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Abstract

The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While 

resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning 

antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. 

Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid 

catabolon up-regulation. Knocking out part of the phenylacetic acid catabolon or an apparent 

penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A 

hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-

lactamase penicillin product. To test the generality of this strategy, an E. coli strain was engineered 

to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using 

penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow for 
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bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes 

with industrial utility.

Introduction

The discovery of antibiotics and their development into an armamentarium against bacterial 

infections has been one of the great public health success stories of the last century. 

However, increasing antibiotic resistance in pathogenic bacteria with concomitant 

decreasing development of new antibiotics threatens a return to the dark ages of the pre-

antibiotic era1. Bacterial resistance to antibiotics is ancient2 and ubiquitous in the 

environment3,4. Moreover, anthropogenic antibiotic use has led to a measurable increase in 

carriage of antibiotic resistance genes in the environment with the potential to spread to the 

clinic5.

The ultimate fate of antibiotics in the environment, and what role resistance plays in their 

mineralization, is unknown. Most antibiotics are natural products, or derivatives thereof, 

originally isolated from soil bacteria6. Given their soil origin, and the lack of environmental 

accumulation of these organic compounds, it is natural that some antibiotics are consumed 

by soil bacteria as carbon or nitrogen sources. This was recognized soon after the mass 

anthropogenic introduction of antibiotics by studies demonstrating the ability of soil bacteria 

to mineralize various natural antibiotics including streptomycin7, penicillin G (also known 

as benzylpenicillin, referred to hereafter simply as penicillin)8, and chloramphenicol9. In the 

literature, utilization of penicillin has most often focused on Pseudomonas strains, with 

conflicting evidence for what part of the molecule is used as a carbon source10–12, although 

catabolism of penicillins in other organisms, such as Klebsiella pneumoniae, has been 

reported as well13. Little is known about the pathways and enzymes utilized during 

catabolism, including whether β-lactamase activity is required8,11,14. More recently, the list 

of antibiotics capable of sustaining bacterial growth has expanded substantially, as has the 

catalog of bacterial species capable of subsisting on antibiotics14–19. However, controversy 

still remains over the characterization of resistant, but not metabolizing, versus subsistent 

growth phenotypes. To date, no specific genes or pathways have been identified that enable 

bacteria to use antibiotics as a sole carbon source16,20.

Here we provide evidence for a pathway for β-lactam antibiotic catabolism in which 

amidases, found to be distinct from known penicillin amidase enzymes, link resistance 

enzymes to central metabolism. We demonstrate that this strategy can be transferred to E. 
coli, enabling it to grow using penicillin as its sole carbon source. These findings have 

important implications for antibiotic ecology, bioremediation of antibiotic contaminated 

sites, and the synthesis of semi-synthetic antibiotics.

Results

Proteobacteria using β-lactams as a sole carbon source

Four Proteobacteria soil isolates of the Burkholderia, Pseudomonas, and Pandoreae genera, 

termed ABC02, ABC07, ABC08, and ABC10 (Supplementary Table 1; ABC stands for 
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antibiotic catabolizer) were previously isolated from soil by growth in minimal media with 

penicillin or carbenicillin as carbon sources and were found to be extensively antibiotic-

resistant15. To confirm the stability of the antibiotic catabolism phenotypes after extended 

storage at −80°C, and to control for the unlikely possibility that growth in previous studies 

was affected by trace amounts of EDTA, we cultured each strain with aeration in M9 media 

containing 0 g/l, 0.25 g/l, 0.5 g/l, or 1 g/l penicillin as sole carbon source at 25°C and 

measured culture density over the course of one week (Fig. 1). Each strain grew in a dose-

dependent manner, with 1 g/l penicillin supporting the most robust growth.

ABC strains share penicillin-responsive gene regulation

In order to elucidate the enzymes and pathways utilized during penicillin catabolism, we 

annotated draft genomes21 from all four β-lactam catabolizing strains. In all four genomes 

we annotated multiple chromosomal β-lactamase genes, including genes annotated as 

belonging to class A, class C, and class D β-lactamase families (Supplementary Table 2), as 

well as complete or near-complete phenylacetic acid catabolic pathways22,23. The four ABC 

strains are able to grow in rich media in the presence of high concentrations (1 g/l) of a 

variety of β-lactam antibiotics including penicillins (all four ABC strains), cephalosporins 

(ABC07, ABC08, and ABC10), monobactams (ABC02, ABC08, and ABC10), and, to a 

limited extent, carbapenems (ABC07, ABC08, and ABC10) (Supplementary Fig. 1).

These findings led us to hypothesize that catabolism of penicillin proceeds through 

canonical hydrolysis of the β-lactam ring to produce benzylpenicilloic acid24,25 which is 

then processed downstream to central metabolism. We tested this hypothesis using a 

comparative transcriptomic approach, wherein the four ABC strains were independently 

cultured in minimal media with a variety of single carbon sources, and their whole-cell gene 

expression levels were measured and compared under these conditions via RNA-seq. In 

order to choose substrates with known paths to central metabolism, we initially tested the 

ability of each of the four strains to utilize 190 distinct carbon sources in a high-throughput 

phenotypic microarray. Each strain grew on a unique subset of carbon sources 

(Supplementary Fig. 2), and each strain was cultured with penicillin or a carbon source that 

feeds directly into central metabolism (glucose for ABC07 and histidine for ABC02, 

ABC08, and ABC10). Following RNA-seq, we analyzed the transcriptome for differentially 

expressed genes under these two conditions (see Supplementary Dataset 1 for counts and 

heat map representation of data). Remarkably, the RNA-seq data suggest that all four strains 

may utilize a conserved strategy for antibiotic catabolism, consisting of up-regulation of 

Ambler class A, C, and D β-lactamases23 (Supplementary Table 3), amidases (syntenic with 

a β-lactamase in strains ABC07, ABC08, and ABC10), and genes involved in phenylacetic 

acid utilization (Fig. 2a). Interestingly, in the phenotypic microarray assay, all four strains 

showed robust growth on aromatic substrates, especially phenylalanine and derivatives of 

phenylacetic acid (Supplementary Fig. 2).

Notably, the side chain of penicillin (the non-β-lactam region) consists of phenylacetamide, 

suggesting that growth on penicillin in the ABC strains might proceed through metabolism 

of this part of the molecule. In order to test this proposal, we performed additional RNA-seq 

experiments with the Pseudomonas strain ABC07 grown on benzylpenicilloic acid (the 
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product of β-lactamase cleavage of penicillin) or phenylacetic acid as sole carbon sources, in 

addition to penicillin and glucose as before (Fig. 2b). These data reveal an apparent 

transcriptional architecture, beginning with a β-lactamase preferentially up-regulated in 

response to penicillin (compared to glucose: ~65-fold with adjusted p-value 1.6×10−91). This 

is followed by expression of a putative penicillin utilization operon (put) consisting of four 

ORFs that appear to be responsive to both penicillin and benzylpenicilloic acid, but not 

phenylacetic acid: a β-lactamase (~6-fold with adjusted p value 2.2×10−8 compared to 

glucose), a major facilitator family importer (~122-fold with adjusted p value 2.5×10−128 

compared to glucose), and two amidases (termed put1 and put2 here; respectively ~122-fold 

with adjusted p value 1.3×10−131, and ~240-fold with adjusted p value 1.0×10−126 compared 

to glucose). Finally, the pathway is apparently completed by up-regulation of the 

phenylacetic acid catabolon (paa) in response to penicillin, benzylpenicilloic acid, and 

phenylacetic acid (Fig. 2b). This architecture suggests a conserved catabolic pathway 

consisting of the following steps: (i) detoxification of penicillin by hydrolysis of the β-

lactam ring by a β-lactamase, a canonical β-lactam antibiotic resistance enzyme, (ii) import 

of the benzylpenicilloic acid product and/or hydrolysis of the amide bond to free the carbon-

rich phenylacetic acid side chain, and (iii) processing of phenylacetic acid into acetyl- and 

succinyl-CoA via the phenylacetic acid catabolon (Fig. 2c).

