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Abstract: Rock wool (RW) nanostructures of various sizes and morphologies were prepared using a
combination of ball-mill and hydrothermal techniques, followed by an annealing process. Different
tools were used to explore the morphologies, structures, chemical compositions and optical character-
istics of the samples. The effect of initial particle size on the characteristics and photoelectrochemical
performance of RW samples generated hydrothermally was investigated. As the starting particle
size of ball-milled natural RW rises, the crystallite size of hydrothermally formed samples drops
from 70.1 to 31.7 nm. Starting with larger ball-milled particle sizes, the nanoparticles consolidate
and seamlessly combine to form a continuous surface with scattered spherical nanopores. Water
splitting was used to generate photoelectrochemical hydrogen using the samples as photocatalysts.
The number of hydrogen moles and conversion efficiencies were determined using amperometry
and voltammetry experiments. When the monochromatic wavelength of light was increased from
307 to 460 nm for the manufactured RW>0.3 photocatalyst, the photocurrent density values decreased
from 0.25 to 0.20 mA/mg. At 307 nm and +1 V, the value of the incoming photon-to-current efficiency
was ~9.77%. Due to the stimulation of the H+ ion rate under the temperature impact, the Jph value
increased by a factor of 5 when the temperature rose from 40 to 75 ◦C. As a result of this research, for
the first time, a low-cost photoelectrochemical catalytic material is highlighted for effective hydrogen
production from water splitting.

Keywords: rock wool; nanostructures; water splitting; hydrothermal technique; ball mill

1. Introduction

In the 21st century, energy is one of the greatest challenges. Nearly 80% of the world’s
energy comes from the burning of fossil fuels such as oil, coal and natural gas. Unluckily,
these fossil fuels have many drawbacks. Fossil fuels are nonrenewable fuel sources, and
within a restricted period, they will inevitably expire. Moreover, the burning of fossil fuels
is followed by hazardous CO2 emissions owing to the reaction between carbon (C) in fossil
fuels and oxygen gas (O2). This is the main cause of the reduction in the quantity of oxygen
gas in the atmosphere and threatens organisms’ life on earth [1]. The emission of CO2 gas
into the atmosphere often increases temperatures and causes greenhouse effects and climate
change [2]. The challenges for scientists nowadays are to encounter the global energy
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demand with advances in energy supply and efficiency, along with extenuating the risks of
environmental disturbance [3,4]. Solar energy is one of the most promising solutions to
address this problem [5], as it is a renewable resource that can be used in photovoltaic cells
(solar-to-electricity conversion) and photoelectrochemical (PEC) conversion (solar-to-fuels
conversion), as well as water splitting [6].

Hydrogen, on the other hand, is seen as the most promising alternative energy source
to nonrenewable fossil fuels [7,8]. In summary, hydrogen-based fuels have received a lot
of interest as an alternative energy source to fossil fuels. Hydrogen fuel has the potential
to be a cleaner and more sustainable source of energy [9], with a high energy-conversion
efficiency and zero carbon emissions [10].

However, since Fujishima and Honda announced the groundbreaking photocatalytic
effect of TiO2 in 1972 [11], tremendous research has been conducted to generate hydrogen
through water splitting using various ways such as electrocatalytic [12,13], photoelec-
trochemical [14–16], and photochemical [17]. Among these, PEC hydrogen production
appears to be the most promising effective way to produce hydrogen because it is simple
to run, has high efficiency, and does not require additional power to drive the reaction
system; it is a low-cost, environmentally friendly, high-performance, and energy-efficient
technique [18–21]. Hydrogen production by solar-water splitting in a PEC cell is a rapidly
evolving technology with enormous potential to meet the world’s expanding energy de-
mands [22–25]. Water splitting in a PEC cell involves two half-reactions: cathodic reduction
and anodic oxidation, which is similar to photosynthesis in nature. The photocatalyst
absorbs the sun’s light and uses it to trigger chemical processes such as water splitting,
which produces H2 and O2 [26].

Many metal-oxide semiconductors have been developed and used as a photocatalyst
for PEC water splitting, such as SnO2, ZnO, TiO2, SrTiO3, Cu2O, WO3, Fe2O3, BiVO4 and
Ta2O5 [27–35]. Furthermore, Pt or Pt-based materials have long been thought to be the
most active catalyst for the hydrogen-evolution reaction (HER), but they are expensive and
scarce [36–40]. As a result, HER electrocatalysts with low-cost and abundant non-noble
elements have been proposed as a possible replacement for Pt-based electrocatalysts. Non-
noble metal HER electrocatalysts have better electrocatalytic activity in alkaline electrolytes
compared to acidic and neutral electrolytes [41,42]. As a result, transition-metal sulfides
(TMS) with an electronic structure comparable to that of noble metals have been investi-
gated as a possible replacement for Pt as an HER electrocatalyst [43,44]. FeS2, NiS2, CoS2,
CoSe2, CuS and WS2 [45–50] are some of the TMS that have been widely researched as a
replacement for Pt in HER. However, finding an optimal photocatalyst that fits the basic
parameters such as an acceptable bandgap for sunlight absorption, suitable band positions
for water reduction/oxidation and stability under the requisite reaction conditions with
low cost is a hard challenge [51].

