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Single-cell RNA sequencing (scRNA-seq) technology has become the state-of-
the-art approach for unravelling the heterogeneity and complexity of RNA tran-
scripts within individual cells, as well as revealing the composition of different
cell types and functionswithin highly organized tissues/organs/organisms. Since
its first discovery in 2009, studies based on scRNA-seq provide massive infor-
mation across different fields making exciting new discoveries in better under-
standing the composition and interaction of cells within humans, model animals
and plants. In this review, we provide a concise overview about the scRNA-seq
technology, experimental and computational procedures for transforming the
biological and molecular processes into computational and statistical data. We
also provide an explanation of the key technological steps in implementing the
technology. We highlight a few examples on how scRNA-seq can provide unique
information for better understanding health and diseases. One important appli-
cation of the scRNA-seq technology is to build a better and high-resolution cat-
alogue of cells in all living organism, commonly known as atlas, which is key
resource to better understand and provide a solution in treating diseases. While
great promises have been demonstrated with the technology in all areas, we fur-
ther highlight a few remaining challenges to be overcome and its great potentials
in transforming current protocols in disease diagnosis and treatment.
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1 THE RISE OF SINGLE-CELL RNA
SEQUENCING TECHNOLOGY

Humans are highly organized systems composed of
approximately 3.72 × 1013 cells of various types form-
ing harmonious microenvironments to keep proper organ
functions and normal cellular homeostasis.1 Living cells
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original work is properly cited.
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were observed for the very first time in the 16th century,
and since then many signs of progress and advancement
of new technologies and methods evolved from elemen-
tary to profound. Although the first microscope invented
by Zacharias Janssen and Hans Lippershey in the late 16th
century enabled Robert Hooke and Anton van Leeuwen-
hoek to spot the first living cell in the 17th century, it took
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almost two centuries to re-define cells not only as of the
structural but also functional unit of life.2 Since then, vari-
ous experiments and methods were conducted for the pur-
pose of better understanding and investigating cells in het-
erogeneous multicellular systems.3,4 Despite that tremen-
dous and revolutionary discoveries in cell biology field
have been made, the heterogeneity of cells remains to be
further revisited. Almost all cells in the human body have
the same set of genetic materials, but their transcriptome
information in each cell reflects the unique activity of only
a subset of genes. Profiling the gene expression activity in
cells is considered as one of themost authentic approaches
to probe cell identity, state, function and response. Huge
technological breakthroughs have beenmade in the single-
cell transcriptomics during the last decade. With single-
cell RNA sequencing, it is now possible to analyse the tran-
scriptome at single-cell level for over millions of cells in a
single study. This allows us to classify, characterize and dis-
tinguish each cell at the transcriptome level, which leads to
identify rare cell population but functionally important.
The first conceptional and technical breakthrough of the

single cell RNA sequencing method was made by Tang
et al. in 2009, which sequenced the transcriptome of sin-
gle blastomere and oocytes.5 The concept and technology
brought by this study open a new avenue to scale up the
number of the cells andmake compatible high-throughput
RNA sequencing possible for the first time. Since then,
an increasing number of modified and improved single-
cell RNA sequencing technologieswere developed to intro-
duce essential modifications and improvements in sample
collection, single-cell capture, barcoded reverse transcrip-
tion, cDNA amplification, library preparation, sequenc-
ing and streamlined bioinformatics analysis. Most impor-
tantly, cost has been dramatically reduced, while automa-
tion and throughput have been significantly increased.
All these steps branch into more matured scRNA-seq
methods, but the concept of the scRNA-seq remains the
same. This review provides a comprehensive and concise
overview of the single cell technology development from
its early stage and library constructions and its challenges
and data acquisition that transform our understandings
of RNA transcriptions into data output. We also discuss
applications of scRNA-seq, the potential of the scRNA-seq
in spatial transcriptomics, cell atlases and future perspec-
tives.

2 HIGH THROUGHPUT SINGLE-CELL
RNA SEQUENCING TECHNOLOGY:
EXPERIMENTAL PROCEDURES

The throughput of scRNA-seq increases from a few cells
per experiment to hundreds of thousands of cells, where

the cost has been tremendously reduced. As such, scien-
tific publications using the scRNA-seq technology method
each increases yearly due to fast and accurate scRNA-
seq technologies such asmicrofluidic- microwell-, droplet-
based, in situ barcoding and spatial transcriptome analy-
sis as summarized and illustrated in Figure 1.6–10 In this
section, we focus on highlighting a few key technological
and experimental steps in high throughput single-cell RNA
sequencing technologies.
The procedures of scRNA-seq mainly include single-

cell isolation and capture, cell lysis, reverse transcription
(conversion of their RNA into cDNA), cDNA amplifica-
tion and library preparation (Figure 2).11,12 Single-cell cap-
ture, reverse transcription and cDNA amplification are
the most challenging parts among the library preparation
steps. With the development of many sequencing plat-
forms, RNA-seq library preparation technologies have also
presented a rapid and diversified development. Thus, it is
important to know the features and applications of differ-
ent single-cell RNA sequencing library preparation meth-
ods, in order to make appropriate choices in scientific
research and better apply these techniques to clinical appli-
cations.
Single-cell isolation and capture is the process of cap-

turing high-quality individual cells from a tissue, thereby
extracting precise genetic and biochemical information
and facilitating the study of unique genetic and molecular
mechanisms.13 Traditional transcriptome, epigenome or
proteome from bulk RNA/DNA samples can only capture
the total level of signals from tissues/organs, which fail to
distinguish individual cell variations. The single-cell isola-
tion and capture methods are largely different depending
on the organisms, tissues or cell properties.14 Cell isolation
can be accomplished by isolating whole cells, cell-specific
nuclei or cell-specific organelles, and even by separating
the desired cells expressing specific marker proteins.15 The
most common techniques of single-cell isolation and cap-
ture include limiting dilution, fluorescence-activated cell
sorting (FACS), magnetic-activated cell sorting, microflu-
idic system and laser microdissection. The key outcome
of single capture, and particularly in high throughput, is
that each single cell is captured in an isolated reaction
mixture, of which all transcripts from one single cell will
be uniquely barcoded after converted into complementary
DNAs (cDNA).
However, the scRNA-seq has gradually revealed some

inherent methodological issues, such as ‘artificial tran-
scriptional stress responses’. It means that the dissocia-
tion process could induce the expression of stress genes,
which lead to artificially changes in cell transcription pat-
terns. This has been confirmed by a number of experi-
ments. Brink et al. found that the process of protease dis-
sociation at 37°C could induce the expression of stress
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F IGURE 1 Development of single-cell RNA sequencing technology. With the technological advances in single-cell RNA sequencing
(scRNA)-seq, (A) the number of analyzed cells increased, (B) the cost (in US dollar) was exponentially reduced, (C) the number of published
papers increased and (D) the history of technology evolution in the last decade using more sophisticated, accurate, high throughput analysis
was achieved. Part (D) is created with icons from BioRender with license for publication

genes, introduce technical error and cause inaccurate cell
type identification.16 Adam et al. also found that disso-
ciation at 37°C can cause ‘artificial changes’ of cell tran-
scriptome, resulting in inaccurate results.17 Dissociation of
tissues into single-cell suspension at 4°C has thus been
suggested to minimize the isolation procedure-induced
gene expression changes. Single-nucleus RNA sequenc-
ing (snRNA-seq) is an alternative single-cell sequencing
method. Instead of sequencing all the mRNA in the cyto-
plasm of cells, scRNA-seq only captures the mRNAs in
the nucleus of cells. The snRNA-seq solves the problems
related to tissue preservation and cell isolation that are not
easily separated into single-cell suspensions, applicable for
frozen samples, and minimizes artificial transcriptional

stress responses as compared to scRNA-seq.18 SnRNA-seq
becomes very useful in many tissue types, such as muscle
tissue,19 heart,20 kidney,20 lung,21 pancreas22 and various
tumour tissues.23 It is particularly applicable in brain tis-
sues, which are difficult to be dissociated to obtain intact
cells. Grindberg et al. demonstrated that single-cell tran-
scriptomic analysis can be done using the extremely low
levels ofmRNA in a single nucleus of brain tissue.24 There-
fore, several compelling potential benefits of the method
emerge: firstly, compared with intact cells, the nucleus has
the advantage of being easily separated from complex tis-
sues and organs, such as those in the central nervous sys-
tem. Secondly, snRNA-seq can be widely used for eukary-
otic species, including species from different kingdoms.
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F IGURE 2 An overview of the single-cell RNA-sequencing procedures. (A) Isolation of the cells from tissue samples and capturing of
the single cells, wrapping of each individual cell with a bead inside a nanoscale droplet (each bead contains unique molecular identifiers), (B)
barcoding and amplification of complementary DNA (cDNA) and (C) library preparation procedure. After single-cell RNA sequencing (D),
the snapshot data would be analyzed to present and classify the landscape of gene expression in cells of a heterogeneous population (E).
Illustrative figure in (E) is generated with BioRender with license for publication

This method can also provide insights into the regulatory
mechanisms of nuclear specificity.18 However, it should
be noted that snRNA-seq only captures transcripts in the
nucleus, which might fail to capture important biological
processes related to, that is, mRNA processing, RNA sta-
bility and metabolism. Despite all these potential techni-
cal limitations, both technologies have been demonstrated
by a large number of scientific publications in, for exam-
ple, better understanding the cellular and biological pro-
cesses in organogenesis, gaining novel biomedical and cel-
lular insights into disease pathogenesis.
After the process of converting RNA into the first-

strand cDNA, the resulting cDNA are amplified by either
polymerase chain reaction (PCR) or in vitro transcrip-
tion (IVT).25 PCR as a non-linear amplification process
is applied in Smart-seq,26 Smart-seq2,27 Fluidigm C1,28
Drop-seq,29 10x Genomics,30 MATQ-seq,31 Seq-Well 32 and
DNBelab C4. Currently, there exist two PCR amplifi-
cation strategies. One uses SMART technology, which
takes advantage of transferase and strand-switch activ-
ity of Moloney Murine Leukemia Virus reverse transcrip-
tase to incorporate template-switching oligos as adap-
tors for downstream PCR amplification.33 This method
was the mostly used cDNA amplification method. The
other strategy connects the 5′ end of cDNA with either
poly(A) or poly(C) to build common adaptors in PCR
reaction.34 IVT is another amplifying approach and a lin-
ear amplification process, which is used in CEL-seq,35
MARS-Seq,36 and inDrop-seq9 protocols. It requires an
additional round of reverse transcription of the amplified

