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A B S T R A C T   

Recent years have seen deep neural networks (DNN) gain widespread acceptance for a range of computer vision 
tasks that include medical imaging. Motivated by their performance, multiple studies have focused on designing 
deep convolutional neural network architectures tailored to detect COVID-19 cases from chest computerized 
tomography (CT) images. However, a fundamental challenge of DNN models is their inability to explain the 
reasoning for a diagnosis. Explainability is essential for medical diagnosis, where understanding the reason for a 
decision is as important as the decision itself. A variety of algorithms have been proposed that generate expla-
nations and strive to enhance users’ trust in DNN models. Yet, the influence of the generated machine learning 
explanations on clinicians’ trust for complex decision tasks in healthcare has not been understood. This study 
evaluates the quality of explanations generated for a deep learning model that detects COVID-19 based on CT 
images and examines the influence of the quality of these explanations on clinicians’ trust. First, we collect 
radiologist-annotated explanations of the CT images for the diagnosis of COVID-19 to create the ground truth. We 
then compare ground truth explanations with machine learning explanations. Our evaluation shows that the 
explanations produced. 

by different algorithms were often correct (high precision) when compared to the radiologist annotated 
ground truth but a significant number of explanations were missed (significantly lower recall). We further 
conduct a controlled experiment to study the influence of machine learning explanations on clinicians’ trust for 
the diagnosis of COVID-19. Our findings show that while the clinicians’ trust in automated diagnosis increases 
with the explanations, their reliance on the diagnosis reduces as clinicians are less likely to rely on algorithms 
that are not close to human judgement. Clinicians want higher recall of the explanations for a better under-
standing of an automated diagnosis system.   

1. Introduction 

There has been increasing interest and success in using deep learning 
methods for automated diagnosis using medical images. Studies for 
diagnosis of COVID-19 infections using computerized tomography (CT) 
images has shown encouraging results with a sensitivity of 98% (ρ < 
0.01) [1]. At the core of the accurate automated diagnosis of CT images 
for COVID-19 are the various deep neural network models. For example, 
the use of a small number of COVID-19 CT images along with a large 
number of non-COVID- 19 CT images by self-supervised learning of 

features has been proposed [2]. A deep convolutional neural network 
(CNN) architecture has been evaluated for detection of COVID-19 via a 
machine-driven design exploration approach trained on a benchmark 
data set of 1489 patient cases [3]. The primary objective of these models 
have been high classification performance according to several standard 
measures such as F1-score, sensitivity, and specificity. 

Supporting an accurate diagnosis of a deep learning method with the 
underlying reason for the diagnosis is necessary to increase the trust of 
medical experts in AI-based diagnostic systems [4,5]. Providing expla-
nations or justifications is necessary with many regulations mandating 
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an automated system to justify a decision.1 This has motivated the 
development of vari-ous algorithms for generating machine learning 
(ML) explanations. Gaining insights into the reasons for the diagnosis 
using ML explanations would also enhance clinicians trust in such 
AI-enabled diagnosis systems. In this work, we aim to generate ML ex-
planations using existing algorithms and conduct a human-centred 
evaluation systematically via an application-grounded evaluation [6, 
7]. “Application-grounded evaluation involves conducting human ex-
periments with a real application” [7]. Hence, conducting an 
application-grounded evaluation would require using ML explanations 
on real-world diagnosis of COVID-19 CT images to study how well they 
influence clinicians’ trust in such an automated decision-making task. 
Conducting an application-grounded evaluation addresses multiple 
aspects: 

A1: Evaluation of ML Explanations: Several state-of-the-art algorithms 
gen-erate explanations with intuitive visualisations elucidating regions 
of an im-age influencing the prediction [8–11]. These evaluations on 
deep-learning models use object recognition data sets such as Image-
Net.2 A quan-titative evaluation against a ground-truth baseline of CT 
lung images would measure the effectiveness of existing methods on 
homogeneous grey scale images having subtle variations caused by 
different lung infections. 

A2: Human-centred evaluation of ML Explanations by Clinicians: ML 
explanations are used to confirm the core requisites of trust and trans-
parency [7]. The congruence of ML explanations is measured with 
respect to human ground-truth baseline. The influence of ML explana-
tions on the trust of clinicians for automated decision support of 
COVID-19 diagnosis can be studied systematically. 

A3: Collection of Labelled Data: Comparing ML explanations with the 
observations of a domain expert (a radiologist in our case) for high stake 
decision support requires labelled data. For the purpose of evaluation, 
CT images labelled by three radiologists are collected and used as 
human-produced ex-planations. 

In this work, we first review existing literature on various algorithms 
that generate ML explanations. We further examine and evaluate the 
correctness of ML explanations against expert produced explanations. 
The explanations vary in their relevance (or proximity) when compared 
to human experts. We then conduct a structured user study with clini-
cians aiming to test the influence of explanations on their trust in using 
such automated diagnosis systems for decision support. Further, we 
release the human-labelled expla-nation data set for further develop-
ment towards such studies. 

The main contributions of this work are:  

• Quantitative evaluation of existing ML explanations methods for 
auto-mated diagnosis using CT lung images.  