Growth on penicillin requires paa and put operons

To determine the necessity of the phenylacetic acid catabolon and the put operon in strain 

ABC07 (Fig. 2), we constructed knock-out strains of ABC07 in which the paaF gene 

(phenylacetyl-CoA ligase, responsible for the first step of phenylacetic acid catabolism22) 

and the entire put operon (consisting of a β-lactamase, put2, mfs, and put1) were each 

replaced chromosomally26 with a tetA open reading frame. These strains, alongside wild-

type ABC07, were assayed for their ability to grow in M9 media with 0.4% glucose, 

phenylacetic acid, or penicillin as their sole carbon sources. In support of our hypothesis, 

loss of paaF resulted in a strain that, while still able to grow well with glucose (Fig. 3a), was 

no longer able to sustain growth on phenylacetic acid (Figure 3b). More interestingly, the 

paaF strain also showed lack of growth using penicillin as sole carbon source, indicating that 

penicillin catabolism flows through phenylacetic acid (Fig. 3c). Contrasting this is the 

phenotype of the put knockout, which can grow using either glucose or phenylacetic acid as 

its carbon source (Fig. 3a,b), indicating little if any role for these four genes in central 

metabolism or growth on aromatic substrates. Notably though, loss of the put operon results 

in complete loss of penicillin catabolism (Fig. 3c), indicating the necessity of these genes, 

along with the paa catabolon, for the antibiotic catabolism phenotype.

Catabolism of the phenylacetamide side chain

Because we found ABC07 to be resistant to a variety of additional β-lactam antibiotics at 1 

g/l (Supplementary Fig. 1), we next tested the ability of these compounds, as well as 

penicillin degradation products, to support growth of ABC07 strains in M9 media as carbon 

sources at 1 g/l (Supplementary Fig. 3). Of the new carbon sources tested, only one, 

benzylpenicilloic acid, supported growth of ABC07, but neither the paaF nor the put mutants 

were capable of growth using it as sole carbon source (Supplementary Fig. 3b), mirroring 

our observations with penicillin (Fig. 3c and Supplementary Fig. 3a). Interestingly, while 
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phenylacetic acid supports growth of ABC07 and the put strain (Fig. 3b and Supplementary 

Fig. 3c) the other half of the penicillin structure, the 6-aminopenicillanic acid β-lactam core, 

does not (Supplementary Fig. 3d), supporting the hypothesis that in ABC07 penicillin 

catabolism runs almost solely through the phenylacetamide side chain. Further reinforcing 

this is our observation that none of the ABC07 strains are capable of growth using other β-

lactam antibiotics including other penicillin-class drugs (carbenicillin or ampicillin, 

Supplementary Fig. 3e,f) or the cephalosporin cefuroxime (Supplementary Fig. 3g).

The put operon includes a benzylpenicilloic acid amidase

The presence of amidases and hydrolases that are upregulated by penicillin and 

benzylpenicilloic acid may suggest the involvement of penicillin amidase (also known as 

penicillin acylase) enzymes from the N-terminal nucleophile hydrolase enzyme family that 

are used industrially to hydrolyze the phenylacetamide side chain of penicillin from the β-

lactam ring to produce 6-aminopenicillanic acid in the manufacture of semi-synthetic β-

lactam antibiotics27. We constructed a phylogenetic tree using the ABC strain amidase/

hydrolase sequences, their nearest neighbors in NCBI’s NR database28, and canonical 

penicillin amidases (EC 3.5.11) downloaded from UniProt29 (Supplementary Fig. 4). The 

ABC proteins do not appear to cluster with the canonical penicillin amidases and instead 

group with amidases, amidohydrolases, or hydrolases of unknown specificity 

(Supplementary Fig. 4).

Because of their limited annotation, catabolic necessity in ABC07 (Fig. 3 and 

Supplementary Fig. 3), and transcriptional response to penicillin and benzylpenicilloic acid 

(Fig. 2b), we chose to study the gene products of put1 and put2 in greater detail following 

heterologous expression in E. coli and purification (Supplementary Fig. 5a). We assayed the 

resulting purified enzymes for amidase activity by incubation with two chromogenic amide 

substrates: 6-nitro-3-(phenylacetamido)-benzoic acid (NIPAB) and p-nitroacetanilide. Both 

substrates have previously been validated as model chromogenic substrates for penicillin30 

(NIPAB) or generic amides31 (p-nitroacetanilide). For comparison, we also carried out 

reactions using commercially available E. coli penicillin amidase enzyme. We found Put1 

and Put2 to be functionally distinct from penicillin amidase in their inability to hydrolyze 

the amide bond in NIPAB while showing activity with p-nitroacetanilide, with penicillin 

amidase demonstrating the opposite activities (Supplementary Fig. 5b,c). Notably, 

hydrolysis of the amide bonds in these molecules is functionally equivalent to the hydrolysis 

of the amide bonds found in penicillin or benzylpenicilloic acid that would result in release 

of phenylacetic acid.

We next compared the Michaelis-Menten dynamics of Put1, due to its apparent greater 

activity, and penicillin amidase across four additional substrates including an additional 

penicillin analog32 (Supplementary Fig. 5d), and three potential peptidase substrates 

(Supplementary Fig. 5e–g). These assays reveal limited functional overlap between E. coli 
penicillin amidase and Put1. We therefor undertook a more detailed bioinformatic 

examination of Put1 in comparison to penicillin amidases. Analysis of the amino acid 

sequence of Put1 suggests that it lacks a signal peptide found in many penicillin amidases, 

and Put1 similarly lacks two critical active site residues found in penicillin amidase and N-
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terminal nucleophile hydrolase family enzymes: a catalytic serine/threonine/cysteine and an 

asparagine residue in the oxyanion hole33–35 (Supplementary Fig. 6a). Because structure can 

sometimes more accurately predict enzyme classification than sequence alone (notably in 

the case of β-lactamases23) we compared the predicted homology-based three-dimensional 

structure of Put1 to the published crystal structure of E. coli penicillin amidase. While the 

Put1 alignment to E. coli penicillin amidase reveals no substantial overlap (Supplementary 

Fig. 6b), a comparison alignment of three authentic penicillin amidase structures shows 

notable conservation (Supplementary Fig. 6c). Together these findings indicate that Put1 is 

not a penicillin amidase, and is instead likely an amidase with non-specific activity.

In order to directly evaluate the ability of Put1 to hydrolyze penicillin or benzylpenicilloic 

acid, as opposed to using chromogenic analogs (Supplementary Fig. 5), we developed a pH-

shift kinetic assay36 to compensate for the fact that these two substrates show limited 

spectroscopic changes during hydrolysis and are, in effect, invisible substrates. While other 

methods to measure β-lactam hydrolysis rely on specialized instruments such as pH-stat 

titrators37,38 or indirect measurement and complex modeling using chromogenic competing 

substrates39, the pH-shift assay can be monitored on a standard UV-vis spectrometer and is 

directly linked to substrate conversion. Using this assay, we verified that both E. coli 
penicillin amidase and commercial B. cereus β-lactamase enzymes exhibit Michaelis-

Menten kinetics with penicillin as a substrate, as expected. However, we did not observe any 

substantial activity during incubation of Put1 with penicillin (Fig. 4a), nor did a follow-up 

liquid chromatography tandem mass spectrometry (LCMS) assay detect any substantial loss 

of penicillin in a separate reaction (Supplementary Fig. 7a). Notably, the hydrolysis of either 

the phenylacetamide or β-lactam bonds in penicillin would result in formation of a 

carboxylic acid and a change in signal in the pH-shift assay. In contrast, when both Put1 and 

E. coli penicillin amidase were incubated with benzylpenicilloic acid as a substrate, we 

observed Michaelis-Menten kinetics (Fig. 4b). While the kinetics observed for penicillin 

amidase and β-lactamase with penicillin could represent the hydrolysis of either the 

phenylacetamido or β-lactam amide bonds, the only amide bond present in benzylpenicilloic 

acid is that of the phenylacetamido group, as the β-lactam amide bond is already hydrolyzed. 

An orthologous assay using the fluorescent derivitization reagent NBD-Cl similarly detected 

that a new amino group40 is revealed during incubation of Put1 with benzylpenicilloic acid 

but not penicillin (Supplementary Fig. 7b). These results are consistent with the hydrolysis 

of benzylpenicilloic acid to form phenylacetic acid. The lack of activity of Put1 with 

penicillin further supports our hypothesis that Put1 acts downstream of a β-lactamase.

