation. Each point stands for a scan.
Positive and negative differences are highlighted in blue and red, respectively. (b) Ranges of rank correlation obtained when varying the relative
importance of GEMME’s independent and epistatic contributions. Each vertical segment corresponds to a deep mutational scan (same order as in
fig. 2). The red dot indicates the correlation obtained with GEMME’s default model, where the epistatic term is assigned a weight of 0.6 (and 0.4 for
the independent term, see Materials and Methods). The black dash indicates the best performance achieved by the independent or epistatic
contribution alone. The blue thick segments highlight the range of values obtained when varying the epistatic term’s weight between 0.5 and 0.8
(see also supplementary figs. S3 and S4, Supplementary Material online). (c) Amino acid grouping preferences observed in GEMME’s best
performing models (parameters optimized for each scan). The color code goes from white (grouping never observed) to red (grouping observed
for all scans). The amino acids are ordered so as to highlight the reduced alphabet used by default in GEMME. (d) Computing times of EVmutation
and GEMME (in seconds, with logarithmic scales).
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limited (average correlation standard deviation of 0.01, sup-
plementary figs. S3 and S4, Supplementary Material online).
So is the correlation gain obtained by optimizing the param-
eters for each scan (average Dq¼ 0.02 6 0.01, and median
Dq¼ 0.02, supplementary fig. S5a, Supplementary Material
online). Moreover, the amino acid grouping preferences
exhibited by the best performing models are in good agree-
ment with the alphabet chosen by default (fig. 5c). In addition
to the model’s parameters, the input alignment’s depth may
also influence the quality of the predictions. The initial input
alignments comprise between 10 and 2,000 times as many
sequences as the length L of the query protein (supplemen-
tary table S3, Supplementary Material online) and display a
wide range of variability degrees (fig. 3a). Reducing the num-
ber of input sequences to 5L results in a limited loss of cor-
relation (fig. 3c, average Dq¼ 0.03 6 0.03, and median
Dq¼ 0.02). Even with 0.5L sequences, the average correlation
is of �q ¼ 0:46 (compared with 0.53 with the full alignments,
see supplementary fig. S6a, Supplementary Material online).
Reducing the variability of the alignment, in addition to its
size, further degrades performance (supplementary fig. S6b,
Supplementary Material online). Overall, this analysis shows
that our results are robust to parameter changes and align-
ment depth and that our choices lead to predictions whose
quality is close to the best one can hope for within GEMME’s
framework. This is true overall and on most of the scans
studied here, which makes us confident that our default
model is directly transferable to other proteins.

GEMME Is Faster than State-of-the-Art Methods by
Several Orders of Magnitude
To be applicable at large scale, computational scans should be
fast. Given a query sequence of length L associated with an
alignment of N0 sequences, GEMME estimates L � 21þN0

quantities to predict a full single-site mutational landscape
(see Materials and Methods). It took <10 min, on a single-
core processor, for GEMME to generate any of the complete
single-site mutational landscapes considered here. The corre-
sponding proteins are of various lengths, comprising between
L¼ 36 and 716 residues, and are associated with up to several
hundreds of thousands of homologous sequences (fig. 5d). By
comparison, EVmutation requires several days of computa-
tion to deal with the biggest proteins of the data set. Overall,
GEMME is faster than EVmutation by a factor ranging be-
tween 19 and 1,072 (supplementary table S3, Supplementary
Material online). It should be stressed that EVmutation dis-
regards some positions and some sequences from the input
alignment, whereas GEMME does not. DeepSequence is
expected to be even more computationally expensive.
Training one deep latent model on the b-lactamase family
(to estimate several millions of parameters) and generating
the corresponding full mutational landscape required almost
7 h (24,175 s) on a powerful graphics card (see Materials and
Methods). This computing time has to be multiplied by 5 to
obtain results similar to those reported in Riesselman et al.
(2018). GEMME took only about 1 min to treat the same
protein on a single-core processor (fig. 5d and supplementary
table S3, Supplementary Material online). Hence, we estimate

DeepSequence to be several thousands times more compu-
tationally expensive than GEMME. The method described in
Louie et al. (2018) required 2.5 days of CPU time on a 16-core
node to estimate the parameters (about 4.4 million) for HIV
gp160. The method described in Flynn et al. (2017) required
4 h of computation on two powerful graphics cards to esti-
mate the parameters (about 40,000) for HIV protease. For
comparison, GEMME’s calculations on these proteins esti-
mated took <10 and 3 min, respectively, on a single-core
processor.