• Empirical study of the influence of trust on clinicians based on the 
ML explanations.  

• Provision of a data set of human-annotated explanations of COVID- 
19 CT images for future study. 

The remainder of this paper is organised as follows. We discuss the 
related work in Sec 2. The details of the proposed approach are pre-
sented in Sec 3, followed by a report on evaluating ML explanations 
generated by different algorithms in Sec 4. Details of the empirical study 
with clinicians is presented in Sec 5. We conclude the paper and discuss 
future work in Sec 6. 

2. Related work 

We now position our work with respect to the related literature, 
categorized in four main bodies of works. 

2.1. ML explanations for image predictions 

There has been considerable research in generating explanations of 
com-plex deep neural networks to understand the reason for predictions 
post-hoc (i.e. after the model has been trained). In particular, we focus 
on local explanations. A local explanation aims to provide the reasoning 
for a particular prediction in a locale specific to a given image. Class 
Activation Mapping (CAM) and its generalization, Gradient-weighted 
Class Activation Mapping (Grad-CAM), enables visualization of the 
later layer’s class-specific feature maps of a convolution neural network 
(CNN). Grad-CAM uses the gradient information flowing into the last 
convolutional layer of a CNN to assign important values to neurons for a 
particular prediction [9]. Grad-CAM is class-discriminative and can be 
used to produce visual explanations for any CNN-based model. 

Additionally, a few techniques assess the relationship between input 
image and the output by perturbing the input image and observing its 
effect on the output. These approaches are model agnostic and do not 
need to be aware of the underlying model architecture. One approach is 
to greedily grey out segments of an image until it is misclassified and 
visualize the drop in classification score [12]. Similarly, occluding 
portions of the input image help in revealing parts that are important for 
classification [13]. Randomized Input Sampling for Explanation (RISE) 
estimates pixel saliency by randomly generating small masks [10]. Fong 
et al. [11] introduce extremal perturbation which refers to computing the 
smallest mask that results in highest change to the model prediction. 

Post-hoc model-agnostic approaches such as Local Interpretable 
Model-agnostic Explanations (LIME) [8] approximate a complex 
CNN-based model to a simpler interpretable linear model. LIME draws 
random samples around the instance to be explained and trains an 
approximate linear model. The saliency of LIME is based on super-pixels 
to produce coarse attention maps. All the attribution and approximation 
methods have been evaluated on image data sets that have large, yet 
distinct classes. In this work, we evaluate explanations for CT images 
where the difference between the classes can be subtle. Further, we 
assess different explanation generation methods that identify salient 
regions with human annotations. 

2.2. ML explanations for medical image predictions 

With increased used of machine learning for medical diagnosis, there 
has been an increased focus on using ML explanations for understanding 
pre-dictions [14]. Eitel et al. [15] quantitatively compare the robustness 
of attribution maps generated by different attribution methods on 
magnetic resonance imaging (MRI) images for Alzheimer’s disease 
classification. In an-other study, two gradient-based explanation 
methods were used to identify the relevant features used by a CNN 
model trained for classifying estrogen receptor status from breast MRI. 
The explanations helped identify the use of irrelevant features that led to 
changing the pre-processing and training [16]. Attribution-based tech-
niques have been used to generate explanations and detect spurious 
features learned by the model for melanoma detection [17]. To explain a 
deep learning model trained to detect COVID-19 from chest X-ray im-
ages [18], a new technique, GSInquire, is proposed to produce attribu-
tions [19]. GSInquire is evaluated with two new metrics: impact score 
and impact coverage. Impact score is defined as the percentage of fea-
tures that strongly impact the model confidence, and impact coverage is 
defined as the coverage of the identified critical features based on the 
coverage of adversarial impacted features in the input image. GSInquire 
outperformed prior methods such as LIME when evaluated for impact 
coverage and impact score on non-medical data sets. A qualitative 
evaluation of GSInquire is performed on COVID-19 X-ray images. Zhu 
et al. [20] propose a Guideline-based additive explanation framework 
that first determines anatomical features on the basis of an expert 
guideline. Next, these features are perturbed in the CT images of lung to 
incorporate medical guidelines and generate understandable explana-
tions. There has been significant progress in exploring ML explanations 

1 https://gdpr.eu/what-is-gdpr/.  
2 http://www.image-net.org/. 
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for various modalities in the medical domain that include MRI, CT im-
ages, skin images, and X-ray images. Wang et al. [21] propose a deep 
rank-based average pooling network for COVID-19 recognition for more 
ac-curate and precise COVID-19 diagnosis system. The technique pro-
vides an 18-way data augmentation technique to aid model from over-
fitting. A new Deep RAP Network (DRAPNet) is suggested and 
Grad-CAM is utilized to prove the explainable heat map that links 
with COVID-19 lesions. Another technique, Deep Stacked Sparse 
Autoencoder Analytical Model, is brought to the fore by Wang et al. [22] 
to diagnose COVID-19 on chest CT images. First features are extracted 
using two-dimensional fractional Fourier entropy. Next, a classifier is 
created using a custom deep stacked sparse autoencoder (DSSAE) model. 
Finally overfitting is resisted using an improved multiple-way data 
augmentation. These studies focus on identifying relevant features used 
by the model, thus enabling model designers to improve the reliability of 
ML models. In this work we compare state-of-the-art explanation 
genera-tion techniques for COVID-19 detecting using CT images and 
quantitatively compare their accuracy as compared to human 
explanations. 