Finally, we directly confirmed benzylpenicilloic acid hydrolysis by Put1 using LCMS. In 
vitro reactions containing benzylpenicilloic acid and no enzyme, Put1, or penicillin amidase 

were quenched at three time-points and analyzed for loss of benzylpenicilloic acid (Fig. 4c) 

(the reaction product, phenylacetic acid, is not detectable by this LCMS method). The Put1 

reactions showed substantial benzylpenicilloic acid elimination (Fig. 4c,d), confirming the 

hydrolysis indicated in the pH-shift (Fig. 4b) and NBD-Cl assays (Supplementary Fig. 7b). 

These results are in concordance with our hypothesized penicillin catabolic pathway in 

ABC07, with Put1 acting on benzylpenicilloic acid rather than penicillin, and may also 

explain the phenotypic and transcriptional data from ABC02, ABC08, and ABC10 (Fig. 2a). 

In this pathway, the canonical β-lactamase antibiotic resistance enzyme inactivates penicillin 
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to produce benzylpenicilloic acid, which in turn acts as substrate for promiscuous amidase 

enzymes such as Put1. This results in the release of phenylacetic acid, which is processed by 

the paa catabolon to produce acetyl- and succinyl-CoA, which feed into central metabolism.

E. coli expressing put operon catabolizes penicillinoids

Based on our characterization of the β-lactam catabolic pathways of four soil bacteria, it 

appears that subsistence on penicillin as a carbon source requires penicillin resistance 

through β-lactamase activity, the paa catabolon, and an amidase to link these two functions 

metabolically (Fig. 2c). We set out to test this hypothesis first by engineering an E. coli 
strain to use penicillin as its sole carbon source. We selected the strain E. coli W (ATCC 

9637) due to the presence of a complete and functional paa catabolon in this lineage41 and 

its use industrially as a source of penicillin amidase27. We confirmed the ability of this strain 

to catabolize phenylacetic acid in M9 media and cloned an E. coli penicillin amidase gene 

(pga)42 with truncated signal peptide (necessary due to toxicity issues under constitutive 

expression) into a β-lactamase-expressing vector. We found that carriage of this plasmid was 

sufficient to confer the ability to subsist on penicillin as a sole carbon source in a dose-

dependent manner (Fig. 5a). Although the pga gene expressed on the vector originates from 

the E. coli W chromosome, chromosomal expression is insufficient to allow for growth 

during the time frame investigated as demonstrated by the lack of growth by the vector 

control strain (Fig. 5a). The importance of amidase activity for penicillin catabolism is 

further underscored by loss of this phenotype in the pga over-expression strain during 

growth at 37°C rather than 28°C as a result of inhibition of penicillin amidase post-

translational modifications at 37°C27 (Fig. 5b). This experiment demonstrates the potential 

utility of engineering bacteria for bioremediation of antibiotics.

With this proof of principle in hand we set out to test the ability of the put operon to confer 

increased penicillinoid (i.e. penicillin and its degradation products) catabolism. When 

expressed in E. coli W, the put operon was not sufficient to give substantially better growth 

on penicillin compared to vector controls. This is perhaps unsurprising, as penicillin 

catabolism in ABC07 requires greater than 100-fold over-expression of the put operon (Fig. 

2a,b), presumably to augment the low non-specific amidase activity, and it is unclear how 

levels reached in E. coli might compare. Furthermore, during purification of Put1 from 

heterologous expression in E. coli we found that this enzyme in particular shows limited 

stability, with the bulk of the enzyme localizing to the insoluble fraction of cell extracts 

(Supplementary Fig. 8), indicating poor solubility/compatibility in E. coli. However, we did 

observe that benzylpenicilloic acid as a carbon source can support growth in the pga over-

expressing E. coli strain, and that this growth occurs after a shorter lag-phase compared to 

growth on penicillin (Fig. 5a,c). When we assayed growth of both engineered E. coli strains 

using benzylpenicilloic acid as a carbon source we found that expression of the put operon 

was sufficient to confer a significant improvement in growth compared to its vector control 

measured both by lag time (Fig. 5c) and culture density reached (Fig. 5d). These results 

confirm the validity of our hypothesized pathway as well as a role for the put operon in this 

pathway.
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Discussion

Here we describe the first characterization of an antibiotic catabolism pathway and find it to 

rely on a novel amidase activity to link β-lactamase and phenylacetic acid catabolism 

activities (Fig. 2). In strain ABC07, a penicillin utilization operon, put, is regulated by 

penicillin and its β-lactamase product benzylpenicilloic acid (Fig. 2b) and is necessary for 

growth on penicillin alongside the phenylacetic acid catabolon (Fig. 3 and Supplementary 

Fig. 3). The put operon encodes an enzyme with promiscuous amidase activity 

(Supplementary Fig. 5) that degrades benzylpenicilloic acid via hydrolysis of the amide 

bond (Fig. 4b–d and Supplementary Fig. 7b). We applied this knowledge to design two 

strains of E. coli that can consume penicillin as a sole carbon source (Fig. 5). These results 

led us to develop two related models for penicillin catabolism in bacteria (Fig. 6). The first 

model (Fig. 6a) describes our hypothesis for penicillin catabolism in strain ABC07. In this 

model, penicillin enters the periplasm through outer membrane porins where the β-lactam 

ring is hydrolyzed by β-lactamases to produce benzylpenicilloic acid. Both Put1 and Put2 

lack predicted secretion signals43 and are likely localized to the cytoplasm, where they can 

hydrolyze the amide bond of benzylpenicilloic acid to produce phenylacetic acid and penicic 

acid. Because there are no known benzylpenicilloic acid inner membrane transporters, we 

propose that in ABC07 the MFS import pump located in the put operon (Fig. 2a) may fulfill 

this role. Finally, phenylacetic acid feeds into central metabolism through the phenylacetic 

acid catabolon. In our second model (Fig. 6b) we propose a modified route for penicillin 

catabolism in our engineered E. coli strain. In this model, both β-lactamase and penicillin 

amidase are secreted into the periplasm where phenylacetic acid is produced by penicillin 

amidase, either from penicillin or benzylpenicilloic acid. In this model, transport of 

phenylacetic acid into the cytoplasm is mediated by the PaaL permease, part of the 

phenylacetic acid catabolon.

These two models contrast in their requirements for a β-lactamase enzyme. In the pga over-

expressing E. coli model, the β-lactamase acts as a resistance gene only, as E. coli penicillin 

amidase can use either penicillin or benzylpenicilloic acid as substrates (Fig. 4 and 

Supplementary Fig. 7a, see also refs. 8,38). In this case, resistance and catabolism could 

theoretically be decoupled through alternative means of resistance. In contrast, Put1 appears 

to only act on benzylpenicilloic acid (Fig. 4 and Supplementary Fig. 7) such that in ABC07, 

and potentially other antibiotic consuming bacteria, β-lactamases may act bifunctionally in 

resistance and catabolism pathways. This is supported by the presence of penicillin-

responsive β-lactamases syntenic to amidases and hydrolases on the chromosomes of 

ABC07, ABC08, and ABC10 (Fig. 2a). Based on its slow kinetics, it does not appear that 

Put1 uses penicillin or benzylpenicilloic acid as its natural substrate (Fig. 4b), but the 

proximity of the put1 and put2 genes to a β-lactamase gene may allow them to be 

sufficiently up-regulated in the presence of penicillin (Fig. 2b) to overcome catalytic 

inefficiencies. Notably, because they do not act on penicillin, the low catalytic efficiency of 

Put1 and Put2 does not endanger the host cell as they are not called upon to act as resistance 

genes. Synteny of β-lactamases with amidases may therefore present an advantageous pre-

condition for penicillin catabolism in the context of a genome containing a phenylacetic acid 

catabolic pathway. We therefore searched the local genomic context of a library of 
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functionally validated β-lactamase genes for the presence of amidases or genes with related 

functions. Our analysis found that 2.5% of β-lactamase genes are syntenic (within ca. 1.5 

kb) to potential amidases. These pairings fulfill two of three conditions hypothesized in our 

model for ABC07 (Fig. 6a). A recent genome survey has found that the phenylacetic acid 

catabolon is present in ~16% of genomes22, implying the coincidence of all three conditions 

likely occurs in the soil and that the penicillin catabolizing phenotype is far from limited to 

the four strains analyzed. We propose that antibiotic inactivation followed by carbon source 

release through a promiscuous enzyme is likely employed by soil bacteria catabolizing other 

antibiotics as well. We predict that ongoing and future studies will shed further light on these 

activities.