RNA,which results in additional 3′ coverage biases.25 Both
approaches can lead to amplification biases. To overcome
amplification-associated biases, unique molecular identi-
fiers (UMIs) were introduced to barcode each individual
mRNA molecule within a cell in the reverse transcription
step, thus improving the quantitative nature of scRNA-
seq37 and enhancing the reading accuracy by effectively
eliminating PCR amplification bias. UMIs are adapted
by the CEL-seq,35 MARS-seq,36 Drop-seq,29 inDrop-seq,9
10x Genomics,30 MATQ-seq31 Seq-Well32 and DNBelab C4
protocols.38
Once the single cell-barcoded cDNAs are generated from

single cells or single nucleus, the cDNA can be sequenced
using a number of deep sequencing platforms. In terms of
high throughput sequencing based on the DNA nanoballs
(DNBseq), the selected DNA fragments was repaired to get
a blunt end andmodified at the three ends to obtain a dATP
overhang, then each end of the DNA fragment was ligated
by the dTTP tailed adapter sequence. The ligation prod-
uct was then amplified for a few cycles, and the following
single-strand cycle was carried out. One special strand of
the PCR product was reverse-complementedwith a special
molecule and was ligated with the single-strand molecule
by DNA ligase, finally obtaining a single-strand circular
DNA library.39 Different scRNA-seq technology and exper-
imental protocols are summarized in Table 1.
In conclusion, we would like to highlight questions that

should be emphasized in the scRNA-seq library prepara-
tion: (1) how to capture the interesting RNA types from
total RNA, also called RNA enrichment; (2) how to reverse
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transcribe RNA into cDNA fragment with appropriate
size; (3) how to connect the adaptor to the end of cDNA.
In addition, there are still some remaining challenges to
overcome in preparation of scRNA-seq library. For exam-
ple, high variability between cells often occurs in scRNA-
seq data, which is caused by technical variations in RNA
capture and stochastic transcription in cells.34 Further-
more, due to high sequencing cost, previous scRNA-seq
methods only concentrated on the 5′ or 3′ ends of the
transcriptome. In fact, the region sample for single cell
RNA-seq should depend on the experimental purpose.
For example, even though 3′ end sequencing is cheaper
than full-length sequencing and could provide the best
coding region data of 3′ with the addition of a non-
templated poly(A) tail, it cannot sequence the entire tail
and cannot specifically report themRNA isoform to which
tails are attached.40 In addition, the quality of scRNA-
seq library preparation is affected by other factors, such
as technical noise and biological noise. The technical
factors include the RNA capture efficiency and quality,
random dropouts during library preparation, single-cell
amplification technology and experimental batch effects.41
As for biological noise, the nature and different genetic
backgrounds of biological specimens (like cell sizes, gene
expression) and the dynamic and random environment
changes (various cell states, cell cycle states) are difficult
to be controlled by experiment operation. Therefore, a
still crucial challenge in the scRNA-seq library prepara-
tion is to minimize RNA loss and maximize information
Precision.

3 STREAMLINE scRNA-SEQ DATA
ANALYSIS

Analysis of scRNA-seq data is another key factor, and now
the major need, to broaden the application of this technol-
ogy in life and clinical sciences. To ensure the availability of
single-cell transcriptome analysis tools, numerous devel-
opers have made considerable efforts. Nearly 1000 differ-
ent bioinformatic tools have been developed and made
available by May 28th, 2021 (see Table S1).42 The increas-
ing number of tools for single-cell transcriptome analysis
has illustrated the importance of analytical methods in the
field, but this alsomeansmore perplexity in choosing tools
for single-cell data analysis. In this section, we review basic
single-cell transcriptome analysis processes according to
key steps (Figure 3), and analysismodule (Figure 4), which
also covers exploratory analyses of the gene level and cellu-
lar level. For advance single-cell transcriptome data anal-
ysis, we refer readers to the specific tools summarized in
Table S1 and the original articles reporting the tools.

3.1 Data preprocessing

Basic formats of raw sequencing data for single-cell tran-
scriptome include FASTQ and BCL format, which depend
on the data source and sequencing platform. Since only
FASTQ files can be directly implemented for quality con-
trol, once the raw data are not in FASTQ format, the first
step is to convert it to FASTQ format with the appropri-
ate tools. FASTQ files can be generated from the BCL
files using cellranger mkfastq, a pipeline that has wrapped
bcl2fastq software. Importantly, a simple CSV matrix file
including at least three columns (lane, sample and index)
should be provided in addition to the path of BCL files.
Then FastQC can be applied to assess the quality of raw
single-cell RNA sequencing data.
High-quality reads need to bemapped to the specific ref-

erence genome using an appropriate aligner (e.g., STAR
or Tophat). The count is the most important function of
Cell Ranger, which has wrapped up the alignment, filter-
ing, UMI counting and other practical steps internally.
The Cell Ranger uses an aligner called STAR, which per-
forms splicing-aware alignment of reads to the genome and
then uses transcriptional annotation general transfer for-
mat (GTF) file to categorize these reads into exons, introns
and intergenic based on whether the reads are aligned to
the genome confidently.

3.2 General analyses

During the preparation of single-cell suspension, a viable
cell may experience death, cell membrane damage or
multicellular adhesion due to unavoidable natural phe-
nomena, experimental operations and technical barriers.
To eliminate the gene expression interference from low-
quality cells, it is necessary to conduct a second round
of quality control with suitable tools, such as Seurat,43
scran44 and scanpy.45 In terms of citations, Seurat is the
most popular one with built-in functions to handle low-
quality cell filtration. Basically, the following quality con-
trol (QC) indicators should be used to judge whether a cell
should be retained: the numbers of genes, the numbers of
UMI (transcripts), the percentages of mitochondrial genes
and the percentages of ribosomal protein genes in each
cell. There is no absolute standard for the setting of filter
thresholds, which usually depends on the type of cell and
tissue being analysed. Lambrechts et al. filtered out cells
with ≤ 100 or ≥ 6000 expressed genes, ≤ 200 UMIs and
≥ 10% mitochondrial genes as described in their study.46
Fan et al. retained good quality cells using the following
parameters: (1) 200 < total number of expressed genes per
cell (nGenes) < 2500; (2) 300 < total number of UMIs
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F IGURE 3 Roadmap for typical single-cell RNA sequencing data analysis. The classic roadmap for single-cell RNA sequencing
(scRNA-seq) data analysis mainly consists of data preprocessing (blue panel), general analyses (green panel) and exploratory analyses (yellow
panel). Data preprocessing includes quality control, alignment and quantification; general analyses include low-quality cell filtering,
normalization, HVG selection, dimension reduction, clustering and annotation of cell types; exploratory analyses include DEG analysis,
function enrichment, GSVA, TF prediction, cell trajectory, cell-cell interaction, cell cycle and spatial transcriptome analysis. The plot below
each box gives a schematic of the visualized results in each analysis step. HVG, highly variable gene; DEG, differentially expressed gene;
GSVA, gene set variation analysis; TF, transcription factor. Demo figures were generated with data set GSM4041174

F IGURE 4 Overview of the analysis modules for single-cell RNA sequencing data analysis. The diagram shows a summary of analysis
modules in the actual analysis of single-cell RNA sequencing (scRNA-seq) data, which can be divided into four analysis modules; they are (A)
data preprocessing module, (B) general analysis module, (C) exploratory analysis module, and (D) optional analysis module, respectively.
More details about each module can be found in the “Streamline scRNA-seq Data Analysis” section

per cell (nUMIs) < 15000; and (3) percentage of UMIs
mapped to mitochondrial genes (MT%) < 10%.47 Adjust-
ing the above QC threshold flexibly according to the spe-
cific disease state and the diversity of tissue types is recom-
mended. It should be noted the filtration of cells based on
mitochondrial genes should be carefully applied as some
cell types, such as cardiomyocytes, are biologically more
abundant in expressing these genes.
Similar to the analysis of traditional bulk RNA-Seq

data, each cell is treated as an independent sample when
analysing the single-cell RNA sequencing data. The orig-
inal expression matrix cannot be directly used for down-

stream analysis because the expression levels between
cells are not comparable due to systemic errors or tech-
nical noises, such as differences in sequencing depth
and transcriptome capture rate for each cell. Normal-
ization is intended to counteract technical noise or bias
and to ensure comparability between each cell. In 2020,
Lytal et al. evaluated the effectiveness of seven normal-
ization methods, including BASiCS, GRM, Linnorm, SAM-
strt, SCnorm, scran and Simple Norm.48 It is worth noting
that the speed advantage of Linnormand scran comes from
beingwritten in C++ and implemented in R, which is suit-
able for large data sets. In contrast, BASiCS and SCnorm
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take a longer time to generate more refined results. Over-
all, there exist large differences among these methods, and
different tools perform optimally in different situations.
The single-cell RNA sequencing data set is high-

dimensional, with tens of thousands of cells in a sample
and thousands of genes expressed in each cell. Most genes
in each cell belong to housekeeping ones, as they are char-
acterized by no significant changes in the expression level
between cells, and their presence tends to obscure the real
biological signals. The subsets of features that exhibit high
cell-to-cell variation in the data set are also called highly
variable genes (HVGs). HVGs not only highlight biological
signals but also greatly accelerate the downstream analy-
sis of single-cell RNA sequencing data due to the signifi-
cant reduction in the computation volume. A high-quality
HVGs should include genes that can distinguish different
cell types, and the quality of HVGs has a significant effect
on the precision of clustering. In 2018, Yip et al.49 evalu-
ated sevenmethods for detectingHVGs, includingBASiCS,
Brennecke, scLVM, scran, scVEGs, and Seurat, observed
large differences in the clustering results as well as in the
run times of the different methods. Compared with other
methods, scran can detect a stable number of HVGs with
excellent running time and independence from the mean.
Brenneckewas proved to have stable and consistent perfor-
mances with a wide range of data sets. scran and Seurat
were shown to perform optimally with part of data sets.
BASiCS and scLVM_LogVarwere shown to bemuch slower
than others.
Different scRNA-seq data may arise from different

times and different sequencing platforms, and there are
inevitable technological or non-biologically significant
batch effects between these data.50,51 The batch effect in
the scRNA-seq data has plagued downstream analysis
because it can disrupt gene expression patterns and then
lead to erroneous conclusions. As a consequence, batch-
effect correction is critical for the analysis of scRNA-seq
data. Although a number of batch effect correction algo-
rithms have been proposed for scRNA-seq data,50 such as
Scanorama52 and Seurat V4,53 which can only merge two
data sets at a time and integrate multiple data sets by itera-
tion. Most of them consume a large amount of computing
memory and time, and this demand is likely to increase
as the number of scRNA-seq data increases. Recently, Zou
et al. proposed a novel deep learning-based method, called
deepMNN, in order to correct batch effect in scRNA-seq
data.54 It compared the performance of deepMNN with
the most advanced batch correction methods, including
the widely used Harmony,55 Scanorama52 and Seurat V453
methods, as well as the recently developedMMD-ResNet56
and scGen57 methods based on deep learning. The results54
show that the accuracy of deepMNN is better than the
existing common methods, especially in the case of large-