Nowadays, scientists seek to explore novel materials (photocatalyst) for hydrogen
production-based PEC water splitting. Basalt is the basic material for the creation of rock
wool, which belongs to the family of mineral fiber thermal insulators. Because rock wool
has a relatively high melting temperature, it can be used as a fire-resistant material [52].
Rock wool waste recycling, on the other hand, is of special relevance in terms of reducing
environmental difficulties caused by construction and demolition waste [53]. It was also
discovered that including rock wool into lightweight concrete specimens, both with and
without heat loading, improved the mechanical properties of the material. RW and glass
wool (GW) have been used in town construction [54], ancient city rehabilitation [55], sound
insulation [56], industrial buildings [57] and other areas as green building materials.

After thermal loading (at 20, 200, 400 and 600 degrees Celsius), Bahrami and Ne-
matzadeh investigated the mechanical characteristics of pumice lightweight aggregate
concrete including rock wool waste (0, 2.5, 5, 7.5 and 10%) [58]. Stonys et al. investigated if
mineral wool-production waste might be used to substitute microsilica in the production of
refractory concrete [59]. The results demonstrated that integrating rock wool material into
the refractory concrete enhanced the specimens’ cold-crushing strength with and without
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thermal loading. Because of their suitable thermal characteristics, light weight, high tensile
strength and low cost, rock wool fibers (RWF) have been widely exploited as insulator
materials in recent decades [60]. The RW has not been studied for PEC water splitting.

This research will use a simple and low-cost way to integrate a novel material (RW) as
a water-splitting photocatalyst, concentrating on the features and efficiencies of each PEC
system. To improve its qualities by increasing surface area, the RW has been transformed to
a nanostructured size. A simple and low-cost hydrothermal process was used to create the
RW nanomaterials. The influence of particle size (mixed size, 0.03, 0.063, 0.3 and more than
0.3 mm) on RW nanostructure alterations was investigated using XRD, EDAX and SEM. All
samples had their optical characteristics tested and were ready to employ in a PEC water-
splitting application. For the first time, the effects of the incident monochromatic light
wavelength and PEC reaction temperature on the performance of the RW photocatalyst
are studied. Moreover, the conversion efficiencies and the produced number of hydrogen
moles are obtained.

2. Experimental Work
2.1. Raw Materials

Fresh rock wool (RW) samples were delivered from Kalabsha kaolinite mine, Aswan,
Egypt. The chemical composition of the studied fresh sample is as follows: SiO2 (44.9%),
CaO (17.8%), Al2O3 (13.1%), MgO (8.5%), Fe2O3 (8.8%), Na2O (1.9%), K2O (1.2%), MnO
(0.3%), TiO2 (1.9%) and other metal oxide (1.6%). Sodium hydroxide (NaOH, 98.9%) was
supplied by ADWIC (Egypt), and hydrochloric acid (HCL, 38%) was supplied by Sigma
Aldrich (Germany).

2.2. Synthesis of RW Nanostructure

Using a horizontal rolling ball mill devoid of contaminations, the fresh rock wool
(RW) was processed for 24 h at 6000 rpm to minimize the sample size. A 1 L cylindrical
stainless-steel pot was filled with 80 vol.% of RW particles and monosized 3 mm spherical
steel balls. Using a set of sieves, the obtained samples from ball milling were divided into
several particle-size samples (Mixed size, 0.03, 0.063, 0.3 and more than 0.3 mm). A total
of 4 gm of each sample was dispersed in an aqueous 1 M NaOH solution for 2 h using an
ultrasonic stirrer, then transferred to a 250 mL Teflon-lined stainless-steel autoclave and
heated at 140 ◦C for 16 h. The product was recovered by centrifugation and rinsed with
0.1 M HCl after cooling to 27 ◦C (room temperature). Finally, the RW nanopowder was
calcined for 3 h at 700 ◦C to complete the conversion to the RW crystalline phase. The
obtained samples are labeled as RWmix, RW0.03, RW0.063, RW0.3 and RW>0.3 due to different
starting particle sizes; mixed size, 0.03, 0.063, 0.3 and more than 0.3 mm, respectively.

2.3. Samples Characterization

Scanning electron microscopes (SEM; JEOL, JSM-5410LV, Tokyo, Japan) and transmis-
sion electron microscopes (TEM, JEOL-2010F, Tokyo, Japan) were used to investigate the
surface morphology of manufactured RW nanopowders and to determine the top morphol-
ogy and interior structure of the samples, respectively. The degree of crystallization and
phase composition was determined using a Cu-K X-ray diffractometer (Philips X’Pert Pro
MRD, Malvern, UK) with an operating voltage of 40 kV and a scan range of 20◦ to 80◦ in
0.05◦ increments with a count duration of 1 s each time. The chemical compositions were
investigated using an energy dispersive X-ray (EDX) spectrometer with a 30 kV accelerating
voltage (JEOL JED-2300, Tokyo, Japan). Using a UV-Vis double-beam spectrophotometer,
the optical characteristics of the nanopowders were investigated (PerkinElmer, Lambda
950, Boston, MA, USA).
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2.4. Photoelectrochemical (PEC) Measurements

The PEC analysis was examined by using a workstation (Orga-Flex, Paris, France) in
the two-electrode system; Pt and graphite sheets were the two electrodes used. A total
of 0.05 g of Rw sample was dispersed in 0.3 M Na2S2O3 aqueous solution as electrolyte
medium (pH = 7.0) that consumes the photogenerated holes from the photocatalytic surface.
The photocurrent was recorded under irradiation by a 400-Watt Xenon lamp (Newport,
UK) as the simulative solar light with applied voltage (V) ranged from 0 to +1 V.