Antibiotic resistance enzymes are known to be plentiful in soil habitats3, and it is only 

because of their medical exploitation that antibiotics are treated as privileged molecules not 

bound by the carbon cycle. Here we have provided ample evidence for the normality of 

antibiotics in this regard. We characterize a complete antibiotic catabolic pathway that 

uniquely provides a mechanistic connection between antibiotic producers, antibiotic 

resistance, and antibiotic catabolism. We have leveraged this mechanistic understanding to 

engineer E. coli strains that can catabolize penicillin and its degradation product as a sole 

carbon source. With limited further engineering these strains could be developed as tools for 

in situ bioremediation of antibiotic-contaminated soils or environments, such as those 

located near pharmaceutical manufacturers44. These environments are important drivers of 

antibiotic resistance development45, and their remediation could help prevent the spread of 

resistance. Of course, the benefits of any such bioremediation program would need to be 

weighed against the risk of releasing a genetically modified bacterium into the environment 

and potential spread of antibiotic resistance/degradation genes to other organisms. Finally, 

antibiotic-catabolizing enzymes have the potential to play an important industrial role in the 

production of next-generation antibiotics in the same way that the discovery of penicillin 

amidase spurred the development of semi-synthetic β-lactams through remodeling of natural 

penicillins. Characterization of hydrolytic enzymes responsible for the catabolism of other 

antibiotics, such as hypothetical glycosidases acting on aminoglycosides16, could catalyze 

an explosion of diverse semi-synthetic derivatives in other antibiotic classes. Antibiotic 

degradation may therefore paradoxically contribute to the development of the next 

generation of novel antibiotics.

Online Methods

Chemicals

For growth studies and enzymatic assays high purity penicillin G sodium salt (Sigma, 

P3032), (+)-6-aminopenicillanic acid (Sigma, A70909), phenylacetic acid (Sigma, 

W287806), and other antibiotics, were purchased. Dextro-(−)-benzylpenicilloic acid hydrate 

(Sigma, S341967) was purchased from the Sigma-Aldrich collection of rare and unique 

chemicals. p-Nitroacetanilide (Sigma, 130648), p-nitroaniline (Sigma, 185310), 6-nitro-3-

(phenylacetamido)benzoic acid (aka NIPAB, Pfaltz and Bauer, N10625), N-phenylacetyl-p-

aminobenzoate (Sigma, P8529), L-glutamate 1-(p-nitroaniline) (Sigma, 49622), L-glutamate 

γ-(p-nitroaniline) (Sigma, G1135) and Nα-benzoyl-DL-arginine p-nitroaniline (Sigma, 
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B4875) were purchased as enzyme substrates and standards. For the kinetics assays p-

nitrophenol (MP Biomedicals, 102461) and m-nitrophenol (Acros organics, 172300100) 

were purchased as indicators for monitoring of enzyme reaction kinetics in pH-shift assays. 

All other compounds and buffers used were of standard molecular biology grade.

Bacterial strains and growth conditions

Soil isolates and minimal media—Soil isolates ABC02, ABC07, ABC08, and ABC10 

were previously isolated by culturing with the antibiotics penicillin or carbenicillin as carbon 

sources and were maintained at −80°C as 15% glycerol stocks in single carbon source (SCS) 

minimal media (SCS media, see below) 15. Isolates were cultured with aeration (taken to be 

shaking at 220 rpm throughout unless otherwise specified) at 22°C in LB or M9 minimal 

media (M9 media, see below). Where appropriate, carbon sources were added to various 

minimal media at 1 g/l. SCS media was prepared by combining 100 ml of 10× YDM-base 

and 10 ml of 100× YDM-trace metals in 1 liter of water and adjusting the pH to 5.5 with 

HCl and filter sterilizing. 10× YDM-base consists of (per liter) 50 g (NH4)2SO4, 30 g 

KH2PO4, 5 g MgSO4 heptahydrate, adjusted to pH 5.5 with NaOH and filter sterilized. 

100X-trace metals consists of (per liter) 1.5 g ethylenediaminetetraacetic acid (EDTA), 450 

mg ZnSO4 heptahydrate, 100 mg MnCl2 tetrahydrate, 30 mg CoCl2 hexahydrate, 30 mg 

CuSO4 pentahydrate, 40 mg Na2MoO4 dihydrate, 450 mg CaCl2 dihydrate, 300 mg FeSO4 

heptahydrate, and 10 mg KI, filter sterilized 15. While SCS media contains EDTA, a 

potential alternative source of carbon, the final concentration of this compound, 15 mg/l, is 

theoretically below the level required for growth. Nevertheless, all growth assays with SCS 

media were also performed with SCS media without added penicillin or carbenicillin as a 

negative control to confirm this medium did not support growth. To completely rule out the 

potential contribution of EDTA to growth, experiments were also repeated in M9 media, 

which does not include any carbon-containing ingredients, including EDTA. M9 media was 

prepared by combining (per liter) 200 ml 5× M9 salts (Sigma, M6030), 2 ml 1M MgSO4, 

and 100 μl 1M CaCl2 in 1 liter of water and adjusting the pH to 7 or 5.5 and filter sterilizing. 

5× M9 salts consists of (per liter) 33.9 g Na2HPO4 heptahydrate, 15 g KH2PO4, 5 g NH4Cl, 

2.5 g NaCl in a liter of water sterilized by autoclaving. Antibiotic resistance testing was 

performed in LB in the presence of 1 g/l of the indicated antibiotic. Starter cultures grown 

for one (ABC07) to two (ABC02, ABC08, and ABC10) days with shaking at room 

temperature were inoculated (2 μl) into LB media containing antibiotics and cultured 

aerobically for two days at room temperature prior to reading OD600 reading on a 

Powerwave HT microplate spectrophotometer (Biotek, Inc.). All growth experiments 

included triplicate independent cultures and OD600 values were evaluated as averages with 

standard error unless otherwise noted.

ABC strains carbon source growth studies—For growth on diverse carbon sources, 

Biolog Phenotype Microarray Plates PM1 and PM2A (Hayward, CA) were used. ABC02, 

ABC07, ABC08, and ABC10 starter cultures were inoculated directly from frozen stocks 

and incubated with aeration at room temperature in 5 ml SCS media with 1 g/l carbenicillin 

(ABC02) or penicillin (ABC07, ABC08, and ABC10) until cultures turned visibly turbid 

(visible turbidity corresponds roughly to OD600 values ~1.5 to 3 AU, approximately 3 days 

of growth). Each culture was washed a total of 5 times in SCS media lacking a carbon 
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source by pelleting the cells (3,000 rcf, 5 min) and aspirating supernatants to remove 

residual glycerol or other potential carbon sources. After the final wash the cultures were 

resuspended in 20 ml SCS media to an OD600 of 0.1 AU, 100 μl per well was added to the 

dry Biolog plates, and mixed by repeated pipetting. Plates were incubated at room 

temperature for 96-hours and growth was determined by subtraction of each well’s 

individual initial OD600 reading from its final reading as measured on a Powerwave HT 

microplate spectrophotometer (Biotek, Inc.).

Cultures for growth curves of soil isolates grown in M9 media with β-lactam antibiotics 

were prepared as described above with media pH adjusted to 5.5 with NaOH. A 96-well 

plate (COSTAR, 3595) containing 200 μl/well of M9 media with 0.25 g/l, 0.5 g/l, or 1 g/l 

penicillin were inoculated in triplicate with 2 μl of thrice washed cells and sealed with a 

Breathe-Easy membrane (Sigma-Aldrich, Z380059). Growth was monitored every 20 

minutes at 600 nm in a Powerwave HT microplate spectrophotometer (Biotek, Inc.) at 25°C 

with constant shaking (medium setting, rpm not available) for 1 week. Growth data were 

plotted using GraphPad Prism version 7.01 for Windows (GraphPad Software, La Jolla 

California, USA).