scale data sets. And the time complexity and spatial com-
plexity of deepMNN algorithm are almost excellent. It
took 17 min to complete the batch-effect correction for
the large data set, while Harmony and Scanorama took
about 35 and 77 min, respectively. In addition, it has a
larger storage space than Seurat V4 and scGen. At the same
time, deepMNN can integrate multi batch data sets in one
step without multiple iterations. These characteristics of
deepMNN make it possible to be a new choice for large-
scale single-cell gene expression data analysis.
In addition to feature selection, dimensionality reduc-

tion is also one of the main strategies for processing
such high-dimensional data. For single-cell RNA sequenc-
ing data, two rounds of dimension reduction are gener-
ally required, with principal component analysis (PCA)
dimension reduction first, and then t-distributed stochas-
tic neighbor embedding (t-SNE) or Uniform Manifold
Approximation and Projection (UMAP) dimension reduc-
tion for visualization. PCA is amathematical linear dimen-
sion algorithm, which uses an orthogonal transforma-
tion to transform a series of potentially linearly related
variables into new ones that are linearly unrelated, thus
using the new variables to show the characteristics of the
data at a lower dimension. PCA has been widely used
in sRNA-seq studies to overcome the extensive technical
noise in any single feature. Wu et al. conducted a system-
atic comparison of these two non-linear dimension reduc-
tionmethods in 2019. They pointed out the use of UMAP in
high-dimensional cytology and single-cell RNA sequenc-
ing, with particular emphasis on the faster runtimes and
consistency of UMAP compared to t-SNE and the more
meaningful organization of cell clusters and preservation
of the continuum.58 In addition, UMAP has a clear advan-
tage over t-SNE in the continuity of the cell subsets because
it preserves more of the global structure, although t-SNE is
still applied in many single-cell studies, seemingly due to
better visual preferences.
The complexity of single-cell RNA sequencing data pro-

motes the development of a wide range of clusteringmeth-
ods. Based on the ability to recover known subpopula-
tions, the stability and the run time and scalability, a recent
paper59 evaluated 14 clusteringmethods on a total of 12 dif-
ferent data sets. Notably, SC3 and Seurat performed bet-
ter among these methods in a comprehensive view, with
Seurat being several orders of magnitude faster. When the
number of clusters was the same, Seurat typically achieved
the best consistency with the real partition, while Flow-
SOM achieved better consistency with the real partition if
the number of clusters is higher than the real number.
After clustering, assigning a biological annotation to

each cluster is the basis of the subsequent analysis. Gen-
erally, the workflow for annotating cells in scRNA-seq
data includes three main steps60: automatic annotation,
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manual annotation and validation with wet experiments.
Firstly, major automated annotation tools utilize a pre-
defined set of marker genes that are specifically expressed
in a known cell type to label clusters by matching their
gene expression patterns to known cell types. The advan-
tage of the automated cell annotation method is that it
is fast and reproducible, and the results tend to be more
reliable in annotating common cell types. However, it is
unable to define rare and new cell types due to the limi-
tations of the reference marker gene set. In 2020, Huang
et al.61 compared and assessed 10 cell-type annotation
methods systematically, including Seurat, scmap, SingleR,
CHETAH, SingleCellNet, scID, Garnett, SCINA, CP and
RPC. They found that Seurat being the best method for
annotating the major cell types among the top five meth-
ods: Seurat, SingleR, CP, RPC and SingleCellNet. However,
Seurat performed relatively worse in predicting rare cell
types and distinguishing highly similar cell types. Sec-
ondly, manual annotation is the gold standard method for
annotating cells, although it is both subjective and labor-
intensive by searching the relevant literature and mining
existing scRNA-seq data. Finally, wet-lab experiments are
typically required to further validate the finding by scRNA-
seq. Traditional validation methods include immunoflu-
orescence and immunohistochemistry, both of which are
based on the principle of specific binding of antibodies to
antigens (the surface proteins encoded by marker genes)
to prove the true existence of the cell types obtained from
the data analysis. Besides, emerging spatial transcriptome
sequencing technology can also be considered for increas-
ing the reliability of annotation, which can combine cell
imaging and scRNA-seq to measure spatial transcript pat-
terns and cell morphology in one experiment.62

3.3 Exploratory analyses

To robustly reveal functional bias and biological signifi-
cance of specific cell populations, it is necessary to per-
form functional enrichment analyses on a targeted dif-
ferentially expressed gene set. Universal analysis strate-
gies for function enrichment are also suitable for single-
cell data, such as gene ontology and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway. A large num-
ber of mature tools for functional enrichment analysis
have been developed. Huang et al. comprehensively com-
pared 68 enrichment analysis tools in 2009 after weighing
respective advantages and disadvantages.63 In addition,
GSVA is also widely used in functional enrichment analy-
sis and other standard analyses in a pathway-centeredway.
GSVA can calculate enrichment scores for different signal-
ing pathways in each sample to assess the causes of phe-
notypic differences, which can be used as a supplement to

the KEGG pathway to make the results more biologically
explanatory.64
To identify the transcription factors enriched in each

cell cluster from scRNA-seq data, Aibar et al.65 devel-
oped SCENIC in 2017, which enabled inferring transcrip-
tion factors because it firstly achieves the enrichment of
TF motifs by searching the putative regulatory regions of
target genes. Then TF motif enrichment can realize the
connection of candidate TF regulatory factors with candi-
date target genes. Although SCENIC can be implemented
in both R and Python, pySCENIC is highly recommended
for running big data sets due to its faster implementa-
tion of the SCENIC pipeline. Note that the latest version
of SCENIC supports Homo sapiens, Mus musculus and
Drosophila melanogaster, with the possibility of manually
creating a custom database for other species.65,66 Although
SCENIC was broadly used because of its outstanding scal-
ability and robustness for a wide variety of databases, it
ignored the dynamic changes in gene regulation mech-
anisms in different cell types. In 2020, Ma et al. devel-
oped IRIS3,67 an integrated cell-type-specific regulon infer-
ence server from single-cell RNA-Seq. In practical applica-
tions, IRIS3 was more suitable for the researchers without
substantial programming skills with its user-friendly web
server. However, continuous improvement is required by
IRIS3 in accuracy and efficiency.
Pseudo-time analysis can be used to infer the trajectory

of cells at the single-cell level, which is expected to discover
rare cell types and cryptic states. Different types of analy-
sis tools have been developed in the service of pseudo-time
analysis. In 2019, Saelens et al. conducted a comprehen-
sive comparison of 45 pseudo-time analysis tools and found
great complementarity of existing tools.68 Monocle is one
of the most broadly used tool for pseudo-time analysis,69
which learns an explicit principal graph to describe the
data and rebuilds single-cell trajectories by embedding
reversed graph to improve the robustness and accuracy of
predicted trajectories. Emphatically, the entire process of
establishing single-cell gene expression kinetics is largely
data-driven.
Organisms will self-regulate to maintain homeostasis

when stimulated, which must require the co-participation
and coordination of multiple cell types. With the rapid
development of cell-cell communication research, the
tools available to analyze cell-cell communication are no
longer limited, including CellChat, CellPhoneDB, Nich-
eNet, SingleCellSignalR and iTalk,70–74 etc. Although each
of these toolsworks on the strength of the interaction of lig-
ands and receptors on the cell surface, each has its advan-
tages and weakness. Specifically, if the structural compo-
sition of the ligand and receptor is expected to be con-
sidered, CellPhoneDB should be preferred. If the regula-
tion of cofactors (such as promoters and antagonists) is
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expected to be taken into account,CellChat can be selected
to improve performance. It is also recommended to com-
bine multiple cell-cell communication analysis tools flexi-
bly to avoid methodical bias.
Each cell in the single-cell suspension is at a specific

stage in the cell cycle: DNA synthesis prophase (G1 phase),
DNA synthesis phase (S phase), DNA synthesis anaphase
(G2 phase) or mitotic phase (M phase). There is a mix-
ture of cells resining different cell cycles from each popula-
tion. The CellCycleScoring function in the Seurat assigns
a quantitative score to each cell according to the expres-
sion of G2/M and S phase marker genes embedded in its
built-in package. In recent years, machine learning-based
methods have been developed to predict cell cycle stages
from single-cell RNA sequencing data. In 2015, Scialdone
et al. compared five established supervised machine learn-
ing methods as well as a custom-built predictor for assign-
ing cells to their cell cycle stages based on the tran-
scriptome. Specifically, they indicate that only PCA-based
methods and customized predictors perform best, which
can robustly capture cell cycle signals.75

3.4 Optional analyses

Although we explained the major steps of the single-cell
sequencing analysis process, there are still many other
significant aspects that deserve more attention and explo-
ration, such as the combined application of scRNA-seq
and CRISPR screening,76 and the integrated analysis of
scRNAseq and multi-omics, including scATAC-sEquation
(single-cell chromatin accessibility and transcriptome
sequencing),77 scMT-sEquation (single-cell methylome
and transcriptome sequencing),78,79 CITE-sEquation
(cellular indexing of transcriptomes and epitopes by
sequencing)80,81 and spatial transcriptome.82 The combi-
nation of these techniques enables a better and deeper
understanding of key biological processes and mecha-
nisms, which is an important direction for the develop-
ment of single-cell technology in the future. In the field
of single-cell RNA transcriptome research, there is still
muchmore potential for analytical algorithms and tools to
improve the exploration of data and better understanding
of cell functions. Therefore, we also encourage readers to
read other excellent reviews that focus on various aspects
of scRNA-seq analysis for more inspiration.83

4 APPLICATIONS OF SINGLE-CELL
RNA SEQUENCING

To date, single-cell RNA expression profiling is rapidly
becoming an irreplaceable method for various research

including humans, animals and plants enabling more
accurate, rapid identification of rare and novel cells in tis-
sues like never before (Figure 5). Moreover, with the infor-
mation about gene expression at mRNA and protein lev-
els, metabolites, cell-cell communication and spatial land-
scape, it becomes possible to solve the puzzle of cell com-
position and functions in health and disease. Although
the first findings and use of scRNA-seq were mostly done
on animal and later human cells, the sequencing in plant
science is still in its early stage and has many exciting
challenges remain to be overcome.84 To date, the appli-
cation of scRNA-seq remains limited to only few plants,
due to technical challenges or very limited information
on the cell types and discoveries in developmental biol-
ogy. Several plant research groups used the most used
model plant in molecular genetics, Arabidopsis thaliana
root for high throughput scRNA-seq and spatial transcrip-
tomics analysis due to the relatively small number of
cells, known gene markers and easy methods to isolate
individual cells via enzymatic cell wall degradation.85–87
After successful proof of concept with A. thaliana root,
the studies have been increasingly applied to the study of
other parts of Arabidopsis and other plant species such
as rice leaf and root, tomato and maize.88–91 Moreover,
following the establishment of human cell atlases, the
plant-based scientific community in 2019 initiated a plant
cell atlas consortium, aiming to collect more informa-
tion about various plant cell types, their nucleic acids,
proteins and metabolites.92 Various web-based graphi-
cal information about plant scRNA-seq data is avail-
able on (https://www.zmbp-resources.uni-tuebingen.de/
timmermans/plant-single-cell-browser).93 Yet, the rapidly
growing field of single-cell biology of the plants has a lot
more to offer, including integration of sequencing scRNA-
seq, snRNA-seq and spatial transcriptomics, imaging tech-
niques and omics will help to further understand changes
in genotypes at single cells level.43
The scRNA-seq becomes a powerful tool to profile, iden-