3. Results and Discussion
3.1. XRD Structure Analysis

XRD spectra for fabricated nanostructure RW were obtained to analyze the crystal
structures and phase purity (Figure 1A). For RW0.03, there are three peaks of Sr11Mg2Si10,
located at 2θ = 29.59◦, 30.91◦ and 34.06◦ with Miller indices (−511), (−405) and (114)
according to 01-086-2488 JCPDS card. There are two main peaks of Ca2Fe15.6O25 and
K2S located at 2θ = 34.54◦ and 35.28◦ with Miller indices (200) and (020) according to
01-078-1184 and 01-071-3427 JCPDS cards, respectively.
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Figure 1. (A) Standard XRD patterns for fabricated nanostructure RW at different particle sizes,
(B) XRD patterns of bulk RW and RW>0.3 after ball milling, hydrothermal technique and annealing;
and (C) particle size for all RW samples.

For RW0.063, there are two peaks of Sr11Mg2Si10, located at 2θ = 29.71 and 34.05◦

with Miller indices (312) and (114) according to 01-086-2488 JCPDS card. There are three
additional main peaks of CaSO4, Ca2Fe15.6O25 and K2S located at 2θ = 23.15◦, 34.68◦ and
35.31◦ with Miller indices (101), (200) and (013) according to 00-026-0328, 01-078-1184 and
01-071-3427 JCPDS cards, respectively. For RW0.3, there are two peaks of Sr11Mg2Si10,
located at 2θ = 29.70◦ and 34.11◦ with Miller indices (312) and (114) according to 01-086-
2488 JCPDS card. There are three other main peaks of Ca2Fe15.6O25, K2S and AlH4O6P
located at 2θ = 34.65◦, 35.32◦ and 39.95◦ with Miller indices (200), (013) and (114) according
to 01-078-1184, 01-071-3427, and 01-070-0310 JCPDS cards, respectively. The observed peaks
for RW>0.3 are similar to the observed peaks for RW0.3. After annealing of the sample
RW>0.3, Figure 1B, there are two high peaks of Ca2Fe22O33 located at 2θ = 20.81◦ and 34.32◦

with Miller indices (018) and (021) according to 01-077-0565 JCPDS card, and three other
peaks due to Fe3O12P3Sr located at 2θ = 38.32◦, 44.50◦ and 61.54◦ with Miller indices (312),
(123) and (471) according to the card 01-089-8396. There are other minor peaks for all
samples due to the natural chemical composition of RW. As shown in Figure 1B, the bulk
RW exhibited an amorphous structure. The crystallinity of the hydrothermally prepared
RW sample improved after annealing at 700 ◦C.
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The angle of X-ray diffraction is inversely related to the interplanar distance according
to Bragg’s equation: [61–64]

m λ = 2 d sin θ (1)

where λ, d, m and θ are the incident X-ray wavelength, the interplanar distance, the order
of diffraction and the Bragg’s diffraction angle, respectively. The crystallite size (D) of the
ZnO films was estimated from the Debye–Scherrer formula [65,66]:

D = 0.94 λ/β cosθ (2)

where λ = 0.154 nm and (β) is the full width at half maximum intensity. The crystallite
sizes for RW0.03 and RW0.3 are nearly 50.8 and 31.7 nm, respectively. After annealing, the
crystallite size is increased for RW>0.3 from ~32.0 to 50.2 nm as shown in Figure 1C, i.e., the
crystallite size of the hydrothermally generated samples decreases as the initial particle
size of ball-milled natural RW increases.

The texture coefficient (TC) represents the texture of a particular plane, the deviation
of which from unity implies preferred growth. This factor is calculated using the following
relation [67]:

TC(hkl) =
I(hkl)/Io(hkl)

N−1ΣnI(hkl)/Io(hkl)
(3)

where I(hkl) and Io(hkl) are the measured relative intensity of a plane (hkl) and the standard
intensity of the plane (hkl) taken from the JCPDS data; N is the reflection number; and n is
the number of diffraction peaks. TCs values were calculated for the highest five main peaks
detected in the XRD patterns. The preferred orientation for RW0.03, RW0.063, RW0.3 and
RW>0.3 nanopowders was (200), (200), (200) and (021) with values 2.36, 1.13, 1.07, 1.06 and
1.17, respectively.

3.2. Chemical Composition

Figure 2 shows the EDX patterns for nanostructured RW0.03 and RW>0.3. The quanti-
tative chemical compositions for these samples are presented in the inset tables of Figure 2a,b.
The main signals for RW0.03 are O (35.56 wt.%), Na (33.56 wt.%), Si (12.36 wt.%), Fe (6.04 wt.%),
Al (4.42 wt.%), Ca (2.64 wt.%), Mg (2.31 wt.%), Cu (1.57 wt.%) and Ti (1.1 wt.%).