2.3. Evaluation of the quality of ML explanations 

A recent study by Zhou et al. [6] thoroughly review existing ap-
proaches to assess the quality of ML explanations. The authors study 
existing quan-titative and human-centred evaluations. In the context of 
medical imaging, a large body of existing work on ML explanations focus 
on attributed-based explanations that rank the importance or influence of 
input on the output prediction. For such ML explanation methods, 
various metrics have been proposed that include recall of important 
features: the fraction of these ground-truth features that are recovered by 
the ML explanations or sensitivity: the degree to which the explanation is 
affected by insignificant perturbations of the input. An explanation with 
lower sensitivity is preferable. In addition to evaluating the features that 
influence the ML model, the understandibility of ML explanations to 
human users is important. Here, the approaches that involve humans for 
evaluating ML explanations are applicable. Doshi-Velez and Kim [7] 
introduce three categories of evaluation: i) Application-grounded evalu-
ation: involving the evaluation of explanations in the context of a near 
real application or task. ii) Human-grounded evaluation: where evaluation 
involves humans on simpler tasks and is appropriate when testing gen-
eral no-tions of quality of explanations. iii) Functional-grounded evalua-
tion: where proxy tasks not involving human subjects are used. Similarly, 
the need to measure the quality of explanations using a System Caus-
ability Scale (SCS) has been proposed, “.. to quickly determine whether 
and to what extent an explainable user interface (human–AI interface), 
an explanation, or an explanation process itself is suitable for the 
intended purpose” [23]. 

Application-grounded and human-grounded evaluations have the 
ML explanations evaluated with humans. In these studies qualitative and 
quantiative metrics are used to evaluate explanation qualities. Qualita-
tive metrics include rating provided by users via surveys or question-
naires. Quantitative metrics would require measuring performance of 
humans on tasks when assisted with ML explanations. In our work we 
use a qualitative approach by presenting a survey to clinicians for 
COVID-19 diagnosis. 

2.4. User-centric evaluation of trust with ML explanations 

A common qualitative evaluation approach is to study the effects of 
ML explanations on user trust via a set of tasks and a questionnaire 
designed to obtain user responses on the task and the ML explanations 
[24,25]. “Willingness to accept a computer generated recommendation” 
is an observable sign of user trust [26]. User trust evaluations measure 
the experience of users, using a questionnaire or based on observations. 
Nourani et al. [24] conducted a study with 60 undergraduate and 
graduate students as participants. The participants were asked to 

provide feedback on the perceived accuracy of the system after pre-
senting them with varying types of explanations (i.e. no explanations, 
weak, and strong explanations). Papermeier et al. [25] conducted a user 
study that dealt with the task of classifying offensive tweets. 

The study investigated the effects of model accuracy and fidelity of 
explanations on user trust. A low fidelity explanation did not provide 
any useful information about the underlying model. The study tested 
nine conditions (3 model accuracy levels × 3 explanation fidelity levels). 
Both the studies show that model accuracy and explanation fidelity or 
correctness influences user trust and that providing meaningless expla-
nations harms user trust. In another study, Zhou et al. [27] investigated 
the influence of ML explanation on user trust. Here, the explanations are 
presented by referring to training data points that influence predictions. 
The study found that ML explanation enhanced trust but only for 
training data points with higher influence on prediction, and for high 
model performance. 

A quantitative approach to measure the usefulness of ML explana-
tions is by measuring users’ understanding of the machine generated 
explanations [28]. The users’ understanding is measured by considering 
a proxy measure such as the time taken by the user to do a certain task 
based on the explanation or by a subjective rating from the user. A study 
on enhancing the ability of users to predict the outcome of a machine 
learning model by providing explanations using saliency maps has been 
investigated [29]. The study indicates that the use of instance-level sa-
liency maps does not enable users to predict the outcome of the model. 
There have been approaches that quantify the response time and accu-
racy in decision making tasks when presented with ML explanations as 
an indicator of the quality of ML explanations [30] and to measure user 
trust [31]. Additionally, recent study measuring physiological signals 
such as Galvanic Skin Response (GSR) and Blood Volume Pulse (BVP) 
showed significant differences when users were presented the ML ex-
planations. Hence, physiological responses can be used as indicators of 
user trust and for assessment of the quality of ML explanations [32]. 

Existing work has extensively focused on non-medical domains and 
few of these studies have been carried out on simpler tasks that do not 
require domain expertise. We present an application-grounded evalua-
tion by evaluating ML explanations for COVID-19 diagnosis, compare 
them with ground truth generated by radiologist, and conduct our user 
study on clinicians. 

