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Background
Disease ontologies are used for annotation, integration and analysis of biological data, 
and knowledge graph construction. The range and diversity of disease ontologies are 
high due to various specific areas they are used in, e.g. medical practice, rare disease 
domain, biological experiments and biobanks. To build a biomedical knowledge graph, 
we integrate data from different databases that may use different disease ontologies and 
from publications where authors also have their preferred ontologies. The following sen-
tence can describe the data integration challenge: one disease—multiple disease terms 
(IDs) and hierarchies originating from different disease ontologies.

There are two parts to the challenge: firstly, we require matches between different dis-
ease ontologies; secondly, we need a system that can exploit this matching, e.g. perform 
data queries that can collect data from the desired disease hierarchy, in order to map 
one ontology to another. Ontological matching is a separate research area with a num-
ber of findings and approaches [1–3]. We used cross-reference information (ontological 
matching results) in disease ontologies to collect matchings and curation to achieve the 
atomicity of the mappings needed for this project. We used Grakn logical reasoning to 
solve the second challenge: switching between different ontologies and their hierarchies 
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to integrate data and retrieve a particular disease domain view onto the disease of 
interest.

There are two conventional approaches to data integration: “data factory”, where the 
data is integrated before ingestion into the knowledge graph and data integration on the 
fly, where the data is integrated directly inside the knowledge graph. We used a com-
bined approach in this work—disease ontology data is pre-prepared using R scripts 
before loading. Simultaneously, we used a database schema that supports ad-hoc data 
integration, leading to flexible data loading and reasoning. We are not changing the dis-
ease ontology data per se or factoring the data to use one specific ontology; rather, we 
combine existing information and focus on exact matching terms, leaving the data inte-
gration task to the database. The keyword here is flexibility: a user can easily change data 
prepared for loading, focusing on a disease area of interest and adding more ontologies, 
including custom ones.

Implementation
Data preparation

We created a matching file using R scripts to extract cross-referencing data from ontolo-
gies of interest.

There are 21,696 records in the matching file (./data/prepared_ontologies/cross-ref-
erence.tsv). We used Bioportal [4] and Ontology Lookup Service [5] to collect up-to-
date cross-reference information from the following ontologies: MeSH [6], UMLS [7], 
EFO [8], NCIT [9], OMIM [10, 11], DOID [12], Orphanet [13], HP [14], MONDO [15] 
and ICD-10 [16]. These particular disease ontologies were chosen pragmatically—EFO, 
Orphanet, DOID, HP, NCIT, OMIM and MONDO are broadly used in biomedical data-
bases and archives. MeSH is used for indexing articles in PubMed [17] and as a result, 
is the primary source of disease referencing in document retrieval systems and Natural 
Language Processing (NLP) pipelines [18–20]. UMLS was included as a single source of 
cross-referencing for some of the disease ontologies. We added ICD-10 for genomic data 
integration from UK Biobank [21]. To build the foundation for biomedical data integra-
tion, we are interested in atomic matching between disease ontology terms. Formally, 
we define ontological matching as a triple m =< tid , tj , s >, s ∈ {0, 1} , where tid is the 
preferred disease term from the ontology that defines the disease label, s is the binary 
similarity degree. An atomic mapping in this matching is a pair µ =< tid , tj > , where 
tid and tj are homogeneous ontology terms from the list of ontologies mentioned above. 
For example, the record from cross referencing file for “chronic kidney disease” (Fig. 1) 
shows that the disease term has tid = “MONDO_0005300” and defines 6 matching pairs: 
µ =< tid , tj > , where  tj ∈ {MeSH:“D007676”, UMLS:”C0022661”, EFO: “EFO_0003884”, 
NCIT:”NCIT_C80078”, DOID: “DOID_784”, ICD-10: “N18.9”}. This induces 6 triples of 
the form < tid , tj , 1 > in our ontological matching, all other tj will map to. The MONDO 
ontology is chosen to represent preferred terms since it covers most of the terms from 
other disease ontologies. However, the preferred ontology can be changed by user pref-
erence. We chose to only consider exact matching terms rather than close matches to 
reduce noise and prevent problems in the ontology merging. We do not lose too much 
information as several Ontologies have more exact matches than close matches.
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In the last few years, ontological matching quality and amount of cross-referenc-
ing data present in disease ontologies has improved significantly. However, there are 
references to obsolete terms, absence of matching, one source for ontological match-
ing (UMLS in the case of NCIT), ontological matching to parental terms instead 
of atomic matching (a complex type of matching) and other issues. By combining 
multiple ontologies and their cross-referencing information, we validated cross-ref-
erences, found discrepancies and/or matchings that are not atomic and fixed them. 
There are two types of discrepancies: reference to non-existing term (ontology A 
references ontology B where the referenced term is obsolete); reference to all hier-
archical levels (ontology A term a references ontology B terms b, b1, b2, …, bn where 
b1, …, bn are children of b). In the latter case, nothing is incorrect from an ontology 
A perspective. However, it is not an atomic reference, and for our purpose of atomic 
matching, we had to fix this type of reference (ontology A term a is referenced to 
ontology B term b).

Changes were done only on the level of the cross-reference file that is available on 
Github repository. The user of the software can change cross-references if needed. 
The only principle that should be held in place for the intended functionality is the 
atomicity of the matchings.