This indicates the existence of SiO2, Na2O, Fe2O3, Al2O3, CaO, MgO, CuO and TiO2,
as confirmed by the XRF analysis. The high signal of Na may come from the RW and the
used materials and solutions during the hydrothermal technique and washing process. The
Na and Cl signals resulted from the formation of NaCl because of the reaction of the used 1 M
NaOH during the hydrothermal technique and 0.1 HCl that was used during the washing pro-
cess according to the exothermic reaction HCl (aq) + NaOH (aq)→ NaCl (aq) + H2O + heat.
The Sample RW>0.3 shows higher signals for O, Ca, Mg and Cl, whereas the signals of Na,
Si and Al are lower than that of RW0.03. In addition, the signals of Fe, Ti and Cu disappear.
The existence of S (1.32 wt.%) and the increase in oxygen signal indicate the formation of
SO3. Similar signals were reported for RW by many authors [68–70].
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3.3. Surface Morphology

Figure 3A–D illustrates high-resolution transmission electron microscopy (HR-TEM)
micrographs for nano-rock-wool powder after ball milling, hydrothermal technique at
140 ◦C and after annealing at 700 ◦C. The micrograph after ball milling (Figure 3A) shows
nonspherical nanoparticles with diameters ranging from ~75 nm to ~168 nm. Figure 3B
reveals networks from very fine sphere nanoparticles, which self-assemble to form semi-
spherical spongy surfaces with diameters ranging from ~23 to 53 nm. After annealing, in
Figure 3C,D, these particles are arranged as a network of concentric spheres in an elongated
manner attached in a preferred orientation. The size of the self-assembly pores is less
than 9 nm. Besides the spherical shapes, hexagonal shapes are also detected, as shown
in Figure 3D. Figure 3D also indicates that the sample after annealing at 700 ◦C shows a
smaller particle size than before. Many authors previously reported that the change in
primary average particle size as a function of temperature shows two decoupled zones:
particle shrinkage due to densification up to a particular temperature between 700 ◦C and
900 ◦C, and particle growth due to coarsening behavior above this temperature [71–73].
Because the surfaces of the particles in Figure 3B form semispherical spongy surfaces, then
the annealing of our sample lowers its particle size owing to the densification impact being
greater than coarsening behavior. Note that the melting point of rockwool is 1177 ◦C, which
is higher than the used annealing temperature in this study. In addition, after annealing,
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the sample crystallinity is improved, as also confirmed by the ring and spot selective-area
electron diffraction (SAED) in Figure 3E,F. This sample shows bright spots and rings and
thereby a polycrystalline nature, as confirmed by the XRD. The obtained interplanar dis-
tance is 0.86 ± 0.1 nm. Figure S1 (Supplementary Data) shows HR-TEM images of the
(A) RW0.063 sample and (B–D) RW>0.3 sample after hydrothermal technique at 140 ◦C and
annealing. All images show particles in the nanoscale. In some regimes, these particles are
self-assembled to form nanoporous features. The inset of Figure S1D shows the ring SAED
pattern of RW>0.3, which confirms the polycrystalline nature of the sample as confirmed by
the X-ray analysis (Figure 2).
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Figure 4 illustrates SEM images of the prepared RWmix, RW0.03 and RW>0.3 samples.
The sample of RWmix (Figure 4a) displays mixed morphologies with random distributions
with sizes ranging from nano to micro. The microsize particles result from the coalescence
of small nanoparticles. The surface of this sample is the roughest. For the RW0.03 sample,
(Figure 4b) the surface roughness is decreased and the nanoparticles coalesce and self-
assemble to form agglomerations of particles and rods with pores of diameters in the
range of 603 ± 303 nm. For the RW>0.3 sample (Figure 4c) the coalesced nanoparticles are
smoothly assembled to form a continuous surface with distributed spherical nanopores on
the surface. The average diameter of the agglomerated particles is 662 ± 250 nm, whereas
the pore diameter is in the range of 440 ± 116 nm.
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3.4. Optical Analysis

UV-Vis. transmission/absorption spectroscopy is a very important technique to ana-
lyze the optical properties (A%, T%) and direct bandgap of semiconductor nanomaterials.
Figure 5a,b shows the absorbance (A%) and transmittance (T%) spectra of RW samples
fabricated at different particle sizes. The RW>0.3 sample shows sharp absorption bands in
the UV region (below λ = 400 nm) corresponding to electron valence band/conduction band
transitions. The left edge of the absorption band is slowly shifted to a lower wavelength as
the particle size decreases, indicating the increase in the optical bandgap. In addition, it is
easy to notice that absorbance is slightly decreased with decreasing particle size to RW0.03.
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The area under the absorption curve in UV-Vis ranging from 200 to 500 nm is highly
essential to indicate the transient light response of the photoanode; the RW>0.3 has the high-
est area under the curve, indicating a greater number of absorbed photons and enhancing
PEC application. The transmission spectra show that the films are highly transparent in the
visible region, about 82%. The optical transmission of samples is slightly decreased with
increasing particle size due to the increase of the absorption. The highest transmittance for
RW>0.3 is also related to surface morphology, in which the RW>0.3 shows the formation of
uniform nanoporous and smooth top surfaces according to SEM images in Figure 4c.