3. Approach 

This section describes the approach used to i) evaluate ML expla-
nations generated by different post-hoc methods for COVID-19 diag-
nosis, and ii) perform an application-grounded evaluation of user trust 
via a study design with clinicians as participants. As presented in Fig. 1, 
our approach starts with using a pre-trained deep learning model with 
high classification performance to diagnose COVID-19 using CT-images. 
ML Explanations for the diagnosis are generated using different post-hoc 
methods. Human explanations (or ground truth explanations) are 
collected from radiologists for a subset of 65 CT images. The human 
explanations are used to categorise ML explanations into strong and weak 
categories. ML explanations that are aligned or congruent with human 
explanations are considered strong. Finally, we perform a user study by 
presenting the diagnosis and different categories of ML explanations to 
evaluate clinicians’ trust on the AI model. 

3.1. CNN-based COVID-19 diagnosis model 

Our first step is to diagnose COVID-19 infections using CT images 
automatically. We use a pre-trained deep convolutional neural network 
model for detection of COVID-19 cases [3] (COVIDNet-CT). As our 
study’s objective is to evaluate model explanations and its influence on 
clinicians’ trust, we do not focus on designing a deep learning model, but 
use a pre-trained model. However, we require a highly accurate model 
to evaluate the ma-chine explanations. Hence, we use a pre-trained 
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model, COVIDNet-CT with the best model performance. The pre-trained 
CNN-based model architecture is designed via machine-driven design 
exploration. In a machine-driven design exploration strategy, the 
problem of identifying a tailored deep neural network architecture is 
formulated as a constrained optimization problem where the objective is 
to maximize an accuracy based score with constraints of having a recall 
of ≥ 95% and a COVID-19 precision of ≥ 95%. The network architecture 
produced consists of a heterogeneous composition of spatial convolution 
layers, pointwise convolutional layers, and depthwise convolution 
layers. As discussed by the authors [3], the architechture (see Fig. 2) 
uses the projection-replication-projection-expansion design pattern 
(denoted as PRPE and PRPE-S for unstrided and strides patterns, 
respectively). Here, a projection to a lower channel dimensionality is 
done via point wise convolutions, followed by a replication of pro-
jections. Depth wise convolutions are further followed by a point wise 
convolutions. The architecture also contains long-range connectivity 
enabling better representational capabilities than a densely-connected 
deep neural network architecture. This design pattern is explored and 
automatically discovered using the machine-driven design. The model is 
first trained on ImageNet data set and then trained on the data of 1489 
patient cases. 

The data used for training, validation, and test comprises 104,009 
im-ages of 1489 patients collected by the China National Center for 
Bioinformation [33]. The data consists of CT images of three different 
infection types: 

3.2. Human annotation baseline 

We capture human annotation of salient features to create the 
ground truth for the evaluation of machine-generated model explana-
tions. We select CT images of 65 different patients covering COVID-19 
(35 CT images) and common pneumonia (30 CT images) classes. The 
data collection approach is detailed as follows:  

• CT-images of 30 distinct patients with coronavirus pneumonia that 
were correctly predicted by the model. These were true positives and 
the prediction probability of the model was ≥ 0.98.  

• CT-images of 30 distinct patients with normal pneumonia that were 
correctly predicted by the model. These were the true negatives and 
the prediction probability of the model was ≥ 0.98.  

• CT-images of 5 patients with coronavirus pneumonia were chosen 
where the model predicted as normal pneumonia resulting in false 
negatives. The prediction probability of the model was ≥ 0.83. 

The model has a single patient classified as a false positive and this 
was due to the bad resolution of the CT images. Hence, we did not 
consider a false positive for our annotations. Each CT-image was an-
notated by a minimum of two radiologists independently. A random set 
of 40 CT scans were annotated by 3 radiologists. Multiple annotations 
enables us to quantify the alignment of human explanations between 
experts in the domain. We further make the data set available for future 
research.3 

The human annotation of CT images indicative of COVID-19 infec-
tion contains peripheral, bilateral ground-glass opacities as indicated in 
Fig. 3. These opacities may be visible with or without crazy-paving lines. 
The ground glass opacities have a rounded morphology (or shape) 
during the initial course of the disease but involves a larger part of the 
lung as the disease advances. Pneumonia images, on the other hand, 
have septal thickening, bronchovascular bundle thickening, interstitial 
nodules, and honeycombing. These differences are subtle when 
compared to other data sets that are used to evaluate and generate ML 
explanations for object detection. 

3.3. ML explanations for COVID-19 diagnosis 

We use current state-of-the-art attribution methods to generate local 
explanations for the CT images. Local explanations are specific to that 
particular image:  

• Grad-CAM [9]: It is a class-discriminative attribution method that 
uses the gradients of any target class flowing into the final con-
volutional layer. The gradients are global-average-pooled to produce 
a coarse heat-map highlighting important regions in the image for 
predicting a class (COVID-19 and Common pneumonia in our case).  

• Occlusion [13]: In occlusion, the attribution is computed by the 
change in the output prediction confidence when some part of the 
input image is “occluded” (i.e. set to zero or a constant value). Here, 
we occlude 2 × 2 pixel window and generate heat-maps based on 
their influence on the prediction probability. It is a 
perturbation-based approach for generating explanations.  

• RISE [10]: It is a model-agnostic approach as the importance heat 
map is obtained with access to only the input and output of the deep 
learning model. The importance of pixels is determined by masking 
them in random combinations. Bilinear upsampling is used to avoid 
adversarial effects due to sharp edges of masks. 