Discussion
We have presented GEMME, a computational method for
performing mutational scans of protein sequences. It exclu-
sively exploits protein sequence data available in public data-
bases. It relies on a few biologically sound assumptions about
the relationship between protein sequence and function. Its
algorithm is straightforward and requires setting only two
parameters. It uses the mathematical tree structure underly-
ing the evolution of natural sequences and it explores it by
using simple new concepts (smallest path between wild-type
and mutated sequences). This is markedly different from
what has been developed previously. State-of-the-art meth-
ods feature tens to hundreds of thousands of parameters,
infer some of them using sophisticated machine learning
techniques, others empirically, reweight the input sequences
to correct for sampling bias, and do not explicitly model the
evolutionary history relating these sequences. Despite its ap-
parent simplicity, our method achieves similar or better per-
formance than the state of the art, and it can deal with highly
variable as well as highly conserved sequences. Importantly,
although GEMME was designed to treat any protein family, its
performance on viral proteins is similar to recent computa-
tional frameworks well suited to treat these proteins. It has
the advantage of being faster than recently published meth-
ods by several orders of magnitude.

An important ingredient of GEMME is the inclusion of
dependencies between the different positions in the se-
quence of interest. We are not the first ones to propose to
account for “epistasis” in the prediction of mutational effects.
What has been done before was to explicitly model couplings
between pairs of positions, inferred from co-occurring pat-
terns in the input sequence data, or to implicitly model
higher-order dependencies by coupling each position to a
“hidden” variable. Let us stress that the introduction of
such hidden variables do no ease interpretability. We adopt
an orthogonal approach by using the notion of evolutionary
history relating the sequences observed today in nature. We
infer such evolutionary history by quantifying global similar-
ities between sequences, thus accounting for all positions and
their interdependencies. Then we use the reconstructed evo-
lutionary trees to identify functionally important positions,
the rationale being that such positions should display a few
amino acids that appeared and were fixed early in evolution.

Contrary to statistical inference-based methods, GEMME
does not try to estimate a joint probability distribution. This
means that we do not make any assumption on the space of
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all possible sequences. Instead, we directly exploit the infor-
mation encoded in natural sequences and we do it in a query-
centered way. Specifically, each tree constructed to compute
conservation levels contains the query, and the evolutionary
distances are computed with respect to the query. Hence, our
predictions estimate deviations from the query, whereas pre-
dictions from statistical inference-based methods correspond
to ratios of probabilities of belonging to the protein “family”
represented by the input alignment. On the one hand, this
constitutes a limitation of our method. For instance, in case of
a mutant with a higher fitness than the wild type and evolu-
tionary far away from it, GEMME will simply predict a strong
mutational effect. On the other hand, this can be an advan-
tage when the input alignment contains protein “subfamilies”
performing different functions and displaying different func-
tionally relevant patterns of conservation and coevolution (as
is the case of the cryptochrome/photolyase family for
instance).

We have implemented our method as a fully automated
package and webserver, available at www.lcqb.upmc.fr/
GEMME/. It can deal with single mutations as well as combi-
nations of mutations. It has been carefully evaluated against
experimental measurements from 9 low-throughput experi-
ments and 41 high-throughput mutational scans comprising
up to 496,137 data points. Moreover, we have provided an
understanding of the contribution of “epistasis” to the dis-
crimination of mutations, based on the analysis of the vari-
ability of the input sequence data, and have demonstrated
that our evolutionary-informed measure of conservation is a
good indicator of the extent to which a position is sensitive to
mutations. Finally, we have systematically assessed the influ-
ence of changing GEMME’s two parameters and the input
alignment’s depth on the quality of the predictions. Our
results are consistent and suggest that GEMME’s model is
transferable to other systems than the few tens studied here.

This work proposes an original and efficient approach to
the characterization of protein mutational landscapes.
Working with a few parameters, versus many, and relying
on a “simple” approach allow to get a comprehensive under-
standing of why a mutation will be predicted as deleterious or
not. We believe ease of interpretability is important and can
help foster conceptual breakthroughs. Indeed, it has been
shown in various occasions in Riesselman et al. (2018) for
instance that the success of machine learning methods largely
depends on biologically meaningful priors used to impose
some structure on the predictive model. Perspectives for
this work include the systematic description of the effects
of mutations on protein interaction networks, a field that
will continue to expand in the coming years.