Using the obtained data for absorbance (A), the absorption coefficient (α) for RW
samples with different particle sizes was calculated by using the following equation [74,75]:

α = 2.303
Aρ

LC
(4)

where ρ is the density of nanopowder, L is the length of the quartz cell (=1.0 cm) and C is
the concentration of the nanopowder in the suspension.

The extinction coefficient (K) can be calculated from obtained (α) values according to
the following equation:

K =
αλ

4π
(5)

The extinction coefficient represents the ability of the sample to absorb the electromag-
netic waves due to inelastic scattering actions. Figure 5c shows that the k values of the
RW samples depend on the wavelength. The K values at 287 nm and 500 nm are listed in
Table 1. The k values for RW0.03, RW0.063 and RW>0.3 are 0.009, 0.02 and 0.025, respectively.
These values indicate that the k value is sharply increased with an increasing particle size
of natural RW in the UV region (λ = 287 nm). In addition, the same behavior is seen in the
visible light region (λ = 500 nm), in which the k values for RW0.03, RW0.063 and RW>0.3 are
0.008, 0.019 and 0.03, respectively as shown in Table 1. RW>0.3.

Table 1. The calculated parameters for RW as crystallite size (D), texture coefficient (TC), energy gap
(Eg), Urbach energy (EU) and extinction coefficient (K).

Samples D (nm)
TC

Eg (eV) EU (meV)
K

(hkl) Value λ = 287 nm λ = 500 nm

RWMix 70.1 (200) 2.36 1.39 195.75 0.018 0.029

RW0.03 50.8 (200) 1.13 3.62 213.47 0.009 0.008

RW0.063 34.5 (200) 1.07 2.08 377.69 0.02 0.019

RW0.3 31.7 (200) 1.06 2.7 348.18 0.013 0.011

RW>0.3 50.2 (021) 1.17 1.55 358.72 0.025 0.03

The absorption coefficient usually shows exponential energy dependence near the
fundamental absorption edge (Urbach tail) according to the following equation [76]:

α = α0e(
hν
Eu ) (6)

where α0 is a constant and EU is the Urbach energy. The Urbach tail value (EU) determines
the width of the tail in the valence and conduction bands, which appears due to the disorder
in the material. It is ascribed to the disorder in the material that indicates the tail in the
valence and conduction bands [77]. Figure 5d shows the plots of lnα versus hυ, and the
values of the EU were obtained from the slopes of the linear fitting of this Figure. The
obtained values of the EU are listed in Table 1. EU increases from 213 to 358 meV as the
particle size of natural RW increases from RW0.03 to RW>0.3 and then decreases to 195 meV
with the RWmix. The highest value for EU, 358 meV, obtained for RW>0.3, may be attributed
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to the disorder nature and voids that appear on the film surface as shown from the SEM
image (Figure 4c).

The direct optical band gap of nanopowders was calculated by using the Tauc equa-
tion [78]:

(αhυ)2 = G
(
hυ − Eg

)
(7)

where G is a constant, υ is the frequency of the photon, h is Planck’s constant, Eg is the direct
bandgap between the conduction (C.B) and valence band (V.B) and α is the absorption
coefficient. If plotted (αhυ)2 versus hν and a tangent line is drawn from the intercept point
on the curve, the intersection of the tangent line with the horizontal axis (hυ axis), Figure 6a
indicates the bandgap transition (Eg = hυ when α = 0).
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The obtained Eg values are plotted in Figure 6b for all RW samples and listed in
Table 1. The estimated energy band gap of the RWMix, RW0.03, RW0.063, RW0.3 and RW>0.3
nanopowders are 1.39, 3.62, 2.08, 2.7 and 1.55 eV, respectively. The Eg of nanostructured
RW is blue-shifted from 3.62 to 1.55 eV as the particle size of natural RW increased from
RW0.03 to RW>0.3. The blue shift may be related to the development of a resonance structure
(state) in the density of states and the split-off band by introducing deep states into the
bandgap [79]. From Figures 1B, 4c and 6b, the RW>0.3 nanopowder is the most suitable
for application in water splitting. The sample of RW0.063 does not match the tendency
with others, this may be ascribed to the lower crystallite size (34.5 nm) and morphology
changes as shown by the provided HR-TEM image in Figure S1A (Supplementary Data).
The inset image shows the existence of the nanoporous features due to the self-assembly of
the high density of the nanoparticles. The self-assembly of nanoporous surfaces improves
optical absorption and reduces the bandgap. In general, for particles with diameters greater
than 10 nm, the bandgap reduces as the crystallite size decreases. Due to the quantum
size effect, the verse appears when the crystallite size is within 1–10 nm, i.e., due to the
Moss–Bustein effect, as the particle size decreases the optical band gap can be widened by
shifting towards the higher frequency side gradually [80]. In addition, as the size of the
nanoparticles decreased, the surface defect states reduce the bandgap more than the bulk
counterpart [81].

3.5. Photoelectrochemical (PEC) Performance of the Samples

The photoelectrochemical (PEC) water-splitting behavior of the RW samples was
measured using an Orga-Flex workstation with two-electrode configuration under light
irradiation of a 400 W Newport Xenon lamp. The illumination power was adjusted at
the electrode to be 100 mW/cm2. As a redox electrolyte for solar water splitting, 5 mg of
each RW powder sample was disseminated in a 0.3 M Na2SO4 (pH = 7) aqueous solution.
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At room temperature (25 ◦C), linear sweep voltammetry is performed in the range of
0 V to 1.0 V.