tify, classify and discover new or rare cell types and sub-
types from different human organs and tissues, giving
more profound information about health and disease in
development, immunology, diabetes, microbiology, Covid-
19, cancer biology, vascular biology, neurobiology, clini-
cal diagnosis and many other disciplines (Figure 5A-I).
With these new findings unlocking health and disease, we
are witnessing rapid progress and changes despite some
remaining experimental and bioinformatics challenges. In
this section, we highlight and discuss a few important
scRNA-seq applications in biomedical and clinical inves-
tigations.
Every tissue/organ contains much morphologically and

functionally diverse population of cells in different states,
physiological transitions, differentiation trajectories and

https://www.zmbp-resources.uni-tuebingen.de/timmermans/plant-single-cell-browser
https://www.zmbp-resources.uni-tuebingen.de/timmermans/plant-single-cell-browser
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F IGURE 5 Application of single-cell RNA sequencing technology. Single-cell RNA sequencing has been employed in different species
(humans, animals, plants) to improve understanding of normal and disease models. A special note is placed on human health, and many
single-cell RNA sequencing (scRNA-seq) methods are focused on understanding (A) development, (B) immunology, (C) diabetes, (D)
microbiology, (E) SARS-CoV-2, (F) cancer biology, (G) vascular biology (H) neurobiology and (I) clinical diagnostics. Figure was created with
BioRender with license for publication

spatial position. This complex but well-synchronized
microenvironment keeps homeostasis until extreme con-
ditions occur that might turn over the normal cell archi-
tecture into, for example, tumours. To understand the ini-
tiation of tumours, evolutional origin of cells, tumour pro-
gression, metastasis and therapeutic responses, it is impor-
tant to advance our understanding of tumour microenvi-
ronments with essential immune and stromal infiltrates.94
A scRNA-seq analysis can distinguish functionally healthy
cells from cancer cells at various developmental stages of
tumours. This allows more precise prognoses and diag-
noses through the identification and determination of sen-
sitivity to different drugs and develop the most effective
treatment strategies for cancers. Initially, scRNA-seq tech-
nology was focused on analysing individual part of the
organ, its heterogeneity and cell types involved resulting
in producing comprehensive data.95 Although there are
many scRNA-seq reports on the individual parts of the
tumours, its heterogeneity and cell types involved, but
what are the biological functions of each individual cell
type, and how the cells talk and work with each other
to accomplish their tasks is still largely challenging. The

majority of difficulties derive from the fact that tumour
tissues are differently positioned in the body; thus their
microenvironment contains variety of tumour and non-
tumour cells in different states and stages. Moreover, the
cells samplemixture and proportions evenwithin the same
section of a tumour might be very different if the biopsy
was taken under different times and conditions. In addi-
tion, single-cell gene expression data often contain a lot
of noises, and thus cells of the same type might end up in
different clusters, and cells of different types can be in the
same cluster due to batch effects.96 Therefore, it is neces-
sary to carefully sort out high-quality cell clusters before
calculating cell-type-specific reference matrix. Although
scRNA-seq is very useful, RNA expression measurements
do not always provide information about protein level
or post-translational modifications. Recently, scRNA-seq
studies are supported with other techniques including
mass cytometry (cytometry by time-of-flight, CyTOF)
where for example both studies confirmed that regula-
tory T cells (T-reg) in the tumour express higher levels
of tumour necrosis factor receptor superfamily member 9
(TNFRSF9; encoding 4-1BB), inducible T cell co-stimulator
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(ICOS) and cytotoxic T lymphocyte-associated antigen 4
(CTLA4) than T-reg cells in blood or adjacent normal tis-
sue, possibly reflective of an activated state.97 Further-
more, by adding spatial information to scRNA-seq data, we
are able to understand molecular, cellular and spatial tis-
sue organization and cell-to-cell interactions in situ.98–100
Tumour microenvironments are infiltrated with the

immune cell types, that is, T lymphocytes cells, CD8+
T cells,101,102 tumour-associated macrophages,103 cancer-
associated fibroblasts, epithelial cells and cancer stem
cells,104–109 but the types of immune responses and
their effects on tumour growth, metastasis and death
vary greatly between different cancers and individual
tumours.110 Immune cells have both anti-tumour effect
inhibiting and killing tumour cells and pro-tumour
activities that promote tumour growths and immune
escape.
So far, there are more advanced approaches reported

on alterations of immune cells in tumours such as in
lung adenocarcinoma,111 breast cancer,112,113 head and
neck squamous cell carcinoma (HNSCC),114 nasopharyn-
geal carcinoma,115 head and neck cancer,116 pancreatic
cancer.117 Non-tumour cells have been investigated start-
ing from the first study on metastatic melanoma where
almost 5000 cells both malignant and non-malignant were
analyzed,105 following the study led by Lambrechts and
colleagues where they identified 52 subtypes of stromal
cells, including new subsets of cells. The study found that
fibroblasts expressed different collagen proteins, endothe-
lial cells downregulated immune cell homing and genes
co-regulated with established immune checkpoint tran-
scripts and were associated with T cell activity. This study
provided a comprehensive map of stromal cell types, and
their phenotypes and cooperative behavior, giving a deeper
insight into cancer biology that will help advance lung can-
cer diagnosis and treatment.46 In addition, recently Pelka
and colleagues developed a systematic approach to apply
on two most common type of human colorectal cancer,
mismatch repair deficient (MMRd) and MMR proficient
(MMRp) tumours, discovering cell types, their underlying
programs and cellular communities. They found ‘hotspots
of immune activity’ comprised of chemokine-expressing
malignant and non-malignant cells adjacent to activated
T cells.118
In tumours, there are active communications between

different cell types, including tumour cells, through var-
ious signaling pathways. Identifying the communications
between tumour and non-tumour cells will provide impor-
tant insights into the development of novel therapeutic
strategies. There have been also several computational
methods developed to infer cell–cell communication from
scRNA-seq data, such as SingleCellSignalR, iTalk andNich-
eNet that usually use only one ligand-one receptor gene

pairs119,120,71,72,74 and CellPhoneDB v2.0, which predicts
enriched signaling interactions between two cell popula-
tions by considering the minimum average expression of
the members of the heteromeric complex.73 Another plat-
form CellChat predicts major signaling inputs and outputs
for cells and signals coordinate for functions using net-
work analysis and pattern recognition approaches (http:
//www.cellchat.org/).70
Another important aspect of heterogeneity in tumours

that can be investigated by scRNA-seq is evolutionary
process of tumour formation that has been found to play
a significant role in the tumour formation as well as
acquisition of traits such as chemotherapy treatments
and resistance.121,122 The continuous accumulation of
heterogeneity may reflect the evolution of cancer, and
scRNA-seq can provide meaningful insights into the
minor treatment-resistant cell populations inside complex
tumours, which can be used to select appropriate therapies
based on tumour type and more precisely treat the indi-
vidual patient.123 Studies on melanoma,105 liver cancer124
hepatocellular carcinoma,125 glioblastoma,126–128 breast
cancer112 and prostate cancer129 integrate a variety of infor-
mation in a single cancer cell, deciphering the secrets of
cancer heterogeneity and evolution. Furthermore, another
emerging technology like spatial transcriptome sequenc-
ing incorporates information on the spatial location of
cells, providing information on gene expression hetero-
geneity; organoids can mimic some tumour heterogeneity
and 3D organization that can be used for drug screening.
All these technologies are indeed needed to properly
understand the tumour eco-system in 3D volume, the role
of the endothelial cells in tumour, and how angiogenesis
develops in tumours and how tumours react to different
treatments. Therefore, vasculature system that compro-
mises the endothelial cells, which line the interior surface
of blood and lymphatic vessels plays important roles not
only in cancer but also diabetes and neurodegeneration for
instance. Endothelial cells play a vital role in maintaining
the homeostasis, metabolism and functions of all tissues
and organs in the body, such as the exchange of oxygen,
nutrients, hormones, fluid andmetabolites between blood-
stream and surrounding tissues causing various types of
dysfunctions. Although this squamous cell is morpholog-
ical alike in all vessels, there exists a great heterogeneity
of functionally distinct phenotypes of endothelial cells.
The degrees of endothelial cells heterogeneity have
been well recognized for decades.130–132 For instance,
endothelial cells from different vascular beds (artery, cap-
illary and vein), tissues and diseases exhibit substantial
heterogeneity. Recently, the heterogeneity of endothelial
cells was further extended at the single-cell transcriptional
level. Using single-cell RNA sequencing, Kalucka et al.
profile the single-cell transcription of over 30 000 endothe-

http://www.cellchat.org/
http://www.cellchat.org/
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lial cells from 11 mouse organs. Seventy-eight endothelial
cell phenotypes with distinct transcriptome profile are
identified and provide the first murine endothelial cell cat-
alogue for future research.133 The degree of endothelial cell
heterogeneity can be further illustrated with the increased
of cells numbers analyzed. One such example is renal
endothelial cells, which is composed of endothelial cells
adapted to different physiological conditions in kidney
compartments. By analysing over 40 000 renal endothelial
cells with single-cell RNA sequencing, Dumas et al. iden-
tified over 20 different phenotypes of endothelial cells in
the kidney, which exhibit a high degree of plasticity when
exposed to dehydration and hypertonicity conditions.134
In adult tissues, endothelial cells are mostly quiescent
but metabolically active. However, under pathological
conditions such as tumourigenesis, quiescent endothelial
cells are activated and involved in the generation of new
blood vessels and disease progression. Targeted inhibition
of angiogenesis is thus not surprising one of the most
broadly used strategies in cancer therapies. However,
almost all anti-angiogenesis therapies in cancers lead
to the development of drug resistance, as new mecha-
nisms evolve to replace the drug-inhibited angiogenesis
pathway. Single-cell RNA sequencing can reveal novel
endothelial cell types and mechanisms. By single-cell
sequencing of over 50 000 endothelial cells from lung
cancers,135 nearly 30 000 endothelial cells from choroidal
neovascularization136 and over 20 000 from co-opted
breast cancer endothelial cells,137 the heterogeneity and
transcriptomic/metabolic plasticity of endothelial cells
are consistently revealed in these pathological conditions.
Most importantly, novel endothelial cell-targeting tar-
gets with therapeutic potential have been identified by
single-cell RNA sequencing approaches.
Another important application of the scRNA-seq tech-