Materials and Methods

GEMME’s Workflow
The GEMME method takes as input a MSA in FASTA format,
with the query sequence appearing on top. First, evolutionary
conservation levels are computed using JET (Engelen et al.
2009). Then, GEMME predicts the mutational landscape of
the query sequence. By default, it estimates the mutational

outcomes of all possible single mutations. Alternatively, the
user can provide an ensemble of single or multiple mutations
of interest.

Homologous Sequence Retrieval and Selection
The user can ask GEMME to compute conservation levels
directly on the input MSA. Alternatively, GEMME will auto-
matically launch a PSI-BLAST (Altschul et al. 1997) search to
retrieve up to 5,000 sequences related to the query. Then, a
number of selection criteria will be applied to filter the set of
related sequences. By default, sequences redundant with the
query (>98% identity) or too far (<20% identity), too small
(<80% coverage), too gapped (>10% of the size of the align-
ment) or not significant enough (e-value �10�5) are re-
moved. If the number of remaining sequences is too low
(<100), the selection criteria are progressively relaxed as de-
scribed in Engelen et al. (2009). All parameters are adjustable
by the user.

Evolutionary Conservation Levels (TJET)
The calculation of evolutionary conservation levels relies on a
Gibbs-like sampling of the filtered set of related sequences
(Engelen et al. 2009). Sequences are classified into four groups,
depending on the degree of identity they share with the query
(20–39%, 40–59%, 60–79%, and 80–98%). Starting from an
ensemble of N sequences,

ffiffiffiffi
N
p

sequences are randomly
picked up from the four classes to construct a subset repre-
senting the diversity of the whole set. The sequences are then
aligned and a distance tree is constructed from the alignment
using the Neighbor-Joining algorithm (Studier and Keppler
1988). For each position in the query sequence, a tree trace
level is computed: it corresponds to the level l in the tree
where the amino acid at this position appeared and remained
conserved thereafter (see Engelen et al. [2009] for a more
precise definition). Let us recall that this definition of evolu-
tionary trace is notably different from the measure defined by
Lichtarge and coworkers to rank protein residues (Lichtarge
et al. 1996; Mihalek et al. 2004).

This procedure is repeated
ffiffiffiffi
N
p

times and the tree trace
levels are averaged over the

ffiffiffiffi
N
p

trees to get more statistically
significant values, which we denote relative trace significances,
or TJET, and which are expressed as (Engelen et al. 2009)

TJETðiÞ ¼
1

Mi

XMi

t¼1

Lt � lti
Lt

; (1)

where lti is the tree trace level of residue ri in tree t, Lt is the
maximum level of t, and Mi is the number of trees where a
nonnull tree trace level was computed for ri. This procedure
efficiently handles sequence sampling bias without requiring
to explicitly reweight sequences and setting a sequence iden-
tity cutoff. TJET values vary in the interval [0, 1] and represent
averages over all trees of residues’ evolutionary conservation
levels.

To produce the results reported here, we used the most
recent version of the JET method, namely JET2 (Laine and
Carbone 2015) (available at www.lcqb.upmc.fr/JET2). JET2

uses MUSCLE (Edgar 2004) to align sequences. JET2 was
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launched in its iterative mode: The procedure described
above was repeated ten times and the maximum conserva-
tion value obtained over the ten runs was retained for each
residue. Note that running only one iteration leads to very
similar predictions (99.6 6 0.4% Pearson correlation coeffi-
cient on average). Hence, on the webserver, the default num-
ber of iterations is set to 1.

Predicted Effects: Comparison of Mutations Occurring
at the Same Position
To compare mutations occurring at the same position,
GEMME combines two contributions. The first one is termed
epistatic and corresponds to the minimal evolutionary fit re-
quired to accommodate the mutation of interest. The second
one is termed independent and reflects the relative frequency
of occurrence of the mutation. Hence, the predicted effect of
a mutation X-to-Y at position i is expressed as

PEðYiÞ ¼ �a min 1;
PEEpiðYiÞ

maxZ;k½PEEpiðZkÞ�

� �

� log
1

maxkð
P

ZjSZkjÞ

� �
þ ð1� aÞPEIndðYiÞ;

(2)

where PEEpiðYiÞ and PEIndðYiÞ are the values of the epistatic
and independent contributions (defined below), respectively.