To clarify the effect of particle size of the RW photocatalyst, PEC characterizations in a
two-electrode system were studied in depth. From Figure 7a, the RWmix sample has a very
small current density (Jph) in dark, which reaches a maximum value of 0.05 mA/mg@1 V.
This value increased to 0.15 mA/mg under light irradiation at an applied external voltage
of 1 V. For individual particle size samples, with increasing particle size, the photocurrent
density increased (Jph) as shown in Figure 7a,b to reach 0.32 mA/mg at 1 V for the RW>0.3
sample. This value is near twice the Jph value of the RWMix sample. Furthermore, the onset
potential of the RW>0.3 sample shifts substantially positively, indicating that the charge
separation and transfer efficiency of RW has greatly increased [82–85]. The huge number
of active sites generated by unsaturated coordination from the ultrathin nanoporous RW
structure as demonstrated in the SEM images might account for these results. This sample
(RW>0.3) also has the highest photocurrent density because it has the largest area under
the absorption curve at wavelengths between 250 and 500 nm, indicating that it has a
considerable number of absorbed photons in the UV-Vis range. Surface nanostructures,
according to Ojha et al., improve the well-defined interfaces between the catalyst and the
electrolyte, enable quick charge transfer, and create highly open designs that increase the
number of surface atoms, all of which lead to increased electrochemical performance [86].
In addition, well-ordered crystalline states limit the transmission of visible light, improve
absorption, and form stable highly porous structures [87]. Moreover, the fall in oxygen
percentage seen by reducing the beginning particle size, as illustrated in Figure 2, can be
attributed to the size reduction creating oxygen vacancies at the surfaces of the generated
nanostructures. This is similarly connected to the decrease in crystallinity found in samples
with a starting particle size of less than 0.3, as illustrated in Figure 1A. Defects such as
oxygen vacancies impair carrier separation efficiency, and as a result, sample performance,
which might explain why the RW>0.3 had the highest Jph values [88].

The effective reproduction of H2 using photocatalysts is very important concerning
economic issues. The (Jph–V) curves of the RW>0.3 sample were measured under the illumi-
nation of a 400 W Xe-lamp several times to study the reproducibility of the RW catalyst, as
shown in Figure 7c. There is a small change in the value of the Jph after carrying out the
measurements six times. The value of the Jph is changed from 0.32 to 0.22 mA/mg @1 V.
On the other hand, the stability test is a very important parameter for PEC in practical
applications. The stability of the fabricated RW electrode during the PEC water-splitting
method was examined by measuring the change in Jph for an elongated time. Figure 7d
illustrates a graph of Jph versus time measured at an applied voltage of 1 V for 2000 s.
The measurements were carried out in 0.3 M Na2S2O3 electrolyte solution under light
irradiation of 100 mW/cm2 from a 400-W Xenon lamp. The slopes of this curve reflect
the stability of the photoelectrodes; a smaller slope indicates better stability. During these
experiments, the Jph values were decreased in the first period due to the minimal photo-
chemical corrosion process [89]. Above 50 s, the Jph values remained constant at nearly
0.025 mA/mg due to the increase in the accumulation of the ionic charges. This result
suggests that the photoanode has suitable chemical stability and a long lifetime to work in
the H2-production cell.
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The influence of temperature from 25 to 60 ◦C, as well as the wavelength of the
illuminating monochromatic light from 307 to 636 nm, as shown in Figure 8a,b, were
investigated. The effect of temperature on the Jph value for the photoelectrochemical H2O
water-splitting reaction is shown in Figure 8a. By increasing the temperature from 40 to
75 ◦C, the Jph value is increased to reach 0.82 mA/mg. Temperature appears to play a
substantial effect in enhancing photocurrent densities, according to these findings. This is
due to the temperature influence increasing the incentive of the H+ ion rate [90].

The effect of monochromatic-wavelength light from 307 to 636 nm on the Jph value
of RW>0.3 is shown in Figure 8b. From the figure, the nonlinear behavior of the Jph–V
curve is obtained under different monochromatic light at an applied voltage of 1 V. The
photocurrent density values increased to reach their maximum value (0.25 mA/mg) at
390 nm, then the value decreased to reach 0.21 mA/mg at 636 nm. The minimum value
(0.20 mA/mg) was reported at 460 nm. This variation with the wavelength indicates the
ability of the prepared RW>0.3 photocatalyst to work in a wide wavelength range. These
Jph values match well with the optical analysis in Figure 5.
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To understand in detail the improved PEC performances of the fabricated RW>0.3, inci-
dent photon-to-charge efficiency (IPCE) was estimated under monochromatic illumination
conditions, as shown in Figure 8c. The IPCE (external quantum efficiency) is a measure
of the ratio of the number of photogenerated electrons used in the redox reactions to the
number of incident monochromatic photons as a function of the wavelength. A higher
value of IPCE indicates the improved production of photoexcited charge carriers. The IPCE
was calculated at an applied potential of +1 V from Equation (8) [91]:

IPCE =
Total energy of converted electrons
Total energy of incident photons

=
Jph(mA/mg)

Plight(mw/mg)
1240

λ (nm)
× 100 (%) (8)

The IPCE was estimated at an applied potential of 1 V, Jph (mA/mg) is taken at
wavelengths ranging from 307 to 636 nm of the incident light; λ is the wavelength of the
illuminating monochromatic photon and Plight is the illuminating light power density. The
value of IPCE for RW>0.3 increases with decreasing the wavelength of the incident photon.
RW>0.3 shows strong photoactivity in the UV-Visible light region and enhancement of IPCE
throughout the wavelength range of 307–460 nm with an IPCE value of ~9.779% at 307 nm
as observed in Figure 8c.
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To further clarify the performance of the RW, we calculated the applied bias photon-
to-current efficiency (ABPE), as shown in Figure 8d. ABPE can provide analytical measure-
ments that characterize the development of photocatalytic performance concerning the
applied external potential. The ABPE was calculated using Equation (9) [92]:

ABPE = Jph(mA/mg)
(1.23− Eapplied)

Plight(mA/mg)
× 100 (%) (9)

As seen in Figure 8d, the maximum value of ABPE efficiency for RW>0.3 achieved
~0.15% at a wavelength of 390 nm. A peak value of ~0.13% is observed at 0.56 V for 390 nm.
The peak value slightly shifts to a higher voltage by increasing the wavelength. Both
IPCE and ABPE have a maximum value at a wavelength range < 460 nm. As a result,
the observed improved PEC performance could be attributed to the number of photons
absorbed as illustrated in the optical properties section, which leads to an increase in the
generation of charge.

The number of produced hydrogen moles can be calculated from Faraday’s law of
electrolysis [93]:

H2(moles) = 2
∫

Jph
dt
F

(10)

where F is the Faraday constant (96500 C/mol), Jph is the current density in A/mg and t is
the time in sec. Based on the amperometric Jph–t curve, the calculated number of generated
H2 moles per active area is 1040.423 µmol/h.mg for RW>0.3, as shown in Figure 9. The rapid
growth in the amount of H2 indicated the excellent stability of the RW>0.3 photoelectrodes.

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 21 
 

 

=  ୎౦౞(୫୅/௠௚)୔ౢ౟ౝ౞౪(୫୵/୫୥) ଵଶସ଴஛ (୬୫)  × 100 (%)  (8)

The IPCE was estimated at an applied potential of 1 V, Jph (mA/mg) is taken at wave-
lengths ranging from 307 to 636 nm of the incident light; λ is the wavelength of the illu-
minating monochromatic photon and Plight is the illuminating light power density. The 
value of IPCE for RW>0.3 increases with decreasing the wavelength of the incident photon. 
RW>0.3 shows strong photoactivity in the UV-Visible light region and enhancement of 
IPCE throughout the wavelength range of 307–460 nm with an IPCE value of ~9.779% at 
307 nm as observed in Figure 8c. 

To further clarify the performance of the RW, we calculated the applied bias photon-
to-current efficiency (ABPE), as shown in Figure 8d. ABPE can provide analytical meas-
urements that characterize the development of photocatalytic performance concerning the 
applied external potential. The ABPE was calculated using Equation (9) [92]: ABPE = J୮୦(mA/mg) (1.23 − Eୟ୮୮୪୧ୣୢ)P୪୧୥୦୲(mA/mg) × 100 (%) (9)

As seen in Figure 8d, the maximum value of ABPE efficiency for RW>0.3 achieved ~ 
0.15% at a wavelength of 390 nm. A peak value of ~0.13% is observed at 0.56 V for 390 nm. 
The peak value slightly shifts to a higher voltage by increasing the wavelength. Both IPCE 
and ABPE have a maximum value at a wavelength range <460 nm. As a result, the ob-
served improved PEC performance could be attributed to the number of photons ab-
sorbed as illustrated in the optical properties section, which leads to an increase in the 
generation of charge. 

The number of produced hydrogen moles can be calculated from Faraday’s law of 
electrolysis [93]: 

 𝐻ଶ(moles) = ׬ 2 Jph 𝑑𝑡 𝐹ൗ  (10)

where F is the Faraday constant (96500 C/mol), Jph is the current density in A/mg and t is 
the time in sec. Based on the amperometric Jph–t curve, the calculated number of generated 
H2 moles per active area is 1040.423 μmol/h.mg for RW>0.3, as shown in Figure 9. The rapid 
growth in the amount of H2 indicated the excellent stability of the RW>0.3 photoelectrodes. 

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
2 

(μ
m

ol
e/

se
c)

Time(sec)
 

Figure 9. The number of H2 moles produced as a function of time.

In addition, Table 2 shows a comparison between our optimized RW nanocatalyst and
recently reported nanotextured catalysts [94–104]. The comparison is carried out in terms
of photocatalyst composition, electrolyte, light power or source and catalytic performance
parameters (H2 moles, Jph or IPCE% values).
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Table 2. Comparison between the present photocatalyst and the recently reported literature in terms
of composition, electrolyte, light power or source, main performance indicators (H2 moles, Jph, or
IPCE% values).