nology is the better understanding of β cell development
and pathology in diabetes. Cure of type 1 diabetes (T1D)
lies in the restoration of the β cells. However, to generate
functional β cells requires extensive understanding of pan-
creas development, its molecular events and knowledge
about the cellular heterogeneity in health and disease.
scRNA-seq studies of developing pancreas were performed
firstly on the mouse models, following recent studies on
human pluripotent models mostly on embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs) 3D
models. The studies performed on mouse models revealed
several important aspects of the pancreas development.
Several groups started on revealing basics in developmen-
tal stage identifying a novel α-cell specific marker Slc38A
on wild type model,138 another group with Zeng et al.
found diverse β-cell heterogeneity and transcriptomic
dynamics during post-natal maturation and postnatal
β cell proliferation. The study identified several novel

hallmark features in postnatal β cell proliferation and
mass expansion i.e. increased amino acid metabolism,
reactive oxygen species (ROS) levels, and Srf/Jun/Fos
(SRF) transcription factors.139 Another group character-
ized the mechanisms governing pancreatic β and α cells
generation, expansion, and maturation during pancreatic
development by scRNA-seq. The study found that the
proliferation rate of β- and α -cells peaks at different
developmental time and distinct cell-type development
regulatory pathways were enriched for maturation. Unlike
adult β cells, juvenile β cells are more heterogeneous
reflecting distinct maturation states.140 Other studies
deepens the understanding on lineage-tracing, molecular
heterogeneity of precursor cells and identified rare or
putative multipotent cells present at stage E13.25 in ductal
termini.141
The sequence of developmental events is highly

conserved between species, for instance, NEUROG3
is transiently and robustly expressed, in two waves, in
mice142 whereas human NEUROG3 expression occurs in
single wave.143 The embryonic islet cells of mice aremostly
monohormonal, whereas a large proportion of human islet
cells are initially polyhormonal.144 The scRNA-seq study
confirmed that mouse and human β- and α-cells have
differential expression of multiple genes between these
species.145 These examples highlight the need to confirm
any finding obtained in mice in humans. Therefore, the
use of the human pluripotent cells is integrated part of
developmental biology that can mimic human pancreas
development in vitro that has been confirmed in several
studies.146–151
Moreover, 3D cell culture microenvironment more

closely resembles in vivo embryogenesis and organogen-
esis as compared to monolayer (2D) cell culture. This
novel approach also increases the functionality of hiPSC-
derived β cells.152,153 Notably, 3D organoids are used as
a patient-specific cell model that offer alternative plat-
form to study transcriptomes of T1D. Clustered Regu-
larly Interspaced Short Palindromic Repeats (CRISPR)
Cas9 gene editing technology has increased the acces-
sibility of genetically engineered hiPSCs, allowing the
manipulation of known or putative regulators of develop-
ment for their function assessment in human tissues. Fur-
thermore, scRNA-Seq can be used in combination with
CRISPR or lineage tracing.154,155 Despite all these great
promises, it is important to note that it is particularly chal-
lenging to study individual cells in the pancreas due to
the high hydrolytic enzyme content of the exocrine cells.
Protocols for overcoming these limitations are evolving,
including snap-freezing of the dissected pancreas followed
by single-nucleus RNA-Seq.22 Moreover, single-cell omics
techniques other than scRNA-seq have been developed
such as Patch-Seq.156
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In addition to the application of scRNA-seq in basic
life science investigations, this technology has also been
demonstrated as a powerful tool for understanding infec-
tious diseases. The COVID-19 pandemic, caused by coro-
navirus SARS-CoV-2, has affected more than 248 million
people worldwide (by 3 November 2021). Understanding
the pathogenesis of COVID-19 infection is of great impor-
tance in preventing transmission, reducing the severity
of the infection and developing novel therapeutic strate-
gies quickly and efficiently. To date, a number of stud-
ies using single-cell RNA sequencing technology have
been conducted to understand the immune cell land-
scape and response in COVID-19 patients157–159 and result-
ing in variations of clinical outcomes depending on the
age, sex, severity and COVID-19 disease stages.157 They
found that COVID-19 induced a unique immune cell sig-
naling in humans compared to healthy controls, partic-
ularly during the early recovery phase. Unique immune
cell signaling was found in infected humans compared
to healthy controls.158 Differences in the composition of
key immune cells between moderate, severe, convalescent
COVID-19 patients and the control group by performing
scRNA-seq on peripheral blood from COVID-19 patients
and healthy individuals were identified. Most cell types
in COVID-19 patients showed a robust interferon alpha
response and an acute immune response.159 In addition
to single-cell sequencing of immune cells from periph-
eral blood mononuclear cells (PBMC) and bronchoalveo-
lar lavage (BAL), single nuclei RNA sequencing of COVID-
19 tissues/organs have also provided important patholog-
ical insights in the disease severity and progression. By
single-cell sequencing of 24 lung, 16 kidney, 16 liver and 19
heart autopsy tissue samples and spatial transcriptomics
sequencing of 14 lung samples from COVID-19 patients,
Delorey et al.160 reveal the biological effects of severe
SARS-COV-2 infection and remodeling of lung epithelial,
immune and stromal compartments in patients. The pan-
demic is still far fromcomplete dissolution, and scRNA-seq
would certainly remain an important pipeline to properly
puzzle immune responses on different variants across the
globe. Taken together, single-cell RNA sequencing tech-
nology gained more scientific insights in the fight against
COVID-19 and can be used in the future for detecting not
only current SARS-CoV-2 but also the other pathogens in
combination with conventional methods.

5 CONCLUSION REMARKS AND
FUTURE PERSPECTIVES

Single-cell RNA sequencing has proven as one of the
transforming technologies in life sciences over the past
decade. The development of high throughput single-cell

RNA sequencing technologies and the computational tools
make the technology accessible and applicable in almost
all applications in life sciences. One important ground
knowledge to revisit by using the single-cell RNA sequenc-
ing technology is the construction of single cell atlas in
tissues, organs and organism. Towards this, considerable
efforts have been made to investigate and establish cell
atlases. Just to mention a few, body-wide single-cell atlas
has been revisited for Caenorhabditis elegans, planarian,
D.melanogaster, zebrafish,mouse,Macaca fascicularis and
human7,161–166 (Figure 6). Particularly, Han and cowork-
ers profiled all major human organs, including 60 differ-
ent human tissue types, and constructed a scheme for the
human cell landscape (HCL) for the very first time.164
They have uncovered a single-cell hierarchy for many tis-
sues that have not been well characterized. They profiled
more than 599 000 cells using microwell-seq and estab-
lished a ‘single-cell HCL analysis’ pipeline that helps to
define human cell identity, genetic networks, progenitor
and adult cells. With the development of the technology
and applications, more andmore single-cell RNA sequenc-
ing data are expected to be generated and integrated in a
publicly accessible database to facilitate the understanding
gene and cell functions in health and diseases.
Combining scRNA-seq and other large scale-genetic

screening tools will be further expanding the applications
of the technology. One such combinational technology
is combing scRNA-seq and CRISPR-based genome-scale
genetic screening, such as Perturb-seq that enables the
assessment of transcriptional effects of knocking out sev-
eral genes with CRISPR,167 and LinTIMaT that integrates
single-cell transcriptome data and mutation data for lin-
eage tracing.168 In addition to CRISPR-mediated mutagen-
esis, it is also possible to combine scRNA-seq and CRISPR-
mediated gene activation or interference.169,170 These com-
binational applications allow us to investigate the genetic
effect on the cellular transcriptome and functions in a large
scale. With the continuous development of both single-
cell RNA sequencing and CRISPR gene editing, such as
prime editing,171 more such combinational technologies
and applications are expected to be arrived and contributed
to the better understanding of gene and cell functions.
In this review, we focus on the single-cell RNA sequenc-

ing technologies and its applications. However, it should
be noted that single-cell sequencing technology has
been developed to measure nearly all OMICS, such as
single-cell whole-genome sequencing,172 single-cell copy
number variation sequencing,173 single-cell epigenetic
markers (i.e., DNA methylation, chromatin accessibility)
sequencing,174 single-cell proteinomics175 and single-cell
metabolomics.176 More and more multiomics studies and
analyses are expected to be carried out to fully character-
ize the gene regulatory processes, functions,molecules and
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F IGURE 6 Cell atlases of model organisms. First cell atlases of model organism Caenorhabditis elegans (A), planarian (B), Drosophila
melanogaster (C), zebrafish (D), mouse (E), monkey (F), and human (G). Year of published data, cell number and cell type analyzed by
single-cell RNA sequencing (scRNA-seq) were indicated. Icons of model organisms are created with BioRender with license for publication

interactions for cell types in healthy tissues/organs and in
diseased conditions.177
Despite all these great promises, one major disadvan-

tage of single cell RNA sequencing is the loss of histo-
logical information as both single cell and single nuclei
suspensions have to be prepared from tissues. Although
trajectory analysis can help with projecting the associa-
tion and transition between different cell types, other con-
founding factors associate with tissue digestion, cell iso-
lation and preservation could alter gene expression and
cell representation. Spatial dimension of single-cell tran-
scriptomics represents an essential step and breakthrough
in the field to investigate whole organism architecture at
the molecular level. Several spatial transcriptomics meth-
ods have been developed and demonstrated in proof-of-
concept studies, such as barcoded array-based capture of
transcripts on microdissected tissues and in situ sequenc-
ing. In 2020, spatially resolved transcriptomics technology
has been selected as the Method of the Year by Nature
Methods. Spatially and temporally revealing the single-
cell transcriptions in a complex tissues and organs will
be the rising transforming tools to understand composi-
tion, complexity, interaction and functions of cells in tis-
sues/organs/organisms.
Another promising application in the future is inte-

gration of the scRNA-seq technology into routine clini-
cal diagnoses and personalized medicine. However, cur-
rently most scRNA-seq-based clinical studies are still at
their exploratory phases, mainly focusing on revisiting and
better understanding the disease processes and identifica-
tion of diagnosis and therapeutic markers. Although the
cost per cell has been reduced significantly, the cost per
sample (including the library preparation and sequenc-
ing) is still substantially high (Figure 1). This remains one
limiting factor to use the scRNA-seq as a routine diag-
nostic tool. Other remaining challenges are the scRNA-

seq data processing, analysis, presentation and interpre-
tation. Automatic scRNA-seq data analysis pipelines with
user friendly interphase, and most importantly, which
can be used by personnel without any bioinformatic
skills and background, are needed to further broaden the
scRNA-seq-based clinical applications. One such example
is the single-cell omics workbench from the Galaxy Com-
munity (https://galaxyproject.org/use/singlecell/), which
integrates more than 20 bioinformatics tools. Since a large
number of open-source tools have been developed for this
purpose (see Table S1), more streamlined and automatic
scRNA-seq data analysis and visualization platforms are
expected to generate and be available in the future. In con-
clusion, we have presented a brief and concise overview
of single-cell RNA sequencing technology and its appli-
cations. The continuous development of the technology
will broaden its applications in clinical and personalized
medicine.