The term min 1; PEEpiðYiÞ
maxZ;k½PEEpiðZkÞ�

n o
scales the value of the epi-

static contribution between 0 and 1. The maximum value
maxZ;k½PEEpiðZkÞ� is determined over all positions k and all
possible substituting amino acids Z for a given protein. The

term log 1
maxkð

P
Z
SZk
jÞ

� �
, where SZk

is the ensemble of sequen-

ces displaying Z at position k, gives the lowest possible log-
ratio value. It corresponds to the extreme case where all non-
gapped sequences at position k display the wild-type amino
acid. It is used as a multiplying factor here so as to be able to
combine the predictions coming from the two different
contributions.

In case of a mutation U not observed in the input
alignment, we consider that sequences displaying that
mutation are infinitely far from the query sequence and
we use a pseudo-count to estimate its frequency of oc-
currence (see below for more detailed explanations). In
practice, the predicted effect of that mutation will be
expressed as

PEðUiÞ ¼ �a log
1

maxkð
P

ZjSZk
jÞ

� �
� ð1� aÞ log

1

jSXi
j

� �
;

(3)

where SZk
and SXi

are the ensembles of sequences displaying Z
at position k and X at position i. Hence, the effect predicted
for a nonobserved mutation will solely depends on the posi-
tion of the mutation.

The coefficient a determines the relative weight of each
contribution. By default, a is set to 0.6, and sequence counts
are calculated using a reduced representation of the amino

acid alphabet composed of seven classes: FWYH, ILMV, CAST,
G, P, NQDE, and RK (LW-I-7 in supplementary table S2,
Supplementary Material online).

Epistatic Contribution (PEEpi)
The evolutionary relationships between all the sequences
in the input MSA can be represented by a tree, which is
not explicitly computed here. The topology of that tree is
implicitly reflected by the TJET values, which were com-
puted and averaged over many small trees. We illustrate
this by considering two positions i and j at which the
query sequence q displays S and G, respectively (fig. 1a
and b). Position i is lowly conserved (TJET ¼ 0.2), whereas
position j is highly conserved (TJET ¼ 0.8). This implies
that q belongs to a smaller subtree of sequences display-
ing S at position i (fig. 1b, on the left, dark gray rectangle),
and to a bigger subtree of sequences displaying G at po-
sition j (fig. 1b, on the right, light gray rectangle).

To estimate how close some sequence s is from the
query sequence q, we define the evolutionary distance
Devolðq; sÞ as

Devolðq; sÞ ¼
Xn

k¼1

TJETðkÞ2 � 1Xq
k
6¼Xs

k
; (4)

where n is the length of q, Xq
k is the amino acid of q at position

k, and 1Xq
k
6¼Xs

k
is the indicator function. Only positions where

the amino acid in s is different from the amino acid in q
(fig. 1c, in red) contribute to the sum, and the level of con-
tribution depends on the level of conservation of the position
(fig. 1c, second color strip).

To assess the effect of a mutation X-to-Y at position i in q,
we select the subset SYi

of sequences displaying the mutation,
and look for the sequence within SYi

being the closest to q.
The resulting minimal evolutionary distance estimates how
far from q one has to go in the tree to observe a sequence
bearing Y at i. Hence, the predicted effect of mutation Y at
position i, PEEpiðYiÞ, is expressed as

PEEpiðYiÞ ¼ min
s2SYi

½Devolðq; sÞ�: (5)

To avoid bias due to the presence of a peculiar se-
quence or of an alignment error in the MSA, we require
that there exists at least one sequence different from the
closest one and at a similar distance to the query. For this,
we rank all evolutionary distances in ascending order and
compute the difference between the first and second
ones. If the difference is lower than an arbitrarily chosen
cutoff of 5, then we keep the first one. Otherwise, we
replace it by the second one. In case of a mutation U
not observed in the alignment, the ensemble SUi

is empty
(i.e., no sequence displaying U at position i could be
found) and we set PEEpiðUiÞ ¼ þ1.

This metric enables to directly compare and rank several
substitutions at a given position. Given two amino acids Y
and Z substituting X at position i, one can express the differ-
ence PEEpiðYiÞ � PEEpiðZiÞ as
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DPEEpiðYi; ZiÞ ¼min
SYi

Xn

k¼1;k 6¼i

TJETðkÞ2 � 1Wq
k
6¼Ws

k

" #

�min
SZi

Xn

k¼1;k 6¼i

TJETðkÞ2 � 1Wq
k
6¼Ws

k

" #
;

(6)

where the sums are computed over all positions except i, as
the contribution of i cancels out. Consequently, this differ-
ence quantifies how much the global sequence context of
position i has to change to accommodate the X-to-Y substi-
tution versus X-to-Z. The substitution displaying the highest
change will be predicted as the most deleterious one at that
position.