We believe that disease cross-references in a flat file that is easily accessible and 
editable will improve ontological matching in particular disease areas. Disease 
ontology hierarchies is another source of data for the project. We use ontologies 
from Bioportal and R scripts to extract relevant hierarchical information based on 
the matching file described above. The GitHub repository explains how to repeat the 
data preparation process. Table  1 describes in detail individual ontology contribu-
tions into cross-referencing and unique terms.

Fig. 1  The disease ontology basis for the knowledge graph. Data Preparation: ontology matching presented 
as cross-reference flat-file and ontological hierarchies are created using Bioportal and Ontology Lookup 
Service data processed by R scripts. Chronic kidney disease and its presentation from six disease ontologies 
perspective are shown as a diagram to give an example of a cross-reference file record. Grakn Knowledge 
Base: data is loaded into the database from data files with python scripts
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Grakn knowledge base

We provide a Grakn schema with logical rules to make ontological inferences and a 
preloaded Grakn database. Example queries and use cases are available together with load-
ing scripts written in python to rebuild and extend the database. Figure 2 shows a schema 
diagram for a disease node with multiple attributes for ontological terms. The Grakn data-
base was chosen due to its flexible schema and its logical reasoning capabilities, allowing 
us to switch between different disease ontologies with ease or to incorporate all available 
ontological hierarchies together for an overall view of a particular disease. Grakn’s logical 
reasoning engine supports transitivity rules essential for ontological matching [22]. From 
a practical perspective, transitivity rules enable access to all the children of a particular dis-
ease term in a straightforward query and the use of multiple disease ontology hierarchies 
together, e.g. to get all subordinate diseases for a particular disease considering all available 
ontologies.

Results
Our results consist of a Grakn knowledge base, schema and loading scripts that allow the 
building of a biomedical knowledge graph foundation—creating a practical solution that 
allows easier data integration from NLP pipelines and a variety of biomedical databases. 
This knowledge graph solution enables comprehensive exploration and interaction with 
disease ontologies. It visualises disease ontologies, allowing query of all sub-classes of a par-
ticular term regardless of the ontology using one command, facilitating switching between 
different ontologies, and remapping one ontology terms, e.g. MeSH, to the hierarchical 
structure of another ontology (e.g. MONDO).

Table 1  Individual ontology contribution into cross-referencing and unique terms

Column "Number of terms only in this ontology" shows the number of unique terms from the ontology (when there are no 
cross-references in other ontologies); column "number of preferred terms" presents the number of terms that were used 
as the main entries (while other ontologies provided cross-referencing terms), column "number of references" sums up a 
number of unique terms and cross-references found in the ontology, the last column "number of unique references" shows 
the number of not repeated references

Ontology/counts # Terms only in this 
ontology

# Preferred terms # References # Unique 
references

MESH 0 0 8328 8251

UMLS 0 0 17,648 17,591

EFO 7 70 4930 4930

NCIT 0 24 7067 7067

OMIM 0 0 8056 8032

DOID 0 5 9001 9001

Orphanet 1 69 9066 9066

HP 80 75 652 652

MONDO 109 21,453 21,482 21,482

ICD10 0 0 11,271 4103

Total 1186 21,696 97,501
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After loading over prepared data, obtaining all sub-classes of "chronic kidney disease" 

from the available hierarchies of disease ontologies is now trivial using Graql query:
Multiple other common ontological problems are solved, and examples are available in 

the Github repository.
We also provide data preparation R scripts to process disease ontology data in a for-

mat understandable for the Grakn knowledge base, together with pre-processed data 
files for MONDO, DOID, EFO, HP, MESH, Orphanet, UMLS, ICD-10 and NCIT disease 
ontologies.

Fig. 2  Grakn Knowledge Base: part of the schema diagram shows a disease node with multiple attributes for 
ontological terms. Grakn schema with all nodes, attributes and logical rules is  available at Github repository
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Conclusions
Disease ontologies for knowledge graphs is a knowledge base solution that uses Grakn 
core with its logical inference and disease ontologies cross-references to allow easy 
switching between ontology hierarchies for data integration purpose. This software 
makes it straightforward to run common ontological queries. It is relatively easy to 
add new ontologies due to the python loading scripts, and the Grakn reasoning rules 
are easy to extend. We hope this software will make it easier for bioinformaticians to 
integrate data that uses multiple ontologies.

Availability and requirements
Project name: Disease_ontologies_for_knowledge_graphs; Project home page: 
https://​github.​com/​natac​ourby/​Disea​se_​ontol​ogies_​for_​knowl​edge_​graphs; Oper-
ating system(s): Platform independent; Programming language: Python, R; Other 
requirements: The community edition of Grakn Core License: Affero GPL v3; Any 
restrictions to use by non-academics: no.
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MeSH: Medical subject headings; UMLS: The Unified Medical Language System; EFO: Experimental Factor Ontology; NCIT: 
NCI Thesaurus; OMIM: Online Mendelian Inheritance in Man; DOID: Human Disease Ontology; Orphanet: Orphanet Rare 
Disease Ontology; HP: Human Phenotype Ontology; MONDO: Mondo Disease Ontology; ICD-10: International Statistical 
Classification of Diseases and Related Health Problems: tenth revision.
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