Generation and testing of ABC07 knock-out strains—Generation of the ABC07 

paaF and penicillin put operon (bla/put2/mfs/put1) knockout strains was performed 

following the protocol of Hmelo et al. 26 using the pEXG2 plasmid 46 containing ca. 1,000 

base pair flanking regions from around paaF and the put operon separated by a tetA open 

reading frame (see table S3 for primer sequences). DNA fragments were amplified by 

polymerase chain reaction with Q5 hotstart master mix polymerase (NEB, M0494L) using 

ABC07 genomic DNA as template and ligated via Gibson assembly master mix (NEB, 

E2611S) according to manufacturer’s guidelines. Constructs were confirmed by Sanger 

sequencing (Genewiz) and introduced into strain ABC07 by biparental mating using E. coli 
S17 λpir followed by selection on LB agar plates containing gentamicin at 60 μg/ml. 

Merodiploids were selected for using VBMM agar consisting of 1.5% agar in (per liter) 200 

mg MgSO4 heptahydrate, 2 g of citric acid, 10 g of K2HPO4, and 3.5 g of NaNH4HPO4 

tetrahydrate and counter-selection was performed on LB agar containing 15% (w/v) sucrose. 

Loss of the gentamicin resistance cassette marker of pEXG2, loss of the target gene, and 

gain of tetA were confirmed by routine PCR using 2× ReddyMix master mix (ThermoFisher 

Scientific AB0575DCLDA) according to the manufacturer’s guidelines. Briefly, inserts were 

amplified with 25 cycles of denaturing at 94°C for 45 seconds, annealing at 60°C for 45 

seconds, and extending at 72°C for 2 minutes.

For the assay, overnight cultures of wild-type, paaF, and put ABC07 strains were grown in 

LB at 28°C and washed three times in M9 media with no carbon as described above. 

Glucose, phenylacetic acid, and penicillin in M9 media were initially prepared at a final 

concentration of 0.4% (w/v) following which pH was adjusted to 5.5 with HCl for penicillin 

and to pH 7 for glucose and phenylacetic acid with NaOH. Media were aliquoted 200 μl/well 

into a 96-well plate (COSTAR, 3595) followed by 2 μl of washed cultures and sealed with a 

Breathe-Easy membrane (Sigma-Aldrich, Z380059). Each strain/condition was set-up in 

triplicate. Growth was monitored at 600 nm for 1 week with temperature maintained at 28°C 

with continuous shaking on medium speed for 1 week on a Powerwave HT microplate 
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spectrophotometer (Biotek, Inc.). OD600 measured for each condition were plotted in 

GraphPad Prism version 7.01 (GraphPad Software, La Jolla California, USA). Further 

growth studies were performed as above with 1 g/l of the following carbon sources: (at pH 

7) phenylacetic acid, glucose, (at pH 5.5) penicillin, benzylpenicilloic acid, 6-

aminopenicillanic acid, carbenicillin, ampicillin, and cefuroxime. Optimal culture pH was 

determined empirically.

E. coli growth conditions—E. coli BL21(DE3) and E. coli DH10β were cultured in LB 

or Terrific broth (TB, MOBIO, 12105-05 or Fisher Scientific, BP9729-600) with aeration at 

37°C with 50 μg/ml kanamycin and/or 100 μg/ml carbenicillin, and 100 to 500 μM isopropyl 

β-D-1-thiogalactopyranoside (IPTG) when appropriate. E. coli W (ATCC 9637) was 

purchased from the American Type Culture Collection (ATCC) and propagated according to 

ATCC instructions or in M9 media prepared as above (adjusted to pH 7.2) with 50 μg/ml 

kanamycin and 100 μg/ml carbenicillin when appropriate at 28°C. All E. coli strains were 

maintained as 15% glycerol stocks in LB at −80°C.

Isolate whole transcriptome RNA sequencing

Genome sequencing and open reading frame calling and gene annotation—
We previously published whole genome sequences of trains ABC07, ABC08, and ABC10 
21. Whole genome sequencing of strain ABC02 was performed exactly as for ABC07, 

ABC08, and ABC10. Whole genome sequences for ABC02, ABC07, ABC08, and ABC10 

(GenBank accessions numbers NGUT00000000, NGUS00000000, NGUR00000000, and 

NGUQ00000000 respectively) were called for open reading frames and annotated as before 
4.

Preparation of cDNA and whole transcriptome RNA sequencing—Strains 

ABC02, ABC07, ABC08, and ABC10 were prepared for whole transcriptome RNA 

sequencing (RNAseq) in triplicate for each carbon source as follows. Frozen glycerol stocks 

with 15% glycerol previously grown in SCS media with 1 g/l penicillin were used to 

inoculate 5 ml cultures of SCS media containing 1 g/l appropriate carbon source and 

incubated at room temperature until cultures reached turbidity visually. During this 

incubation period any residual glycerol is catabolized. Triplicate independent culture flasks 

containing 100 ml fresh SCS media with 1 g/l carbon source were then inoculated with 100 

μl of turbid culture. Strains were grown with aeration at room temperature until early 

exponential phase at which point cells were harvested by centrifugation (3,000 rcf, 10 min). 

For storage prior to RNA extraction, cell pellets were resuspended in RNAprotect Bacteria 

Reagent (QIAGEN, 76506) according to manufacturer’s instructions and stored at −80°C 

until extraction. Total RNA was extracted via standard bead beating and phenol:chloroform 

protocol. Ribosomal RNA (rRNA) was depleted from the RNA extract using the Ribo-Zero 

rRNA Removal kit (Epicentre, MRZMB126) according to the manufacturer’s instructions. 

Depleted RNA was converted to cDNA for sequencing via SuperScript II (Invitrogen, 

18064022) as previously described 47 and sheared in a Covaris S2 (Covaris, MA, USA) to 

produce 150 bp fragments. Samples were sonicated in 120 μl volumes for 10 min at 10% 

duty cycle at intensity 5 and 100 cycles per burst.
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Sheared, size-selected fragments were end-repaired and ligated with Illumina sequencing 

adaptors essentially as previously described 47. Single-end 1 × 50bp sequencing was 

performed at the Genome Technology Access Center (GTAC, Washington University in 

Saint Louis) using the Illumina HiSeq 2000 platform to a target transcriptome coverage of 

ca. 10X. Raw reads have been deposited with the Sequence Read Archive at NCBI under 

BioProject number PRJNA385617. Sequence reads were mapped to sequenced ABC strain 

genomes using Bowtie 48 with default parameters and raw expression counts were obtained 

using mrfCounter from the RSeqTools library 49. Normalization and differential expression 

of open reading frames under each carbon source condition using the binomial test 

implementation were performed in the R package DESeq 50 following methods described by 

Anders and Huber for estimating variance. Genes with significantly different expression 

between each carbon source condition (adjusted p<0.00001, DESeq) were analyzed in more 

detail. Highly upregulated genes from the ABC07 significant set appearing to correspond to 

penicillin catabolism (figure 2B) were plotted as normalized reads in triplicate with SEM as 

the ratio of gene counts during growth on the given substrate to gene counts during growth 

on glucose using GraphPad Prism version 7.01 for Windows (GraphPad Software, La Jolla 

California, USA).

Phylogenetic analysis of upregulated amidases, hydrolases, and 
amidohydrolases—Predicted amidases, hydrolases, and amidohydrolases from ABC02, 

ABC07, ABC08, and ABC10 that were significantly upregulated during growth on penicillin 

compared to glucose or histidine were targeted for phylogenetic analysis. Predicted amino 

acid sequences for the upregulated genes were input into blastp NR database 28 on May 8, 

2017 and the top 100 hits were combined and clustered at 70% identity using the cdhit 

program 51. The ABC strain sequences and their top hits were combined with representative 

penicillin amidase sequences (E.C. 3.5.11) downloaded from UniProt 29. The combined 

sequences were aligned by ClustalW 52 in the MEGA7 53 program and used to construct a 

Maximum Likelihood tree with bootstrap phylogeny test (100 rounds) and default 

parameters. The final tree was visualized using FigTree (http://tree.bio.ed.ac.uk/software/

figtree/, February 2017).

The amino acid sequence of Put1 was further analyzed for the presence of a signal peptide 

indicative of secretion, with prediction validation using secreted β-lactamase and penicillin 

amidase sequences 43. An alignment of Put1 with E. coli pga and pga homologs from other 

bacteria was generated as above. The three dimensional structure of Put1 was predicted 

based on homology using the online Phyre tool 54 with intensive settings. The resulting PDB 

file, as well as other PDB files, were visualized and manipulated using the PyMOL program 

(The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.). PDB files for 

Put1 and Providencia rettgeri (1CP9) 35 and Kluyvera citrophilia (4PEM) penicillin amidase 

structures were aligned to the E. coli (1GK9) 34 penicillin amidase structure via the alignto 

command in PyMOL.