As an example, let us consider mutations S-to-T and S-to-
A at position i in figure 1a and b. The S-to-T mutation induces
a smaller minimal amount of changes than the S-to-A muta-
tion, as the closest sequence displaying T at i (indicated by a
blue star in fig. 1b, left panel) has a lower evolutionary dis-
tance to the query than the closest sequence displaying A at i
(green star). The S-to-A substitution at i systematically implies
a G-to-V mutation at another position j, whereas the S-to-T
substitution does not.

Independent Contribution (PEInd)
This contribution focuses only on the position where the
mutation occurs. Hence, the effect of a substitution X-to-Y
at positions i will be estimated as

PEIndðYiÞ ¼ � log
maxð1; jSYi

jÞ
jSXi
j

� �
; (7)

where jSXi
j � 1 since at least the query sequence q displays X

at position i. The value 1 in the numerator serves as a pseudo-
count in case the mutation of interest U is not observed in the
alignment and thus jSUi

j ¼ 0. According to this model, the
fewer sequences displaying the mutation, the more deleteri-
ous the mutation, for a given position.

Normalized Predicted Effects: Comparison of
Mutations Occurring at Different Positions
The matrix of predicted effects (fig. 1c) enables comparing the
19 possible substitutions at each position in the query
sequences. To be able to compare substitutions at different
positions, we proceed through a normalization step. The nor-
malized predicted effect (NPE) of a mutation X-to-Y at posi-
tion i is expressed as

NPEðYiÞ ¼ TJETðiÞ � PEðYiÞ: (8)

If position i is highly conserved, then its TJET(i) value will be
close to one and the predicted effects at that position will
remain unchanged. By contrast, if position i is lowly con-
served, then its TJET(i) value will be close to 0 and the pre-
dicted effects at that position will be largely reduced. Hence,
the normalization will result in highly conserved positions
being predicted as highly intolerant to mutations, whereas
any substitution at a poorly conserved position will have a
small effect. This is illustrated in figure 1c where one can see
that the predictions for the highly conserved positions

(columns highlighted by arrows in the NPE matrix) remain
essentially unchanged upon normalization, whereas the other
positions “whiten up.”

In the toy example pictured in figure 1a and b, the effect
predicted for mutation S-to-A at i is higher than that pre-
dicted for mutation G-to-V at j. And as one can observe, this
is explained by the closest sequence displaying A at position i
(indicated by a green star in fig. 1b, on the left) being further
away than the closest sequence displaying V at position
j (fig. 1b, on the right, orange star). However, since position
i is much less conserved than position j, the normalization
step will result in a large reduction of the effect predicted
for S-to-A at i, which will thus end up as less deleterious
than G-to-V at j.

We extended the global epistatic model to deal with com-
binations (pairs, triplets, etc.) of mutations. The NPE of a given
combination of p mutations is expressed as

NPEðY1; Y2; . . . ; YpÞ ¼
Xp

j¼1

NPEðYjÞ: (9)

Computational Complexity
Given an input alignment of N0 sequences, the method first
proceeds through a filtering step using various criteria to re-
tain N sequences. N is typically in the order of a few hundreds
or thousands. Then,

ffiffiffiffi
N
p

trees are built from
ffiffiffiffi
N
p

alignments
of

ffiffiffiffi
N
p

sequences to compute L evolutionary trace values, L
being the length of the query. To generate a full single-site
mutational landscape, the independent contribution requires
computing L� 20 amino acid frequencies. The epistatic con-
tribution requires computing all distances between the query
and the N0 sequences in the input alignment. Hence, in total L
� 21þN0 quantities need to be estimated. The independent
and epistatic contributions are linearly combined and the
computed predictions are finally multiplied by the evolution-
ary traces.