Fig. 1. An overview of the approach to evaluate visual explanations and clinician’s trust.  

3 https://sites.google.com/view/explainable-ai-user-trust/. 
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• LIME [8]: It is another model agnostic approach that first creates 
samples by perturbation of super-pixels of an image. The data set 

created using the perturbed samples is then used to train a linear 
model that is locally similar to the black-box model. The samples are 
weighted based on their distance from the image. The linear model 
provides explanations of super-pixels that influence the prediction. 

We choose methods that are model-agnostic (RISE, LIME, Occlu-
sion), and Grad-CAM, which is suitable for any CNN-based model. All 
the ML explana-tions are generated for the same underlying pre-trained 
COVID-19 diagnostic model. 

3.4. Evaluating trust with a user study 

As trust is an experience of each clinician, it is evaluated with a user 
study. Ideally, the trust in the system would be high if the human and 
machine reasoning are congruent [23]. However, given that existing 
research on generating ML explanations that provide insights into the 

reasoning of the model is still evolving, we set up an online study to 
assess the trust for automated COVID-19 diagnosis using explanations 
generated by the current state-of-the-art techniques. User trust is eval-
uated via a questionnaire representative of questions brought forth by 
Körber [34]. Three underlying dimensions that influence the trust in 
automation are postulated by Körber: Reliability/Competence, Under-
standability/Predictability, and Intention of Developers. In our work, we 
focus on the factors that are influenced by ML explanations: Trust, Un-
derstandability, and Reliability. In total, our questionnaire consists of 
eight questions related to understandability, reliability, and the user 
trust, as shown in Table 1. 

The user survey consists of three blocks. In the first block, the user is 
presented with CT images with the prediction probability followed by 
the set of eight questions. Here, we would like to observe the trust in a 
system when the automated system provides minimal level of informa-
tion. The second block has the user presented with CT images with ML 
explanations generated by one of the techniques mentioned in Section 
3.3. ML Explanations. 

Fig. 2. The COVID-19 Pre-trained model architecture using machine-driven design exploration [3].novel coronavirus pneumonia, common pneumonia, and normal 
controls. The trained model achieves an overall accuracy of 99.1% with COVID-19 sensitivity (or recall) of 97.3% on the test data (20% of the data) which comprises 
of 120 COVID-19, 120 pneumonia, and 50 normal patient cases. The specificity of the model for COVID-19 is 99.9% and the positive predictive value (or precision) 
is 99.7%. 

Fig. 3. Human annotated CT-images for COVID-19 pneumonia and common pneumo-nia.  
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that closely match human judgement (strong explanations) are pre-
sented to the user. The questionnaire follows it. In the third block, CT 
images that reasonably match human judgement are presented, fol-
lowed by the same set of eight questions. The ML explanations are 
chosen based on the precision and recall measures that we discuss in 
detail in Section 4. Our objective is to evaluate the variance in trust as 
the user navigates from no explanations, strong explanations to weak ex-
planations. As medical diagnostics is a high stake domain, we assume 
that a deployed system would be used if it provides explanations that 
have some congruence with human explanations. Hence, we do not 
present explanations to users that have zero match to human judgement. 
Our study, therefore, reflects an optimistic scenario of ML ex-planations 
having reasonable match with human explanations. In the study, each 
user responds to 24 questions. Besides, we capture qualitative feedback 
from the user on the explanations provided to the user. 

4. Explanation evaluation 

We evaluated the ML explanations generated by different methods to 
measure their proximity to human annotations. Their proximity to 
human. 

For evaluation, we ran RISE over 3 runs and took the best measure. 

For Occlusion, we used a mask size of (4 × 4), as running a smaller size 
mask was computationally expensive. We ran LIME for 5000 perturba-
tions. The results for the 65 CT images are presented in Table 2. Fig. 4 
illustrates four examples of explanations generated by the different 
methods and human annotations. The first two explanations are labelled 
as strong explanations as there is high alignment of at least one machine 
explanation with the human annotation (RISE). The two weak expla-
nation have low alignment with the human annotations. Fig. 4 further 
illustrates one CT-image where the three radiologists have marked 
different regions. 

The results indicate that RISE outperforms other methods with an 
aver-age precision of 0.73 and recall of 0.50 across all explanations in 
the context of the COVID-19 CT images that we used for the study. The 
other methods have significantly lower precision and recall. Occlusion, 
for example, is susceptible to identifying irrelevant attributions as 
masking triggers adversarial effects demonstrated by previous studies 
where specific inputs can generate unexpected outputs [36]. Hence, the 
results of Occlusion lead to low precision and lower recall. We observe 
lower prediction and recall for Grad-CAM too. This is inline with the 
recent study that indicates that Grad-CAM is not a reliable explanation 
method and can highlight locations that the model does not use [37]. 
Hence, Grad-CAM sometimes produces misleading explanations that 