Photocatalyst Electrolyte Light Power Performance Ref.

Pt-loaded yolk–shell
TiO2@SiO2

nanoreactors (50 mg)

80 mL mixture of
methanol (40 mL) and

water (40 mL)

300 mW/cm–2

(Simulated
sunlight)

H2 moles = 24.56 mmol·g−1·h−1 [94]

ZnO (5 mg)
La/ZnO (5 mg)

La/ZnO/CNTs (5 mg)

80 mL aqueous
solution containing

10% of glycerol

300 W Xe light
source

H2 moles = 10.2 mmol/h
H2 moles = 145.9 mmol/h
H2 moles = 184.8 mmol/h

[95]

V and La co-doped
ZnO/CNTs

nanocomposite (10 mg)

100 mL water and
methanol 300 W Xe lamp H2 moles = 267 µmol·h−1·g−1 [96]

Ultra-fine Cu
(6 wt%) decorated

hydrangea-like TiO2
(20 mg)

100 mL 10 vol%
aqueous solution

methanol
300 W Xe lamp H2 moles = 3.7 mmol·h−1·g−1 [97]

Hierarchical porous
NiO anchored on

graphitic carbon nitride
with nitrogen vacancies

10 mL sacrificial
reagent

triethanolamine and
90 mL H2O

420-nm (3 W)
LED light

illumination
H2 moles = 170.60 µmol·g−1·h−1 [98]

Hierarchical e 0.75%
SiO2@ZnIn2S4 marigold

flower like nano
heterostructure (0.5 g)

700 mL 0.5 M aqueous
KOH and purged with

Argon for 30 min
- H2 moles = 6730 µmol/h·g [99]

-Fe2TiO5/ZnO
Nanodendrite

Heterojunction Array
-Co-Pi/Fe2TiO5/ZnO

ND heterojunction
array

0.3 M Na2SO4 in
K3PO4 buffer solution

at pH 7.5

500 W xenon
lamp

Jph = 1.04 mA cm–2 at 1.23 V vs. RHE
Jph = 2.14 mA cm–2 at 1.23 V vs. RHE

[100]

Cu/CuO Nanoporous
photoelectrode Sewage water 400 W Newport

Xenon lamp
IPCE = 14.6%

Jph = 4.7 mA·cm−2 [101]

Au/Poly M-Toluidine Na2S2O3 and sewage
water

400 W Newport
Xenon lamp

IPCE = 2.3 and 3.6% at 390 nm
H2 moles = 8.4 and 33.1 mmol·h−1·cm−2 [102]

SnO2:Ni,Ir
Nanoparticulate
photoelectrode

0.5 M HCl 400 W Newport
Xenon lamp

Jph = 46.38 mA/cm2

IPCE% = 17.43% at 307 nm
H2 moles = 52.22 mmol·h−1·cm−2 at −1 V

[103]

Polyaniline/PbI2
nanocomposite Sewage water 400 W Newport

Xenon lamp
Jph= 0.077 mA.cm−2 at 390 nm
H2 moles = 6 µmole·h−1·cm−1 [104]

Nanostructured Rock
Wool (5 mg)

0.3 M Na2SO4 (pH = 7)
aqueous solution

400 W Newport
Xenon lamp

H2 moles = 1040.423 µmol/h·mg
Jph = 0.25 to 0.20 mA/mg
IPCE = 9.77% @ 307 nm

This work

4. Conclusions

Rock Wool (RW) nanostructures of various sizes and morphologies were created using
a combination of ball mill and hydrothermal methods, followed by annealing. Different
methodologies were used to explore the morphologies, structures, chemical composi-
tions and optical characteristics. The effect of initial particle size on the characteristics
and photoelectrochemical performance of RW samples generated hydrothermally was
investigated. As the starting particle size of ball-milled natural RW rises, the crystallite
size of hydrothermally formed samples drops from 70.1 to 31.7 nm. Starting with larger
ball-milled particle sizes, the nanoparticles consolidate and seamlessly combine to form a
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continuous surface with scattered spherical nanopores. The samples are used to generate
photoelectrochemical hydrogen by splitting water. The number of hydrogen moles and con-
version efficiencies were calculated using amperometry and voltammetry measurements.
The photocurrent density values for the manufactured RW>0.3 photocatalyst electrode de-
creased from 0.25 to 0.20 mA/mg as the monochromatic-wavelength light increased from
307 to 460 nm. At 307 nm and +1 V, incident photon-to-current efficiency was ~9.77%. The
Jph value increases by 5 times when the temperature rises from 40 to 75 ◦C due to the
temperature influence on the H+ ion rate. The calculated number of generated H2 moles
per active area is 1040.423 µmol/h·mg. The current study highlights a low-cost nanostruc-
tured RW as a photoelectrode material that may be further enhanced and employed for
successful hydrogen production. Finally, we will concentrate our future efforts on elec-
trochemical characterization and corrosion investigations of our optimized nanocatalyst,
as well as the incorporation of plasmonic nanoparticles to improve the photocatalyst’s
stability and performance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano12132169/s1, Figure S1: HR-TEM of the (A) RW0.063 and
(B–D) RW>0.3 after hydrothermal technique at 140 ◦C and annealing; the inset of (D) shows SAED
pattern of RW>0.3.
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