Parameters Setup
To determine the default value of a and the default reduced
amino acid alphabet scheme, we systematically computed
predictions for all values of a, ranging between 0 and 1 by
increments of 0.1, and for 164 reduced alphabets (see below
and supplementary table S2, Supplementary Material online).
For each combination (a, alphabet), we computed its mean
squared displacement from the best performing combina-
tion. Among the three combinations displaying the lowest
mean squared displacements, we chose the combination with
the lowest median squared displacement, namely a¼ 0.6 and
LW-I-7 as the alphabet scheme. To identify the model yielding
the best performance, for each experimental scan, the coef-
ficient a was varied between 0 and 1 by increments of 0.1, and
the 164 amino acid alphabets were systematically tested.

Experimental Data Sets and Input Alignments
To assess GEMME’s performance and compare it fairly with
several state-of-the-art methods, we considered the same ex-
perimental data and the same input alignments as those
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reported in the corresponding studies. Specifically, the exper-
imental measures determined by 41 deep mutational scans
were taken from Riesselman et al. (2018) (see Araya et al.
2012; Deng et al. 2012; McLaughlin et al. 2012; Jacquier
et al. 2013; Melamed et al. 2013; Roscoe et al. 2013; Starita
et al. 2013; Melnikov et al. 2014; Qi et al. 2014; Roscoe and
Bolon 2014; Aakre et al. 2015; Kitzman et al. 2015; Rockah-
Shmuel et al. 2015; Romero et al. 2015; Stiffler et al. 2015; Wu
et al. 2015; Doud and Bloom 2016; Mishra et al. 2016; Firnberg
et al. 2016 for details about each experiment). The input
alignments were also taken from Riesselman et al. (2018).
The 41 scans were performed across 34 full proteins, protein
domains or protein complexes. Among those, 38 scans com-
prise only single-site mutations and 3 scans comprise combi-
nations of mutations. Two scans are associated with two
different domains of the same protein (BRCA1), and one
scan is associated with a protein complex (toxin–antitoxin
complex). In the main text and figures, we report the perfor-
mance obtained against one measured phenotype from one
scan, for each protein. In case of multiple scans associated
with the same protein, we focus on the most recent one.
There is one exception, namely PABP, for which two scans
were retained because one deals with single-site mutations
and the other one with multiple mutations. The selected
measured phenotype is the one yielding the best agreement
with the predictions. All results for all measured phenotypes
from all scans are reported in supplementary table S1,
Supplementary Material online.

The experimental measures determined by seven low-
throughput experiments performed on gp160 from HIV
were taken from Louie et al. (2018) (see Anastassopoulou
et al. 2007; Lobritz et al. 2007; Kassa et al. 2009; Troyer et al.
2009; da Silva et al. 2010; Liu et al. 2013 for details about each
experiment). Each mutant within each experiment contain
between 1 and 46 mutations with respect to the query wild-
type sequence. The input sequence alignment (comprising
20,043 sequences coming from 1,918 patients, retrieved from
https://www.hiv.lanl.gov/) was also taken from Louie et al.
(2018). The experimental measures determined by two low-
throughput experiments performed on the HIV protease
were taken from Flynn et al. (2017) (see Chang and Torbett
2011; Henderson et al. 2012 for details about each experi-
ment). The measured phenotypes are melting temperature
(Chang and Torbett 2011) and replicative capacity
(Henderson et al. 2012). For each phenotype, Flynn et al.
(2017) mixed several experiments together and assessed their
performance against these mixtures. Aggregating the meas-
urements collated from different experiments is not ob-
vious, even if the measured phenotype is the same, due to
technical variations between the experiments (resulting
in batch effects). Consequently, we decided to apply
GEMME on the experiment comprising the largest num-
ber of measures, for each phenotype. Each mutant within
each experiment contain one or two mutations with re-
spect to the query wild-type sequence. The input align-
ment (comprising 5,610 drug-experienced sequences
from 4,604 patients, retrieved from https://www.hiv.lanl.
gov/) was also taken from Flynn et al. (2017).