Fig. 4. Human annotations and explanations generated by RISE [10], Grad-CAM [9], Occlusion [13], and LIME [8]. A strong explanation has at least one technique 
with high precision and recall. Human annotations have different salient regions highlighted for a COVID-19 CT image. The salient regions responsible for the 
prediction are represented by red color when using RISE, Grad-CAM, and Occlusion. LIME presents pixels supporting the prediction with green color and pixels 
negating the prediction with red color.annotations was measured by the pointing game as used in the previous studies [10,11,35]. For the evaluation, the highest (or 
maximum) saliency points of each explanation is extracted. In Fig. 4, this would mean the dark red attributed regions of the explanations provided by RISE, Grad- 
CAM and Occlusion and green regions for LIME. If the point lies within the human-annotated region, it is counted as a hit. Otherwise, the point is considered as a 
miss. For example, if we consider the first explanation of RISE for COVID-19 CT image in Fig. 4, there are two high saliency points that lie in the region indicated by a 
human annotation. Hence, it has 2 hits and 0 miss. However, for LIME, it would result in 2 hits and 5 miss The pointing precision is then computed as #hit. In addition, 
we also compute the recall of the explanations with respect to the ground truth annotations as #hit. Each ML explanation is compared to at least #ground− truth two 
human annotations. Further, the pointing game precision and recall is used to compare alignment between human explanations for COVID-19 and pneumonia CT 
images. Hence, one expert is considered as ground-truth to compare other two human experts. The assumption is that humans could focus on different regions of the 
CT images to make a decision. 

K. Goel et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 146 (2022) 105587

7

highlight irrelevant locations. LIME uses a local approximation model 
that can lead to incorrect explanations [38]. 

It is further observed that human judgement varies with an average 
pre-cision ranging between 0.81 and 0.86, and a recall ranging between 
0.77 and 0.83. The box plots present further details of the distribution of 
precision. 

5. User evaluation 

We conducted a user study to assess the influence of explanations on 
the trust of clinicians and gain an assessment on how reliable and un-
derstandable the explanations are for automated COVID-19 diagnosis. 

Therefore, the questions that the user study intended to answer were:  

• Are the explanations perceived reliable by clinicians for automated 
COVID-19 diagnosis?  

• Are the explanations understandable by clinicians for automated 
COVID- 19 diagnosis?  

• Do the explanations induce trust in clinicians for automated COVID- 
19 diagnosis? 

5.1. Design 

To answer the above mentioned questions, a user survey with a 
within subject design was prepared. The survey consisted of four main 
blocks. Block 1 focused on obtaining demographic information related 
to the user such as years of practice and experience with assessing lung 
CT scans. The next three blocks focused on providing three different 
types of explanations as explained in Section 3.4. 

Block 2 consisted of five images along with the prediction and the 
prediction probability of the model. Of the five images, three were true 
positive (i.e., the patient had COVID-19 and the model predicted COVID- 
19) with high prediction probability (> 98%), one was false negative (i. 
e., the patient had COVID-19 but the model predicted Pneumonia) with 
high prediction probability (= 0.98), and one true negative (i.e., the 
patient had Pneumonia and the model predicted Pneumonia) with high 
prediction probability. 

(= 0.98). We presented all images and their prediction probability to 
understand if it influences the trust of users as well as reliability and 
understanding of the model, which were evaluated using the eight 
questions mentioned in Table 1. 

In block 3 and 4, we presented five images with strong and weak 
explanations, respectively. Since RISE outperformed other methods, 
explanations generated by RISE were used in the survey. We displayed 
the original CT image and the explanation alongside it and mentioned 
the prediction along with its prediction probability. The pointing game 
metrics of precision and recall were used to choose the explanations. 

Fig. 5. Precision and Recall of pointing game.  

Table 1 
Questions and dimensions for the user study.  

Question Dimension 

The system is capable of diagnosing correctly Reliability 
The system is reliable Reliability 
The system can make errorsa Reliability 
The system is capable of making complicated diagnosis Reliability 
I was able to understanding why things happened Understanding 
The system makes unpredictable decisionsa Understanding 
I can rely on the system Trust in the system 
I trust the system Trust in the system  

a = inverse item. 

Table 2 
Pointing game evaluation measure with two ground-truth (GT) human annota-
tions and recall across the different methods (Fig. 5).  

GT Human3 Prec. Recall GT Human1 Prec. Recall 

Human1 0.81 0.77 Human 2 0.86 0.83 
RISE [10] 0.68 0.48 RISE 0.78 0.52 
Grad-CAM [9] 0.33 0.28 Grad-CAM 0.31 0.30 
Occlusion [13] 0.29 0.31 Occlusion 0.30 0.38 
LIME [8] 0.30 0.47 LIME 0.30 0.48  
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Strong explanations had a precision of (≥ 0.75) and a recall of (≥ 0.75) 
when compared to at least one of the human annotation. A weak 
explanation had precision in the interval [0.5,0.75) and a recall ≥ 0.5 
when compared to a human annotation. The pointing game metrics was 
not presented to the user. Some examples of strong and weak explana-
tions are highlighted in Fig. 4. Block 3 had three COVID-19 images that 
were true positive and two Pneumonia images that were true negative. 
All these predictions had a high prediction probability (≥ 0.98). Block 4 
had three COVID-19 images that were true positive, one Pneumonia 
image that was true negative, and one COVID-19 image falsely predicted 
as Pneumonia. The false negative prediction had a prediction probability 
of 0.83, while the others had high prediction probability (≥ 0.98). These 
blocks aimed at assessing the influence of strong and weak explanations 
on reliability and understanding of automated systems and subsequently 
trust on such a system. 