ACKNOWLEDGEMENTS
We would like to thank Fred Dubee, Lars Bolund
and Huanming Yang for their critical comments to the
manuscript. The single-cell project was partially supported
by the Qingdao-Europe Advanced Institute for Life Sci-
ences. L.L. is supported by the Independent ResearchFund
Denmark (DFF, Sapere Aude Starting grant 8048-00072A).
We thank the China National GeneBank for the support
of executing the project under the framework of Genome
Read and Write.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

ORCID
YonglunLuo https://orcid.org/0000-0002-0007-7759

https://galaxyproject.org/use/singlecell/
https://orcid.org/0000-0002-0007-7759
https://orcid.org/0000-0002-0007-7759


16 of 20 JOVIC et al.

REFERENCES
1. Bianconi E, Piovesan A, Facchin F, et al. An estimation of the

number of cells in the human body.AnnHumBiol. 2013;40:463-
471.

2. Arendt D, Musser JM, Baker CVH, et al. The origin and evolu-
tion of cell types. Nat Rev Genet. 2016;17:744-757.

3. Coons AH, Creech HJ, Jones RN. Immunological properties of
an antibody containing a fluorescent group. Proc Soc Exp Biol
Med. 1941;47:200-202.

4. Murphy D. Gene expression studies using microarrays: princi-
ples, problems, and prospects. Adv Physiol Educ. 2002;26:256-
270.

5. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-
transcriptome analysis of a single cell.NatMethods. 2009;6:377-
382.

6. Brennecke P, Anders S, Kim JK, et al. Accounting for tech-
nical noise in single-cell RNA-seq experiments. Nat Methods.
2013;10:1093-1095.

7. Cao J, Packer JS, Ramani V, et al. Comprehensive single-cell
transcriptional profiling of a multicellular organism. Science.
2017;357:661-667.

8. Fan HC, Fu GK, Fodor SPA. Combinatorial labeling
of single cells for gene expression cytometry. Science.
2015;347(6222):1258367. https://doi.org/10.1126/science.1258367

9. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding
for single-cell transcriptomics applied to embryonic stem cells.
Cell. 2015;161:1187-1201.

10. Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable
technology for measuring genome-wide expression at high spa-
tial resolution. Science. 2019;363:1463-1467.

11. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An
anatomically comprehensive atlas of the adult human brain
transcriptome. Nature. 2012;489:391-399.

12. Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis
of single-cell RNA sequencing methods. Mol Cell. 2017;65:631-
643.e4.

13. Macaulay IC, Voet T. Single cell genomics: advances and future
perspectives. PLoS Genet. 2014;10:e1004126.

14. Sanz E, Yang L, Su T, et al. Cell-type-specific isolation of
ribosome-associated mRNA from complex tissues. Proc Natl
Acad Sci. 2009;106:13939-13944.

15. Zeb Q, Wang C, Shafiq S, et al. An Overview of Single-Cell Isola-
tion Techniques. Elsevier; 2019.

16. Van Den Brink SC, Sage F, Vértesy Á, et al. Single-cell sequenc-
ing reveals dissociation-induced gene expression in tissue sub-
populations. Nat Methods. 2017;14:935-936.

17. AdamM, Potter AS, Potter SS. Psychrophilic proteases dramat-
ically reduce single-cell RNA-seq artifacts: a molecular atlas of
kidney development. Development. 2017;144:3625-3632.

18. Ding J, Adiconis X, Simmons SK, et al. Systematic compari-
son of single-cell and single-nucleus RNA-sequencing meth-
ods. Nat Biotechnol. 2020;38:737-746.

19. Zeng W, Jiang S, Kong X, et al. Single-nucleus RNA-seq of dif-
ferentiating human myoblasts reveals the extent of fate hetero-
geneity. Nucleic Acids Res. 2016;44:e158-e158.

20. WolfienM,GalowA-M,Müller P, et al. Single-nucleus sequenc-
ing of an entire mammalian heart: cell type composition and
velocity. Cells. 2020;9:318.

21. Koenitzer JR, Wu H, Atkinson JJ, et al. Single nucleus
RNASeq profiling of mouse lung: reduced dissociation bias and
improved detection of rare cell types compared with single
cell RNASeq. bioRxiv. 2020. https://doi.org/10.1101/2020.03.06.
981407

22. Tosti L, Hang Y, Debnath O, et al. Single-nucleus and in situ
RNA–sequencing reveal cell topographies in the human pan-
creas. Gastroenterology. 2021;160:1330-1344.e11.

23. Slyper M, Porter CBM, Ashenberg O, et al. A single-cell and
single-nucleus RNA-Seq toolbox for fresh and frozen human
tumors. Nat Med. 2020;26:792-802.

24. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, et al.
RNA-sequencing from single nuclei. Proc Natl Acad Sci.
2013;110:19802-19807.

25. Kolodziejczyk AA, Kim JK, Svensson V, et al. The technol-
ogy and biology of single-cell RNA sequencing. Mol Cell.
2015;58:610-620.

26. Goetz JJ, Trimarchi JM. Transcriptome sequencing of single
cells with Smart-Seq. Nat Biotechnol. 2012;30:763-765.

27. Picelli S, Björklund ÅK, Faridani OR, et al. Smart-Seq2 for sen-
sitive full-length transcriptome profiling in single cells. Nat
Methods. 2013;10:1096-1098.

28. Xin Y, Kim J, Ni M, et al. Use of the fluidigm C1 platform for
RNAsequencing of singlemouse pancreatic islet cells.ProcNatl
Acad Sci. 2016;113:3293-3298.

29. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter
droplets. Cell. 2015;161:1202-1214.

30. Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun.
2017;8:1-12.

31. Sheng K, Cao W, Niu Y, et al. Effective detection of variation
in single-cell transcriptomes using MATQ-seq. Nat Methods.
2017;14:267-270.

32. Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well:
portable, low-cost RNA sequencing of single cells at high
throughput. Nat Methods. 2017;14:395-398.

33. Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcrip-
tase template switching: a SMART™ approach for full-length
cDNA library construction. BioTechniques. 2001;30:892-897.

34. Hedlund E, Deng Q. Single-cell RNA sequencing: technical
advancements and biological applications. Mol Aspects Med.
2018;59:36-46.

35. Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-
cell RNA-Seq by multiplexed linear amplification. Cell Rep.
2012;2:666-673.

36. Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively paral-
lel single-cell RNA-seq formarker-free decomposition of tissues
into cell types. Science. 2014;343:776-779.

37. Fu GK, Hu J, Wang P-H, et al. Counting individual DNA
molecules by the stochastic attachment of diverse labels. Proc
Natl Acad Sci. 2011;108:9026-9031.

38. LiuC, et al. A portable and cost-effectivemicrofluidic system for
massively parallel single-cell transcriptome profiling. Biorxiv.
2019; https://www.biorxiv.org/content/10.1101/818450v3

39. Huang J, Liang X, Xuan Y, et al. A reference human
genome dataset of the BGISEQ-500 sequencer. Gigascience.
2017;6:gix024.

https://doi.org/10.1126/science.1258367
https://doi.org/10.1101/2020.03.06.981407
https://doi.org/10.1101/2020.03.06.981407
https://www.biorxiv.org/content/10.1101/818450v3


JOVIC et al. 17 of 20

40. Legnini I, Alles J, Karaiskos N, et al. FLAM-seq: full-length
mRNA sequencing reveals principles of poly (A) tail length con-
trol. Nat Methods. 2019;16:879-886.

41. Hicks SC, Townes FW, Teng M, et al. Missing data and techni-
cal variability in single-cell RNA-sequencing experiments. Bio-
statistics. 2018;19:562-578.

42. Zappia L, Phipson B, OshlackA. Exploring the single-cell RNA-
seq analysis landscape with the scRNA-tools database. PLoS
Comput Biol. 2018;14:e1006245.

43. Stuart T, Butler A, Hoffman P, et al. Comprehensive integration
of single-cell data. Cell. 2019;177:1888-1902.e21.

44. Lun AT,McCarthy DJ, Marioni JC. A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with Bioconduc-
tor. F1000Res. 2016;5:2122.

45. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 2018;19:1-5.

46. Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding
of stromal cells in the lung tumor microenvironment.Nat Med.
2018;24:1277-1289.

47. FanX, BialeckaM,Moustakas I, et al. Single-cell reconstruction
of follicular remodeling in the human adult ovary. Nat Com-
mun. 2019;10:1-13.

48. Lytal N, Ran D, An L. Normalization methods on single-cell
RNA-seq data: an empirical survey. Front Genet. 2020;11:41.

49. Yip SH, Sham PC, Wang J. Evaluation of tools for highly vari-
able gene discovery from single-cell RNA-seq data. Brief Bioin-
form. 2019;20:1583-1589.

50. Tran HTN, Ang KS, Chevrier M, et al. A benchmark of batch-
effect correction methods for single-cell RNA sequencing data.
Genome Biol. 2020;21:1-32.

51. Goh WWB, Wang W, Wong L. Why batch effects matter
in omics data, and how to avoid them. Trends Biotechnol.
2017;35:498-507.

52. Hie B, Bryson B, Berger B. Efficient integration of heteroge-
neous single-cell transcriptomes using Scanorama.Nat Biotech-
nol. 2019;37:685-691.

53. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of
multimodal single-cell data. Cell. 2021;184:3573-3587.e29.

54. Zou B, Zhang T, Zhou R, et al. deepMNN: deep learning-based
single-cell RNA sequencing data batch correction usingmutual
nearest neighbors. Front Genet. 2021;12:708981.

55. Lake BB, Chen S, Hoshi M, et al. A single-nucleus RNA-
sequencing pipeline to decipher the molecular anatomy and
pathophysiology of human kidneys.Nat Commun. 2019;10:1-15.

56. Shaham U, Stanton KP, Zhao J, et al. Removal of batch effects
using distribution-matching residual networks. Bioinformatics.
2017;33:2539-2546.

57. Lotfollahi M, Wolf FA, Theis FJ. scGen predicts single-cell per-
turbation responses. Nat Methods. 2019;16:715-721.

58. Wu D, Yeong Poh Sheng J, Tan Su-En G, et al. Comparison
between UMAP and t-SNE for multiplex-immunofluorescence
derived single-cell data from tissue sections. BioRxiv. 2019.
https://doi.org/10.1101/549659

59. Duò A, Robinson MD, Soneson C. A systematic performance
evaluation of clustering methods for single-cell RNA-seq data.
F1000Res. 2018;7:1141.

60. Clarke ZA, Andrews TS, Atif J, et al. Tutorial: guidelines for
annotating single-cell transcriptomic maps using automated
and manual methods. Nat Protoc. 2021;16:2749-2764.

61. Huang Q, Liu Y, Du Y, et al. Evaluation of cell type annotation
R packages on single-cell RNA-seq data. Genomics Proteomics
Bioinf. 2020. https://doi.org/10.1101/827139

62. Chen KH, Boettiger AN, Moffitt JR, et al. RNA imaging. Spa-
tially resolved, highlymultiplexed RNA profiling in single cells.
Science. 2015;348:aaa6090.

63. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrich-
ment tools: paths toward the comprehensive functional analysis
of large gene lists. Nucleic Acids Res. 2009;37:1-13.

64. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set varia-
tion analysis for microarray and RNA-seq data. BMC Bioinf.
2013;14:1-15.

65. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-
cell regulatory network inference and clustering. Nat Methods.
2017;14:1083-1086.

66. Van De Sande B, Flerin C, Davie K, et al. A scalable SCENIC
workflow for single-cell gene regulatory network analysis. Nat
Protoc. 2020;15:2247-2276.

67. Ma A, Wang C, Chang Y, et al. IRIS3: integrated cell-type-
specific regulon inference server from single-cell RNA-Seq.
Nucleic Acids Res. 2020;48:W275-W286.

68. Saelens W, Cannoodt R, Todorov H, et al. A comparison
of single-cell trajectory inference methods. Nat Biotechnol.
2019;37:547-554.

69. QiuX,MaoQ, TangY, et al. Reversed graph embedding resolves
complex single-cell trajectories. Nat Methods. 2017;14:979-982.

70. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and anal-
ysis of cell-cell communication using CellChat. Nat Commun.
2021;12:1-20.

71. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercel-
lular communication by linking ligands to target genes. Nat
Methods. 2020;17:159-162.

72. Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, et al. Single-
CellSignalR: inference of intercellular networks from single-
cell transcriptomics. Nucleic Acids Res. 2020;48:e55-e55.

73. Efremova M, Vento-Tormo M, Teichmann SA, et al. Cell-
PhoneDB: inferring cell–cell communication from combined
expression of multi-subunit ligand–receptor complexes. Nat
Protoc. 2020;15:1484-1506.

74. Wang Y, Wang R, Zhan S, et al. iTALK: an R package to charac-
terize and illustrate intercellular communication.BioRxiv. 2019.
https://doi.org/10.1101/507871

75. Scialdone A, Natarajan KN, Saraiva LR, et al. Computational
assignment of cell-cycle stage from single-cell transcriptome
data.Methods. 2015;85:54-61.

76. Datlinger P, Rendeiro AF, Schmidl C, et al. Pooled CRISPR
screening with single-cell transcriptome readout. Nat Methods.
2017;14:297-301.

77. Ranzoni AM, Tangherloni A, Berest I, et al. Integrative single-
cell RNA-seq and ATAC-seq analysis of human developmental
hematopoiesis. Cell Stem Cell. 2021;28:472-487.e7.

78. Hu Y, Huang K, An Q, et al. Simultaneous profiling of tran-
scriptome andDNAmethylome from a single cell.Genome Biol.
2016;17:1-11.

79. HuY,AnQ,GuoY, et al. Simultaneous profiling ofmRNA tran-
scriptome and DNAmethylome from a single cell.MethodsMol
Biol. 2019;1979:363-377.

80. Golomb SM, Guldner IH, Zhao A, et al. Multi-modal single-
cell analysis reveals brain immune landscape plasticity

https://doi.org/10.1101/549659
https://doi.org/10.1101/827139
https://doi.org/10.1101/507871


18 of 20 JOVIC et al.

during aging and gut microbiota dysbiosis. Cell Rep. 2020;33:
108438.

81. Stoeckius M, Hafemeister C, Stephenson W, et al. Simultane-
ous epitope and transcriptomemeasurement in single cells.Nat
Methods. 2017;14:865-868.

82. Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and
spatial transcriptomics reveal the molecular, cellular and spa-
tial bone marrow niche organization. Nat Cell Biol. 2020;22:38-
48.

83. Luecken MD, Theis FJ. Current best practices in single-cell
RNA-seq analysis: a tutorial.Mol Syst Biol. 2019;15:e8746.

84. Shaw R, Tian X, Xu J. Single-cell transcriptome analysis in
plants: advances and challenges. Molecular Plant. 2020;14:115-
126.

85. Denyer T, Ma X, Klesen S, et al. Spatiotemporal developmen-
tal trajectories in the Arabidopsis root revealed using high-
throughput single-cell RNA sequencing. Dev Cell. 2019;48:840-
852.e5.

86. Shulse CN, Cole BJ, Ciobanu D, et al. High-throughput single-
cell transcriptome profiling of plant cell types. Cell Rep.
2019;27:2241-2247.e4.

87. Zhang T-Q, Xu Z-G, Shang G-D. A single-cell RNA sequenc-
ing profiles the developmental landscape of Arabidopsis root.
Molecular plant. 2019;12:648-660.

88. Nelms B, Walbot V. Defining the developmental program lead-
ing to meiosis in maize. Science. 2019;364:52-56.

89. Tian C, Du Q, Xu M, et al. Single-nucleus RNA-seq resolves
spatiotemporal developmental trajectories in the tomato shoot
apex. bioRxiv. 2020. https://doi.org/10.1101/2020.09.20.305029

90. Wang Y, Huan Q, Li K, et al. Single-cell transcriptome atlas of
the leaf and root of rice seedlings. J Genet Genom. 2021;48:881-
898.

91. Song Q, Ando A, Jiang N, et al. Single-cell RNA-seq anal-
ysis reveals ploidy-dependent and cell-specific transcriptome
changes in Arabidopsis female gametophytes. Genome Biol.
2020;21:1-18.

92. Rhee SY, Birnbaum KD, Ehrhardt DW. Towards building a
plant cell atlas. Trends Plant Sci. 2019;24:303-310.

93. Ma X, Denyer T, Timmermans MCP. PscB: a browser to
explore plant single cell RNA-sequencing data sets. Plant Phys-
iol. 2020;183:464-467.

94. Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analy-
sis of tumor heterogeneity. Trends Cancer. 2018;4:264-268.

95. Cao J, SpielmannM, Qiu X, et al. The single-cell transcriptional
landscape of mammalian organogenesis. Nature. 2019;566:496-
502.

96. Haghverdi L, Lun ATL, Morgan MD, et al. Batch effects
in single-cell RNA-sequencing data are corrected by match-
ing mutual nearest neighbors. Nat Biotechnol. 2018;36:421-
427.

97. Lavin Y, Kobayashi S, Leader A, et al. Innate immune land-
scape in early lung adenocarcinoma by paired single-cell anal-
yses. Cell. 2017;169:750-765.e17.

98. Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of com-
position and spatial architecture in human squamous cell car-
cinoma. Cell. 2020;182:1661-1662.

99. Chen W-T, Lu A, Craessaerts K, et al. Spatial transcriptomics
and in situ sequencing to study Alzheimer’s disease. Cell.
2020;182:976-991.e19.

100. Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-
wide gene expression and cell atlas of the developing human
heart. Cell. 2019;179:1647-1660.e19.

101. Guo X, Zhang Y, Zheng L, et al. Global characterization of T
cells in non-small-cell lung cancer by single-cell sequencing.
Nat Med. 2018;24:978-985.

102. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-
infiltrating lymphocytes and a high CD8+/regulatory T cell
ratio are associated with favorable prognosis in ovarian cancer.
Proc Natl Acad Sci. 2005;102:18538-18543.

103. Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single
immune cells in hepatocellular carcinoma. Cell. 2019;179:829-
845.e20.

104. Tirosh I, Venteicher AS, Hebert C, et al. Single-cell RNA-
seq supports a developmental hierarchy in human oligoden-
droglioma. Nature. 2016;539:309-313.

105. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellu-
lar ecosystem of metastatic melanoma by single-cell RNA-seq.
Science. 2016;352:189-196.

106. Harper J, Sainson RCA. Regulation of the anti-tumour immune
response by cancer-associated fibroblasts. Semin Cancer Biol.
25, 2014: 69-77.

107. Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and func-
tionally distinct subclasses of breast cancer-associated fibrob-
lasts revealed by single cell RNA sequencing. Nat Commun.
2018;9:1-13.

108. Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of col-
orectal cancer on a TGF-β-driven program in stromal cells for
metastasis initiation. Cancer Cell. 2012;22:571-584.

109. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks
of stromal cells in the tumour microenvironment. Nat Rev
Immunol. 2015;15:669-682.

110. Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape
of cancer. Immunity. 2018;48:812-830.e14.

111. He D, Wang D, Lu P, et al. Single-cell RNA sequencing reveals
heterogeneous tumor and immune cell populations in early-
stage lung adenocarcinomas harboring EGFRmutations.Onco-
gene. 2021;40:355-368.

112. ChungW,EumHH,LeeH-O, et al. Single-cell RNA-seq enables
comprehensive tumour and immune cell profiling in primary
breast cancer. Nat Commun. 2017;8:1-12.

113. Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse
immune phenotypes in the breast tumor microenvironment.
Cell. 2018;174:1293-1308.e36.

114. Qi Z, Liu Y, Mints M, et al. Single-cell deconvolution of head
and neck squamous cell carcinoma. Cancers. 2021;13:1230.

115. Zhao J, Guo C, Xiong F, et al. Single cell RNA-seq reveals the
landscape of tumor and infiltrating immune cells in nasopha-
ryngeal carcinoma. Cancer Lett. 2020;477:131-143.

116. Yu X, Chen YA, Conejo-Garcia JR, et al. Estimation of immune
cell content in tumor using single-cell RNA-seq reference data.
BMC Cancer. 2019;19:1-11.

117. Pan Y, Lu F, Fei Q, et al. Single-cell RNA sequencing reveals
compartmental remodeling of tumor-infiltrating immune cells
induced by anti-CD47 targeting in pancreatic cancer. J Hematol
Oncol. 2019;12:1-18.

118. Pelka K, Hofree M, Chen JH, et al. Multicellular immune hubs
and their organization in MMRd and MMRp colorectal cancer.
bioRxiv. 2021;184(18):4734-4752.e20.

https://doi.org/10.1101/2020.09.20.305029


JOVIC et al. 19 of 20

119. Wang S, Karikomi M, Maclean AL, et al. Cell lineage and com-
munication network inference via optimization for single-cell
transcriptomics. Nucleic Acids Res. 2019;47:e66-e66.

120. Raredon MSB, Adams TS, Suhail Y, et al. Single-cell con-
nectomic analysis of adult mammalian lungs. Sci Adv.
2019;5:eaaw3851.

121. Klein CA. Selection and adaptation during metastatic cancer
progression. Nature. 2013;501:365-372.

122. Chisholm RH, Lorenzi T, Lorz A, et al. Emergence of drug tol-
erance in cancer cell populations: an evolutionary outcome of
selection, nongenetic instability, and stress-induced adaptation.
Cancer Res. 2015;75:930-939.

123. GuoM, PengY,GaoA, et al. Epigenetic heterogeneity in cancer.
Biomark Res. 2019;7:1-19.

124. Su X, Zhao L, Shi Y, et al. Clonal evolution in liver cancer
at single-cell and single-variant resolution. J Hematol Oncol.
2021;14:1-5.

125. Ma L, Wang L, Khatib SA, et al. Single-cell atlas of tumor cell
evolution in response to therapy in hepatocellular carcinoma
and intrahepatic cholangiocarcinoma. J Hepatol. 2021;75:1397-
1408.