In vitro enzyme assays

put1 and put2 amplification and cloning—Inserts were amplified from ABC07 

genomic DNA using the polymerase chain reaction with Iproof polymerase (BioRad, 172–
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5330) according to manufacturer instructions. Briefly, inserts were amplified with 30 cycles 

of denaturing at 98°C for 30 seconds, annealing at 65°C or 60°C for 30 seconds, and 

extending at 72°C for 1.5 minutes using primers 5093BW and 5094BW for Put1 and 

5095BW and 5096BW for Put2 respectively (Table S3). NdeI and SacI restriction sites were 

introduced during PCR. Inserts and vector pET-28b(+) were digested by SacI and NdeI 

(New England Biolabs, R0156S and R0111S respectively) overnight at 37°C, heat 

inactivated at 65°C for 20 minutes and purified by extraction from agarose gels followed by 

column clean-up (Qiagen QIAquick gel extraction kit, 28704). Inserts were ligated into 

vector via complementary overhang using the Fast-Link DNA Ligation kit (Epicentre, 

LK6201H) with a 3:1 insert to vector ratio at room temperature overnight. Ligation reactions 

were heat inactivated at 70°C for 10 minutes, dialyzed against water, and transformed by 

electroporation into competent E. coli BL21(DE3) cells using a BioRad Gene Pulser XCell 

in 1-mm gap cuvettes at 2.0 kV, 200 Ω, and 25 μF. Cells were allowed to recover in 1 ml of 

rich media (SOC medium, Invitrogen 46-0821) for 1 hr at 37°C then plated on LB agar with 

kanamycin. Colonies were screened for inserts by colony PCR using Thermo Scientific 

2xReady PCR Mix (Thermo Scientific, AB0575DCLDA) according to the manufacturer’s 

instructions using vector-specific primers TSC54 and TSC55 (Table S3). Successful colonies 

were cultured in LB with kanamycin and plasmids were extracted by miniprep (Qiagen 

QIAprep Spin Miniprep kit, 27104) and sequences were verified by Sanger sequencing 

(Genewiz).

Expression and extraction of Put1 and Put2 enzymes—For heterologous 

expression and purification of Put1 and Put2 from E. coli, 1.5 ml starter cultures of E. coli 
BL21(DE3) containing pET-28b(+) with put1 or put2 inserts were grown overnight at 37°C 

with aeration in TB with kanamycin. Starter cultures were used to inoculate a pair of 2.8 L 

Fernbach flasks containing 750 ml of TB with kanamycin for each enzyme. Cultures were 

incubated at 325 rpm at 37°C in a MaxQ 5000 (Thermo Scientific) temperature-controlled 

incubator until optical densities at 600 nm (OD600) of 0.2 to 0.4 AU were reached 

(approximately 4 hours). Flasks were held on ice and IPTG was added to a final 

concentration of 100 (put1) or 500 (Put2) μM before flasks were returned to the shaking 

incubator now cooled to 25°C. The cultures were shaken overnight at 25°C for 

approximately 16 hours to induce protein expression after which cells were harvested by 

centrifugation at 8,000 rcf for 15 minutes at 4°C in a Sorvall Legends XTR centrifuge 

(Thermo Scientific) in a Fiberlite F14-6×250 LE rotor (Thermo Scientific). Results of 

attempts to optimize Put1 expression conditions for greater yield of soluble protein can be 

found in figure S6. Wet cell pellets were weighed and tared on empty centrifuge tubes to 

find the wet cell mass. All following steps were performed at 4°C or on ice. For cell lysis, 

pellets were resuspended to 50% w/v in lysis buffer consisting of (per liter) 8.709 g K2HPO4 

(50 mM), 29.22 g NaCl (500 mM), 351 μl β-mercaptoethanol (5 mM), 1.36 g imidazole (20 

mM), and 100 ml glycerol (10% v/v) brought to a pH of 8 with, for Put1 purifications, 

addition of protease inhibitor cocktail (Thermo Scientific, A32955) according to 

manufacturer’s instructions. We did not observe any inhibition of amidase activity due to 

this addition (assayed by hydrolysis of p-nitroacetanilide). Suspensions were lysed using 

three cycles of freeze-thawing in ethanol-dry ice baths and sonication using a Branson 

Sonifier 250 (Branson Ultrasonics) with microtip using the following settings: 50% duty 
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with output adjusted to ~40% (approximately 80 W) on ice twice for 2 minutes until 

suspension viscosity was reduced. The lysed cell suspensions were clarified by 

centrifugation at 24,446 rcf for 30 minutes at 4°C in a Sorvall Legends XTR centrifuge 

(Thermo Scientific) in a Fiberlite F15-8×50 cy rotor (Thermo Scientific). Supernatants were 

decanted and stored at 4°C until purification.

Purification and storage of Put1 and Put2 enzymes—Protein purifications were 

carried out by immobilized metal affinity chromatography using nickel resin (Ni-NTA, 

BioRad, 7800800) and a BioRad Econo system for low-pressure chromatography with a 

model 2110 fraction collector (BioRad, 7318122). A column was packed with 8 ml of 50% 

Ni-NTA resin in suspension and equilibrated in lysis buffer at 4.5 ml/min in a 4°C climate 

controlled room for 9 minutes. Clarified supernatants brought to 50 ml in lysis buffer were 

loaded onto the column at 4.5 ml/min 25 ml at a time with a lysis buffer wash in between 

each 25 ml load to decrease clogging. Lysis buffer was run through the column until UV 

absorbance returned to baseline levels. Proteins were eluted from the column in a gradient 

consisting of 0% to 100% elution buffer over 30 minutes. Elution buffer consists of lysis 

buffer with a final concentration of imidazole at 300 mM (20.42 g per liter) and NaCl at 1 M 

(58.44 g. per liter). Fractions were assayed for the presence of Put1 and Put2 by SDS-PAGE 

and, for Put1, by p-nitroacetanilide hydrolysis (1 mM substrate concentration) prior to 

pooling. Briefly, 7.5 μl of eluted solution was combined with 2.5 μl 4× Laemmli sample 

buffer (BioRad, 161-0747), boiled for 10 minutes, loaded onto a 12% Mini-PROTEAN TGX 

precast gel (BioRad, 456–1043), and run at 200 V for 40 minutes in 1× Tris/Glycine/SDS 

buffer (BioRad, 161–0732). Gels were stained using Bio-Safe Coomassie stain (BioRad, 

1610796) according to manufacturer’s suggestion and visualized using a Gel-Doc XR+ 

(BioRad). Fractions containing purified proteins were pooled and concentrated using a 10 

kDa molecular weight cut-off filter (Amicon Ultra-15, UFC901024) to ca. 1 ml total volume 

according to manufacturer’s instructions. Elution buffer was exchanged three times using 

molecular weight cut-off filters as above for storage buffer consisting of (per liter) 8.709 g 

K2HPO4 (50 mM), 8.766 g NaCl (250 mM), 1 ml of 1 M dithiothreitol (1 mM) and 50 ml of 

glycerol (5% v/v) brought to a pH of 7.5. Final protein concentration was determined by 

Qubit Protein Assay kit (Thermo Scientific, Q33211) and molar enzyme concentration was 

found using molecular weights predicted by the EXPASY program 55. Enzymes were 

aliquoted in 55 μl volumes in PCR tubes on dry ice and stored at −80°C until use.