The ordering of strong and weak explanations can affect user trust. 
We rely on the findings by Nourani et al. [39] which indicate that user 
trust is influenced by first impressions. Their study finds that errors 
early-on can cause negative first impressions for domain experts, nega-
tively influencing their trust over the course of interactions. However, 
encountering correct information early would enable them to adjust 
their trust as they encounter errors. Based on their findings, we first 
present strong explanations in block 3 followed by weak explanations in 
block 4. 

The survey ended with two questions that aimed at obtaining qual-
itative feedback on the usefulness of explanations. 

5.2. Participants 

The survey was sent via email to 50 clinicians experienced in reading 
CT images, using their publicly available email addresses. Convenience 
sampling was used to identify clinicians for this study. In the email the 
details related to study were explained. We asked the clinicians to 
respond to the email if they believed that they can contribute to the 
study. We received 30 responses, which were analysed for this study. 
The responses obtained are made available for future study.4 All par-
ticipants had experience in reading and analysing CT images. Fig. 6 
provides an overview of the years of experience participants had in 
analysing CT images. The demographic summary conveys that all par-
ticipants were well-equipped to answer the questions raised in this 
study. 

5.3. Analysis 

We measure reliability, understanding, and trust in automation 
quantitatively using questions listed in Table 1, which were rated on a 5- 
point likert scale. We computed the average values of responses related 
to each dimension across the three blocks, denoted as No explanation, 
Strong explanation, and Weak explanation in the results subsequently. 
Non-parametric Friedman test [40] was used to analyse the results. 
Friedman test is an alternative to one-way ANOVA with repeated mea-
sures and is used to test the differences between groups when the 
dependent variable is quantitative or ordinal. It is also used for contin-
uous data that violates assumptions necessary to run one-way ANOVA 
repeated measures. In this study, Friedman test was used to detect the 
differences across the three blocks. 

Table 3 presents the results of responses to questions related to 
reliability and Fig. 7 provides an overview of the results on reliability for 
each block in the survey. The results are found to be statistically insig-
nificant (p = 0.415). However, the mean ranks show that the reliability 
of the model reduced from when no explanations were provided blueto 
strong explanations and then weak explanations. This is also evident in 
Fig. 7 where we observe that the minimum and maximum reliability 
score is higher for string explanations than weak explanations. The re-
sults demonstrate that clinicians found the AI model reliable when no 
explanations were provided. The explanations reduced the perceived 
reliability of the model. The findings can be attributed to clinicians not 
finding the explanations specific as stated by them in their qualitative 
feedback. While the pointing game measure leads. 

to high precision, the annotations by humans are more specific. 
Humans point to specific areas and in contrast, the heat-maps generated 
by attribution models highlight broader regions. The results convey that 
metrics of high precision and recall with pointing game does not lead to 
high reliability of the model in the medical domain. The observation is 
further reinforced through the feedback from participants, “multiple re-
gions are not highlighted properly” and “[need] more precise color coding.” 

Table 4 demonstrates the results related to questions on under-
standing and Fig. 8 provides an overview of the responses related to 
questions on understanding in each block. The results are statistically 
significant (p = 0.004), suggesting that the perceived understanding of 
the clinicians varied across. 

the three blocks. The mean ranks convey that the understanding of 
the prediction reduced from Section 1 to 3. This is also reinstated from 
Fig. 8, which shows that the median and quartiles drop from when no 
explanations to provided to when weak explanations are presented. 
Explanations should. 

have contributed to the understanding of the clinicians; however, 
this is not true. Furthermore, to investigate the difference among various 
blocks, we conducted Wilcoxon post-hoc test [41]. The results are pre-
sent in Table 5. It is inferred that the difference is statistically significant 
for no explanations and weak explanations (p = 0.002) and strong ex-
planations and weak explanations (p = 0.017). The results clearly 
demonstrate that the understanding is impacted the most when weak 
explanations are provided than when strong or no explanations are 
provided. 

The results reinforce the fact that explanations require high precision 
and high recall to contribute to the understanding of the clinician. 
Missing certain regions or having spurious regions in explanations can 
be detrimental to the understanding of clinicians. This is reinstated by a 

Fig. 6. Years of experience of participants.  

Table 3 
Results for questions on reliability.  

Block Mean 
Rank 

N 25th 50th 75th 

No explanation 2.15 30 2.92 3.67 4.33 
Strong explanation 2.00 30 2.92 3.33 4.00 
Weak explanation 1.85 30 2.67 3.33 3.75  4 https://sites.google.com/view/explainable-ai-user-trust/home. 
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comment in a survey, “all regions need to be highlighted for diagnosis”, 
which communicates that high recall is crucial for the understanding of 
the diagnosis. In addition, the expectation is to highlight “patterns of 
opacities.” 