Reduced Amino Acid Alphabets
A reduced alphabet is a clustering of amino acids based on
their relative similarity. We tested 164 different alphabet
schemes (Peterson et al. 2009), whose names and character-
istics are reported in supplementary table S3, Supplementary
Material online. They comprise between 2 and 19 letters. AB
schemes were defined based on the ability of standard meth-
ods to correctly predict secondary structure from the simpli-
fied sequences (Andersen and Brunak 2004). CB schemes
were produced by using the Miyazawa–Jernigan interaction
matrix (Miyazawa and Jernigan 1996) and a distance-based
clustering scheme (Cieplak et al. 2001). DSSP and GBMR
schemes were designed to maximally preserve structural in-
formation (Solis and Rackovsky 2000). HSDM and SDM
schemes were defined based on new substitution matrices
derived from structural alignments of proteins with low-
sequence identity (Prlic et al. 2000). LR is a 10-letter alphabet
intended to increase the sensitivity of protein alignment
searches (Landes and Risler 1994). LW-I and LW-NI schemes
were designed to preserve information in global sequence
alignments between a sequence and its reduced-alphabet
version (Li et al. 2003). Notice that LW-I and LW-NI are iden-
tical at the level of 2, 3, and 15–19 letters, and that CB and LW
are identical at the 2-letter level. LZ-MJ and LZ-BL were de-
fined based on the identification of deviations of pair fre-
quency counts from a random background, computed on
the Miyazawa–Jernigan and BLOSUM 50 matrices (Liu et al.
2002). ML schemes are based on the BLOSUM 50 substitution
matrix (Murphy et al. 2000). MM is a five-letter alphabet
based on the Johnson–Overington matrix (Johnson and
Overington 1993) which proved useful for aligning homolo-
gous sequences and assessing folds (Melo and Marti-Renom
2006). MS is a six-letter alphabet based upon intuition and a
study of the effects of disulfide bonds on protein folding
which suggested separating aliphatic hydrophobic and aro-
matic hydrophobic residues (Mirny and Shakhnovich 1999).
TD schemes are based on intuitive physicochemical consid-
erations (Thomas and Dill 1996). WW is a five-letter alphabet
derived from the Miyazawa–Jernigan matrix by preserving
maximal similarity between a reduced-alphabet version of
the matrix and the full 20� 20 matrix (Wang and Wang
1999).

Comparison of Performance
Predictions for DeepSequence and EVmutation were directly
taken from Riesselman et al. (2018). To evaluate and compare
performances, we used Spearman rank correlation coefficient
q as the primary metric. This choice was also made in previ-
ous studies (Figliuzzi et al. 2016; Hopf et al. 2017; Riesselman
et al. 2018) and is justified by the fact that we do not expect a
linear relationship between predicted and experimental val-
ues. For each high-throughput experiment, correlations were
computed on the set of mutations for which both experi-
mental measures and predictions from DeepSequence and
EVmutation were available. For the low-throughput experi-
ments, both individual and weighted average correlations
were computed. Weighted averages of individual Spearman
correlations are commonly used in meta-analysis (Field 2001)
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and allow accounting for inconsistencies between experi-
ments. The weighted average correlation �q of N experiments
is expressed as

�q ¼
PN

i¼1 niqiPN
i¼1 ni

; (10)

where qi is the correlation computed for the ith experiment
and ni is the number of measures in the ith experiment.

Comparison of Computing Times
To measure GEMME’s computing time, we ran the tool start-
ing from the input MSA and the result of the PSI-BLAST
search. Hence, for each protein, we measured the elapsed
(wall clock) time required to compute the conservation levels
and the predictions from all models (default, independent
and epistatic). The computation of the conservation levels
was realized by running one iteration of JET2. The resulting
matrices of predicted mutational effects were very similar
(99.6 6 0.4% Pearson correlation coefficient on average) to
those obtained when running ten iterations of JET2 and
retaining the maximum conservation level over the ten
runs. EVmutation’s code was downloaded from https://
github.com/debbiemarkslab/EVmutation and https://github.
com/debbiemarkslab/plmc. For each protein, we measured
the elapsed (wall clock) time required to compute the pair-
wise couplings and the predictions from both the indepen-
dent and epistatic models. The same input MSAs, taken from
Riesselman et al. (2018), were given to GEMME and
EVmutation. In these alignments, some positions are flagged
because they are highly gapped. GEMME considered all posi-
tions whereas EVmutation disregarded the flagged ones.
EVmutation also disregarded highly gapped sequences. The
numbers of positions and sequences considered by each tool
are reported in supplementary table S3, Supplementary
Material online. Calculations were realized on a single-core
processor Intel Xeon E5-2630 v4 at 2.20 GHz. DeepSequence’s
code was downloaded from https://github.com/debbiemark-
slab/DeepSequence. We ran the tool to train one model on
the input MSA for the b-lactamase and compute the pre-
dictions. The calculation was realized on a NVIDIA TITAN Xp
graphics card. We tried and ran the tool on a single-core
processor but it produced an error.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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