Amidase activity assays—Measurements of amidase activity using the chromogenic 

penicillin analog 6-Nitro-3-(phenylacetamido)benzoic acid (NIPAB) and chromogenic 

amide p-nitroacetanilide were conducted as follows. NIPAB and p-nitroacetanilide, both of 

which have previously been validated as substrates for the detection of penicillin and other 

amidase activity respectively 30,31, were prepared in DMSO at a concentration of 200 mM 

and were diluted to 2 mM in phosphate buffered saline pH 7.5 (PBS, 150 mM phosphate and 

50 mM NaCl). Each substrate was further diluted in a 96-well plate (COSTAR, 3595) to 

concentrations from 20 μM to 2000 μM with a volume of 100 μl per well. Commercial 

penicillin amidase (Sigma, 76427) was diluted in PBS buffer to a concentration of 0.1 

units/ml and purified Put1 and Put2 enzymes were diluted in PBS buffer to 4 μM. To initiate 

reactions, 100 μl of enzyme was added to wells containing 100 μl of substrate and mixed 
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before monitoring at 400 nm every 20 seconds using a Powerwave HT microplate 

spectrophotometer (Biotek, Inc.) with temperature maintained at 25°C. Change in 

absorbance over time was converted to μM min−1 using the extinction coefficient for p-

nitroacetanilide and NIPAB at pH 7.5 at 400 nm of 11110 M−1 cm−1 (determined 

empirically) and 9500 M−1 cm−1 30 respectively. The Michaelis-Menten kinetics curve fit 

equation was solved using GraphPad Prism version 7.01 for Windows (GraphPad Software, 

La Jolla California, USA). Other chromogenic substrates were similarly assayed at 1 mM 

concentrations with penicillin amidase (at 0.01 U/ml) and Put1 (at 2 μM) in PBS buffer at 

37°C by monitoring at 400 nm (L-glutamate 1-(p-nitroaniline), L-glutamate γ-(p-

nitroaniline), and Nα-benzoyl-DL-arginine p-nitroaniline) or at 295 nm (N-phenylacetyl-p-

aminobenzoate).

Indirect measurement of penicillin and benzylpenicilloic acid hydrolysis was performed by 

derivatization of the resulting primary amine by the reagent 4-nitro-7-chloro-benzo-2-

oxa-1,3-diazole (NBD-Cl) as previously published 40. Penicillin or benzylpenicilloic acid 

were diluted to 2 mM in PBS buffer with 5 μM Put1 or 100 U/ml penicillin amidase and 

allowed to incubate overnight at 37°C. Reactions were quenched by addition of two volumes 

of cold acetonitrile followed by the addition of 4 mM NBD-Cl in acetonitrile and incubation 

at 37°C for 2.5 hr. Fluorescence of reactions, 250 μl in a 96-well plate (COSTAR, 3595), 

was read using a Powerwave HT microplate spectrophotometer (Biotek, Inc.) with excitation 

at 485 nm and emission at 538 nm with default gain.

Direct measurements of penicillin and benzylpenicilloic acid enzymatic hydrolysis were 

performed by a modification of a pH-dependent, colorimetric, hydrolase assay responsive to 

cleavage of either amide bonds 36. Briefly, hydrolysis of amide bonds was monitored by 

color change of the pH indicator p-nitrophenol or m-nitrophenol in response protons 

released due to the appearance of new carboxylic acid residues following amide hydrolysis 

(phenylacetic acid in the case of penicillin and benzylpenicilloic acid). Reaction buffer for 

penicillin assays was prepared by diluting 200 mM p-nitrophenol in DMSO to a final 

concentration of 550 μM in 5 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer 

and adjusting to a pH of 7.2 with dilute HCl and NaOH. Penicillin substrate was prepared by 

diluting 200 mM penicillin in DMSO to 2.4 mM in reaction buffer and adjusting the pH to 

7.2 followed by dilution in triplicate in a 96-well plate (COSTAR, 3595) at concentrations 

ranging from 24 μM to 1.2 mM in 100 μl of p-nitrophenol reaction buffer. Enzymes were 

diluted into p-nitrophenol reaction buffer and brought to a pH of 7.2. E. coli penicillin G 

amidase (Sigma, 76427) and B. cereus β-lactamase (Sigma, P0389) were diluted to 0.1 U/ml 

and 0.2 U/ml respectively and Put1 enzyme was prepared at 4 μM. Reactions were initiated 

by addition of 100 μl of enzyme to 100 μl of substrates in wells. Kinetics were monitored as 

before with the exception that data from absorbance at 404 nm was collected. Change in 

absorbance over time was converted to μM min−1 as described elsewhere 36. Data were fit to 

Michaelis-Menten curves as before. Benzylpenicilloic acid hydrolysis was assayed as with 

penicillin with the following alterations. Instead of MOPS media containing p-nitrophenol, a 

buffer consisting of 10 mM m-nitrophenol at pH 8.4 was used with conversion of absorbance 

to μM min−1 calculated using an extinction coefficient of 1241.5 M−1 cm−1 at 415 nm 

(determined empirically). E. coli penicillin G amidase (Sigma, 76427) was used at a final 

concentration of 5 U/ml and Put1 was used at a final concentration of 2 μM. A higher pH 

Crofts et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2018 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was required due to competition for proton signal from the alkaline amino group of penicic 

acid 37. Change in signal represents the hydrolysis of the phenylacetamide bond only as the 

penicillin β-lactam ring is already hydrolyzed in benzylpenicilloic acid. Because 

benzylpenicilloic acid lacks a β-lactam ring the activity of β-lactamase was not assayed.

Direct degradation of benzylpenicilloic acid and penicillin were followed by liquid 

chromatography tandem mass spectrometry (LCMS) analysis of quenched enzymatic 

reactions. Reactions were conducted in 135 μl of PBS buffer at pH 7.5 with 40 μM Put1 or 

0.05 U/ml E. coli penicillin G amidase (Sigma, 76427). To initiate reactions, 1 μl of 200 mM 

penicillin or benzylpenicilloic acid in DMSO was added to each reaction on ice, for a final 

concentration of ca 1.5 mM substrate. Aliquots of the reaction were quenched after 30 min, 

5 hr, and 22.5 hr by removing 25 μl aliquots into 50 μl ice-cold acetonitrile to precipitate 

enzymes. Quenched samples were analyzed by LCMS at the Donald Danforth Plant 

Sciences Institute using a Scherzo C18 column with buffers consisting of 0.1% formic acid 

in water (buffer A) or acetonitrile (buffer B). Analytes were eluted using a gradient method 

consisting of 4 minutes isocratic with 0% buffer B and a ramp up to 100% buffer B over 12 

minutes. Mass spectra were recorded on a Q Exactive mass spectrometer (Thermo 

Scientific) in polarity switching mode at a resolution of 140,000 (at m/z 200). Phenylacetic 

acid is not detectable using this method. Benzylpenicilloic acid spontaneously forms a pair 

of diastereomers that appear as two peaks under these conditions25.

E. coli gain of function assays

E. coli penicillin G amidase and ABC07 put operon cloning—For gain of function 

experiments, the E. coli W penicillin amidase (pga) open reading frame was cloned into the 

β-lactamase (bla) containing pZA11 expression vector 56 with its 5′ secretion signal 

truncated by 6 residues at the N-terminus 42. Inserts were amplified by PCR using Q5 

hotstart master mix polymerase (NEB, M0494L) according to manufacturer’s guidelines 

using primer pair 5777TSC/5779TSC (Table S3). Linear pZA11 was prepared by inverse 

PCR as above using the primer pair 5780TSC/5781TSC (Table S3). Inserts and vector were 

gel purified (Qiagen QIAquick gel extraction kit, 28704) and prepared for ligation by 

overnight double digestion with KpnI-HF and PstI-HF restriction enzymes (NEB, R3142S 

and R3140S respectively), treatment with Antarctic phosphatase (vector only, NEB, 

M0289S), and final purification by column clean-up (Qiagen QIAquick PCR purification kit, 

28104). Ligation was performed with a 2:1 insert to vector ratio using the Fast-Link DNA 

Ligation kit (Epicentre, LK6201H) at room temperature for 30 minutes followed by heat 

inactivated at 70°C for 15 minutes. Transformation was carried out by heat shock at 42°C of 

5 μl of ligation product into 50 μl calcium competent E. coli W followed by recovery for 30 

minutes at 37°C and plating on to LB agar with 100 μg/ml carbenicillin. Colonies were 

screened for inserts using colony PCR with Thermo Scientific 2xReady PCR Mix (Thermo 

Scientific, AB0575DCLDA) according to the manufacturer’s instructions. Briefly, inserts 

were amplified for 30 cycles of denaturing at 94°C for 45 seconds, annealing at 60°C for 45 

seconds, and extending at 72°C for 2 minutes using vector-specific primers 22TSC and 

5723TSC (Table S3). Successful colonies were cultured in LB with carbenicillin and 

plasmids were extracted by miniprep (Qiagen QIAprep Spin Miniprep kit, 27104) and 

inserts were verified by Sanger sequencing (Genewiz). Following sequencing, a single base 
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deletion was discovered in the first ~8 bp of the pga gene resulting in a frame shift mutation. 