Next, we analysed the results presented in Table 6 which demon-
strates the trust in the system. Fig. 9 presents the variation in trust from 
when no explanations are provided to strong and weak explanations. 
The results are statistically insignificant (p = 0.240). However, the mean 
rank reveals that explanations, in fact strong explanations (2.12), 
contribute to perceived trust of the clinician. The results convey that the 

trust increased from no explanations (2.10), to when strong explanations 
were provided (2.10), and then decreased again when weak explana-
tions were presented (1.78). This is also reinforced from Fig. 9. The 
findings communicate that while explanations do not contribute to 
reliability and understanding of the model, they do contribute to the 
perceived trust. This finding was fortified by comments made by par-
ticipants, such as “it assists in diagnosis and makes the things easier.” 
Moreover, they also show that weak explanations are not useful and do 
not contribute to enhancing trust of clinicians with comments such as 
“the system makes mistakes, in some cases made incorrect assessment “. This 
can be related to the fact that medical domain requires completeness and 
precision to provide appropriate care to patients [42]. 

Although the results on trust were statistically insignificant (p =
0.240), a higher result for strong explanations was evidenced, which 
could be examined in future experiments. Furthermore, for explanations 
to enhance understanding and be perceived as reliable, the medical 
domain demands a high recall in addition to precise salient maps. 

Analysis of Qualitative feedback: The survey also consisted of two 
optional questions to obtain qualitative feedback from clinicians: Did the 
explanations help you? Why? and What else in addition to explanations do 
you require to use such systems? 

Out of 30 respondents, 13 clinicians indicated that they found the 
explanations helpful. However, the same 13 participants also com-
mented that while they are helpful, there is a potential of they being 
more comprehensive. One participant stated, “Prior knowledge is must” 
and another remarked “it helped but only to an extent.” This is in accor-
dance with our quantitative analysis, which communicated the need for 
explanations to have a high recall and have precise salient regions for 
them to be perceived as trustworthy by the clinicians. Further, a few 
clinicians suggested that additional details are necessary to enhance 
understanding of the overall system. This included providing additional 
information such as the age of the patient, clinical history, and duration of 
illness during the imaging. The findings demonstrate that while machine 
learning model explanations can assist doctors in making diagnosis, they 
are not considered comprehensive for enhancing user trust. As indicated 
by a respondent, “[the explanations] save time for a clinician.” The 
findings indicate that further advancements in techniques to generate 

Fig. 7. Overview of responses for questions on reliability.  

Table 4 
Results for questions on understanding.  

Block Mean 
Rank 

N 25th 50th 75th 

No explanation 2.25 30 3.50 4.00 4.50 
Strong explanation 2.17 30 3.50 4.00 4.50 
Weak explanation 1.58 30 3.00 3.25 4.00  

Fig. 8. Overview of responses for questions on understanding.  

Table 5 
Wilcoxon Post-hoc test for understanding.  

Blocks Compared p value 

No explanation and Strong explanation 0.339 
No explanation and Weak explanation 0.002 
Strong explanation and Weak explanation 0.017  

Table 6 
Results for questions on trust.  

Block Mean 
Rank 

N 25th 50th 75th 

No explanation 2.10 30 3.00 4.00 4.50 
Strong explanation 2.12 30 3.00 4.00 4.50 
Weak explanation 1.78 30 3.00 3.50 4.50  

Fig. 9. Overview of responses for questions on trust.  
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explanations with rigorous measures to evaluate their quality are 
required to enhance reliability, understanding, and trust in using im-
aging for medical diagnostics. 

6. Conclusion 

With recent advances in the use of deep learning for medical di-
agnostics, it is essential to understand the efficacy of explainable 
models. We presented our study on generating machine learning ex-
planations using several state-of- the-art techniques to evaluate them 
with a human benchmark for CT images of COVID-19 and common 
pneumonia infections. Our data set can be used for quantitative evalu-
ation of saliency maps based on human annotations. This evaluation 
enables us to quantify the quality of explanations generated by existing 
methods. We further performed an empirical study to evaluate the trust 
of clinicians based on explanations which had high and low precision 
and recall grounded on existing pointing game metrics. The results were 
inconclusive for trust and reliability, but conclusive for understanding. 
Evidence suggests that explanations increase trust on the system; how-
ever, they reduce the understanding and reliability. This is because 
clinicians require precise and complete explanations for a high-stake 
decision support system. Considering our study presented only ML ex-
planations that had some overlap with human judgement, the results 
present an optimistic outcome. 

As for our future work, we are interested in deriving metrics that 
would be effective in evaluating machine explanations for CT images. 
These measures would need to consider overlapping and non- 
overlapping salient regions of explanations and human annotations. 
As indicated in the qualitative feed-back, clinicians would like to 
consider additional information for better understanding and diagnosis. 
Here, multi-modal feature representation that considers images, text, or 
genomics data can be used to generate and present ML explanations as 
motivated by prior research [43]. In the user survey, we would further 
assess user trust by including additional factors such as familiarity and 
users’ propensity to trust that could influence our current findings. 
Additional evaluation methods such as the System Causability Scale can 
be explored to evaluate the quality of explanations. Finally, the number 
of clinicians available to respond during the pandemic was a limitation 
in our current study. We would strive to extend our study to a larger 
number of clinicians, which would also assist in obtaining statistically 
significant results. 
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