126. Dirkse A, Golebiewska A, Buder T, et al. Stem cell-associated
heterogeneity in glioblastoma results from intrinsic tumor
plasticity shaped by the microenvironment. Nat Commun.
2019;10:1-16.

127. Darmanis S, Sloan SA, Croote D, et al. Single-cell RNA-seq
analysis of infiltrating neoplastic cells at the migrating front of
human glioblastoma. Cell Rep. 2017;21:1399-1410.

128. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq high-
lights intratumoral heterogeneity in primary glioblastoma. Sci-
ence. 2014;344:1396-1401.

129. Horning AM, Wang Y, Lin C-K, et al. Single-Cell RNA-seq
reveals a subpopulation of prostate cancer cells with enhanced
cell-cycle–related transcription and attenuated androgen
response. Cancer Res. 2018;78:853-864.

130. AirdWC. Phenotypic heterogeneity of the endothelium: II. Rep-
resentative vascular beds. Circ Res. 2007;100:174-190.

131. Aird WC. Phenotypic heterogeneity of the endothelium: I.
Structure, function, and mechanisms. Circ Res. 2007;100:158-
173.

132. Conway EM, Carmeliet P. The diversity of endothelial cells: a
challenge for therapeutic angiogenesis. Genome Biol. 2004;5:1-
5.

133. Kalucka J, De Rooij L, Goveia J, et al. Single-cell transcriptome
atlas of murine endothelial cells. Cell. 2020;180:764-779.e20.

134. Dumas SJ, Meta E, Borri M, et al. Single-cell RNA sequencing
reveals renal endothelium heterogeneity andmetabolic adapta-
tion to water deprivation. J Am Soc Nephrol. 2020;31:118-138.

135. Goveia J, Rohlenova K, Taverna F, et al. An integrated gene
expression landscape profiling approach to identify lung tumor
endothelial cell heterogeneity and angiogenic candidates. Can-
cer Cell. 2020;37:21-36.e13.

136. Rohlenova K, Goveia J, García-Caballero M, et al. Single-
cell RNA sequencing maps endothelial metabolic plasticity in
pathological angiogenesis. Cell Metab. 2020;31:862-877.e14.

137. Teuwen L-A, De Rooij L, Cuypers A, et al. Tumor vessel co-
option probed by single-cell analysis. Cell Rep. 2021;35:109253.

138. Stanescu DE, Yu R, Won K-J, et al. Single cell transcriptomic
profiling of mouse pancreatic progenitors. Physiol Genomics.
2017;49:105-114.

139. Zeng C,Mulas F, Sui Y, et al. Pseudotemporal ordering of single
cells reveals metabolic control of postnatal β cell proliferation.
Cell Metab. 2017;25:1160-1175.e11.

140. Qiu W-L, Zhang Y-W, Feng Y, et al. Deciphering pancreatic
islet β cell and α cell maturation pathways and characteris-
tic features at the single-cell level. Cell Metab. 2017;25:1194-
1205.e4.

141. Sznurkowska MK, Hannezo E, Azzarelli R, et al. Defining lin-
eage potential and fate behavior of precursors during pancreas
development. Dev Cell. 2018;46:360-375.e5.

142. Gradwohl G, Dierich A, Lemeur M, et al. neurogenin3 is
required for the development of the four endocrine cell lineages
of the pancreas. Proc Natl Acad Sci. 2000;97:1607-1611.

143. Lyttle BM, Li J, Krishnamurthy M, et al. Transcription factor
expression in the developing human fetal endocrine pancreas.
Diabetologia. 2008;51:1169-1180.

144. Bocian-Sobkowska J, ZabelM,WozniakW, et al. Polyhormonal
aspect of the endocrine cells of the human fetal pancreas. His-
tochem Cell Biol. 1999;112:147-153.

145. Xin Y, Kim J, Okamoto H, et al. RNA sequencing of single
human islet cells reveals type 2 diabetes genes. Cell Metab.
2016;24:608-615.

146. Augsornworawat P, Maxwell KG, Velazco-Cruz L, et al.
Single-cell transcriptome profiling reveals β cell maturation
in stem cell-derived islets after transplantation. Cell Rep.
2020;32:108067.

147. Maxwell KG, Augsornworawat P, Velazco-Cruz L, et al. Gene-
edited human stem cell–derived β cells from a patient with
monogenic diabetes reverse preexisting diabetes in mice. Sci
Transl Med. 2020;12:eaax9106.

148. Sharon N, Vanderhooft J, Straubhaar J, et al. Wnt signaling sep-
arates the progenitor and endocrine compartments during pan-
creas development. Cell Rep. 2019;27:2281-2291.e5.

149. Veres A, Faust AL, Bushnell HL, et al. Charting cellular
identity during human in vitro β-cell differentiation. Nature.
2019;569:368-373.

150. BalboaD, Saarimäki-Vire J, BorshagovskiD, et al. Insulinmuta-
tions impair beta-cell development in a patient-derived iPSC
model of neonatal diabetes. Elife. 2018;7:e38519.

151. Krentz NAJ, Lee MYY, Xu EE, et al. Single-cell transcriptome
profiling of mouse and hESC-derived pancreatic progenitors.
Stem cell reports. 2018;11:1551-1564.

152. Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of
dynamic function in human stem cell-derived β cells. Stem cell
reports. 2019;12:351-365.

153. Russ HA, Parent AV, Ringler JJ, et al. Controlled induction
of human pancreatic progenitors produces functional beta-like
cells in vitro. EMBO J. 2015;34:1759-1772.

154. Rooijers K, Markodimitraki CM, Rang FJ, et al. Simultaneous
quantification of protein–DNA contacts and transcriptomes in
single cells. Nat Biotechnol. 2019;37:766-772.

155. Raj B, Wagner DE, Mckenna A, et al. Simultaneous single-cell
profiling of lineages and cell types in the vertebrate brain. Nat
Biotechnol. 2018;36:442-450.

156. Camunas-Soler J, Dai X-Q,Hang Y, et al. Patch-seq links single-
cell transcriptomes to human islet dysfunction in diabetes. Cell
Metab. 2020;31:1017-1031.e4.

157. Ren X, Wen W, Fan X, et al. COVID-19 immune features
revealed by a large-scale single-cell transcriptome atlas. Cell.
2021;184:1895-1913.e1819.



20 of 20 JOVIC et al.

158. Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-
19 patients in the recovery stage by single-cell sequencing. Cell
Discovery. 2020;6:1-18.

159. Zhang J-Y, Wang X-M, Xing X, et al. Single-cell landscape
of immunological responses in patients with COVID-19. Nat
Immunol. 2020;21:1107-1118.

160. Delorey TM, Ziegler CGK, Heimberg G et al. COVID-19 tis-
sue atlases reveal SARS-CoV-2 pathology and cellular tar-
gets. Nature 2021;595:107–113. https://doi.org/10.1038/s41586-
021-03570-8

161. Cusanovich DA, Hill AJ, Aghamirzaie D, et al. A single-
cell atlas of in vivo mammalian chromatin accessibility. Cell.
2018;174:1309-1324.e18.

162. Cusanovich DA, Reddington JP, Garfield DA, et al. The cis-
regulatory dynamics of embryonic development at single-cell
resolution. Nature. 2018;555:538-542.

163. Fincher CT, Wurtzel O, De Hoog T, et al. Cell type transcrip-
tome atlas for the planarian Schmidtea mediterranea. Science.
2018;360:eaaq1736.

164. Han X, Zhou Z, Fei L, et al. Construction of a human cell land-
scape at single-cell level. Nature. 2020;581:303-309.

165. Lau X, Munusamy P, Ng MJ, et al. Single-cell RNA sequencing
of the cynomolgus macaque testis reveals conserved transcrip-
tional profiles during mammalian spermatogenesis. Dev Cell.
2020;54:548-566.e7.

166. Wagner DE, Weinreb C, Collins ZM, et al. Single-cell map-
ping of gene expression landscapes and lineage in the zebrafish
embryo. Science. 2018;360:981-987.

167. Replogle JM, Norman TM, Xu A, et al. Combinatorial single-
cell CRISPR screens by direct guide RNA capture and targeted
sequencing. Nat Biotechnol. 2020;38:954-961.

168. Zafar H, Lin C, Bar-Joseph Z. Single-cell lineage tracing by inte-
grating CRISPR-Cas9 mutations with transcriptomic data. Nat
Commun. 2020;11:3055.

169. Alda-Catalinas C, Bredikhin D, Hernando-Herraez I, et al. A
single-cell transcriptomics CRISPR-activation screen identifies
epigenetic regulators of the zygotic genome activation program.
Cell Syst. 2020;11:25-41 e29.

170. Genga RMJ, Kernfeld EM, Parsi KM, et al. Single-Cell
RNA-sequencing-based CRISPRi screening resolves molecu-
lar drivers of early human endoderm development. Cell Rep.
2019;27:708-718 e710.

171. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace
genome editing without double-strand breaks or donor DNA.
Nature. 2019;576:149-157.

172. Gawad C, Koh W, Quake SR. Single-cell genome sequencing:
current state of the science. Nat Rev Genet. 2016;17:175-188.

173. Zhang C, Zhang C, Chen S, et al. A single cell level based
method for copy number variation analysis by low coverage
massively parallel sequencing. PLoS One. 2013;8:e54236.

174. Clark SJ, Lee HJ, Smallwood SA, et al. Single-cell epigenomics:
powerful new methods for understanding gene regulation and
cell identity. Genome Biol. 2016;17:72.

175. Shahi P, Kim SC, Haliburton JR, et al. Abseq: ultrahigh-
throughput single cell protein profiling with droplet microflu-
idic barcoding. Sci Rep. 2017;7:44447.

176. Duncan KD, Fyrestam J, Lanekoff I. Advances in mass spec-
trometry based single-cell metabolomics.Analyst. 2019;144:782-
793.

177. Perkel JM. Single-cell analysis enters the multiomics age.
Nature. 2021;595:614-616.

SUPPORT ING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Jovic D, Liang X, Zeng
H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing
technologies and applications: A brief overview.
Clin Transl Med. 2022;12:e694.
https://doi.org/10.1002/ctm2.694

https://doi.org/10.1038/s41586-021-03570-8
https://doi.org/10.1038/s41586-021-03570-8
https://doi.org/10.1002/ctm2.694

	Single-cell RNA sequencing technologies and applications: A brief overview
	1 | THE RISE OF SINGLE-CELL RNA SEQUENCING TECHNOLOGY
	2 | HIGH THROUGHPUT SINGLE-CELL RNA SEQUENCING TECHNOLOGY: EXPERIMENTAL PROCEDURES
	3 | STREAMLINE scRNA-SEQ DATA ANALYSIS
	3.1 | Data preprocessing
	3.2 | General analyses
	3.3 | Exploratory analyses
	3.4 | Optional analyses

	4 | APPLICATIONS OF SINGLE-CELL RNA SEQUENCING
	5 | CONCLUSION REMARKS AND FUTURE PERSPECTIVES
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