Expression from a downstream alternate in-frame start codon resulted in a product lacking 

the first 6 residues of the signal peptide. Attempts to re-clone the wild-type gene failed due 

to toxicity issues arising from over-expression in pZE21. Cloning of the ABC07 put operon 

into pZE21 56 was performed similar to pga but via blunt-end ligation using the Fast-Link 

DNA Ligation kit (Epicentre, LK6201H) according to manufacturer’s instructions. Stocks 

were maintained in LB with 15% glycerol at −80°C.

E. coli W penicillinoid catabolism assay—E. coli W strains harboring the empty 

pZA11 vector or pZA11-E. coli pga and empty pZA11/pZE21 or pZA11/pZE21-put operon 

were cultured in LB supplemented with carbenicillin or carbenicillin and kanamycin 

overnight at 37°C. Cells were washed three times prior to inoculation in M9 media as 

before. M9 media containing penicillin or benzylpenicilloic acid as a sole carbon source at 4 

g/l was added to a 96-well plate in 200 μl aliquots followed by 2 μl of washed cells in 

triplicate. Plates were sealed with a Breathe-Easy membrane (Sigma-Aldrich, Z380059) and 

growth kinetics were monitored at 600 nm every hour using a Powerwave HT microplate 

spectrophotometer (BioTek, Inc.) at 28°C with constant shaking on medium for 120 hr (5 

days). Growth data were plotted and evaluated for significance using GraphPad Prism 

version 7.01 for Windows (GraphPad Software, La Jolla California, USA) using pair-wise 

ANOVA tests with Bonferroni correction for multiple comparisons.

Data availability Statement

ABC02 (this manuscript) and ABC07, ABC08, and ABC10 (ref. 21) WGS short-read raw 

data, assembled genomes, and RNASeq short-read data have been deposited to NCBI under 

BioProject number PRJNA385617 with BioSample numbers SAMN06915397, 

SAMN06915398, SAMN06915399, and SAMN06915400 respectively. Whole genome 

sequences may be found for ABC02, ABC07, ABC08, and ABC10 at DDBJ/ENA/GenBank 

under the accessions numbers NGUT00000000, NGUS00000000, NGUR00000000, and 

NGUQ00000000 respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ABC strains catabolize penicillin as their sole carbon source
a–d, Growth of strains ABC02 (a), ABC07 (b), ABC08 (c), and ABC10 (d) in minimal 

media with penicillin as sole carbon source. Figure legend for penicillin carbon source 

concentration in a applies to all panels. Data points are average of three experiments with 

SEM error bars.
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Figure 2. Evidence for shared strategy for penicillin catabolism among ABC strains
a, Up-regulated open reading frames during growth on penicillin compared to histidine (all 

but ABC07) or glucose (ABC07) calculated from triplicate cultures. Displayed above each 

ORF is the relative fold up-regulation while below is the gene name (e.g. bla, β-lactamase; 

mfs, major facilitator superfamily pump). All genes displayed showed significant up-

regulation at adjusted p-value<0.00001 (DESeq) except for paaA of ABC08. b, ABC07 

transcriptional response to penicillin, benzylpenicilloic acid, and phenylacetic acid relative 

to glucose. Relative transcript counts of ORFs identified to be responsive to penicillin are 

displayed as averages of triplicate RNASeq experiments with SEM error bars. The 

housekeeping RNA polymerase gene rpoB is present for comparison. c, Hypothesized 

pathway for penicillin degradation. Penicillin is neutralized by a β-lactamase to produce 

benzylpenicilloic acid, which acts as substrate for amidases or other hydrolases, releasing 

phenylacetic acid which is routed to central metabolism as a carbon source by the 

phenylacetic acid catabolon.
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Figure 3. paaF and the put operon are necessary for penicillin catabolism in ABC07
a–c, Growth curves of wild-type ABC07 (black), paaF::tetA (red) and put::tetA (blue) 

strains in minimal media containing glucose (a), phenylacetic acid (b), or penicillin (c) as 

the sole carbon source. Measurements are the average of triplicate cultures with standard 

error of the mean displayed.
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Figure 4. Put1 is a benzylpenicilloic acid-hydrolyzing amidase
a,b, Hydrolysis activity of E. coli penicillin amidase, B. cereus β-lactamase, and Put1 with 

penicillin (a) or benzylpenicilloic acid (b) as a substrate was assayed by monitoring 

absorbance at 404 nm with the colorimetric pH indicators p-nitrophenol and m-nitrophenol, 

respectively. c, LCMS analysis of benzylpenicilloic acid degradation by E. coli penicillin 

amidase or Put1 by extracted ion count monitoring. 353 m/z corresponds to singly 

protonated benzylpenicilloic acid. Within each condition, traces represent (bottom to top) 

incubation for 30 min, 300 min, and 22.5 hr. Note, benzylpenicilloic acid spontaneously 

equilibrates to form two diastereomers in aqueous solutions. d, Time course of reactions in c 
measured by 353 m/z total ion count.
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Figure 5. E. coli expression of penicillin amidase or the put operon gives significantly increased 
growth on penicillinoids
a, Growth curve of E. coli W in minimal media with β-lactamase and penicillin amidase 

(pga, blue traces) expression or vector β-lactamase expression only (black traces) with 

penicillin as the sole carbon source. b, Final culture densities of E. coli W expressing β-

lactamase and penicillin amidase (pga, blue) or β-lactamase only (black) grown at 28°C vs 

37°C in minimal media with penicillin as sole carbon source. c, Growth curves of E. coli W 

expressing penicillin amidase (pga) or vector control (blue and black lines, respectively), or 

put operon or vector controls (red and grey lines, respectively) in minimal media with 

benzylpenicilloic acid as sole carbon source. d, Final culture OD600 values of E. coli W 

expressing penicillin amidase (pga) or vector control (blue and black, respectively) or put 
operon or vector control (red and grey, respectively). Significance determined by pair-wise 

ANOVA with Bonferroni correction. All data points are average of triplicate cultures with 

SEM error shown.
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Figure 6. Schematics illustrating penicillin catabolic strategies
a, Hypothesized mechanism of penicillin catabolism in ABC07 and studied ABC strains. 

Outer membrane porins (grey membrane protein) allow uptake of penicillin to the periplasm. 

In the periplasm, β-lactamases (blue enzyme) rapidly detoxify penicillin to benzylpenicilloic 

acid. MFS pumps (red membrane protein) transport benzylpenicilloic acid to the cytoplasm 

where amidases (e.g. Put1, red enzyme) hydrolyze the amide bond to release the 

phenylacetic acid carbon source. b, Hypothesized mechanism of penicillin catabolism in 

engineered E. coli. Similar to a, with amide hydrolysis of penicillin or benzylpenicilloic acid 

occurring in the periplasm via secreted penicillin amidase (red enzyme), and transport of 

phenylacetic acid to the cytoplasm occurring via PaaL phenylacetic acid permease (green 

membrane protein).

Crofts et al. Page 27

Nat Chem Biol. Author manuscript; available in PMC 2018 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Proteobacteria using β-lactams as a sole carbon source
	ABC strains share penicillin-responsive gene regulation
	Growth on penicillin requires paa and put operons
	Catabolism of the phenylacetamide side chain
	The put operon includes a benzylpenicilloic acid amidase
	E. coli expressing put operon catabolizes penicillinoids

	Discussion
	Online Methods
	Chemicals
	Bacterial strains and growth conditions
	Soil isolates and minimal media
	ABC strains carbon source growth studies
	Generation and testing of ABC07 knock-out strains
	E. coli growth conditions

	Isolate whole transcriptome RNA sequencing
	Genome sequencing and open reading frame calling and gene annotation
	Preparation of cDNA and whole transcriptome RNA sequencing
	Phylogenetic analysis of upregulated amidases, hydrolases, and amidohydrolases

	In vitro enzyme assays
	put1 and put2 amplification and cloning
	Expression and extraction of Put1 and Put2 enzymes
	Purification and storage of Put1 and Put2 enzymes
	Amidase activity assays

	E. coli gain of function assays
	E. coli penicillin G amidase and ABC07 put operon cloning
	E. coli W penicillinoid catabolism assay

	Data availability Statement

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

