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ABSTRACT
Aims/Introduction: Recently, an increasing number of cohort studies have suggested
using machine learning (ML) to predict type 2 diabetes mellitus. However, its predictive
ability remains inconclusive. This meta-analysis evaluated the current ability of ML
algorithms for predicting incident type 2 diabetes mellitus.
Materials and Methods: We systematically searched longitudinal studies published
from 1 January 1950 to 17 May 2020 using MEDLINE and EMBASE. Included studies had
to compare ML’s classification with the actual incidence of type 2 diabetes mellitus, and
present data on the number of true positives, false positives, true negatives and false
negatives. The dataset for these four values was pooled with a hierarchical summary
receiver operating characteristic and a bivariate random effects model.
Results: There were 12 eligible studies. The pooled sensitivity, specificity, positive
likelihood ratio and negative likelihood ratio were 0.81 (95% confidence interval [CI] 0.67–
0.90), 0.82 [95% CI 0.74–0.88], 4.55 [95% CI 3.07–6.75] and 0.23 [95% CI 0.13–0.42],
respectively. The area under the summarized receiver operating characteristic curve was
0.88 (95% CI 0.85–0.91).
Conclusions: Current ML algorithms have sufficient ability to help clinicians determine
whether individuals will develop type 2 diabetes mellitus in the future. However, persons
should be cautious before changing their attitude toward future diabetes risk after
learning the result of the diabetes prediction test using ML algorithms.

INTRODUCTION
The prevalence of type 2 diabetes mellitus constitutes a world-
wide epidemic1. Intensive lifestyle interventions were shown to
reduce the risk of type 2 diabetes mellitus2. However, providing
such costly programs to entire populations is not feasible.
Developing accurate methods for predicting type 2 diabetes
mellitus is essential to identify individuals at high risk who
should be targeted by type 2 diabetes mellitus prevention pro-
grams and to avoid burdening low-risk individuals with unnec-
essary regimens.
Many researchers have proposed type 2 diabetes mellitus

predictive models that typically involve risk scores3. Their

limitations have been low external validation3, time-consuming
data collection4, a limited set of variables5 and potential bias
caused by dependence on prior publications for the identifica-
tion of predictors6.
Machine learning (ML) overcomes these weaknesses and has

drawn increasing attention in medical research7. Evidence to
support utilization of ML has been established for identifying
diseases, such as melanoma8, brain tumors9 and sepsis10. How-
ever, evidence is limited for predicting onset of diseases11, possi-
bly because utilization of ML is less prevalent in longitudinal
studies compared with cross-sectional studies. Nevertheless,
with regard to diabetes, recently an increasing number of
cohort studies have tried to use ML for predicting incident dia-
betes. However, the predictive ability of ML remains
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inconclusive. The aim of the present meta-analysis is to evalu-
ate the current ability of ML algorithms for predicting incident
type 2 diabetes mellitus.

MATERIALS AND METHODS
Search strategy
This meta-analysis was reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) statement12.
Electronic databases (EMBASE and MEDLINE) were used to

search for eligible studies published from 1 January 1950 to 17
May 2020. Search terms were thesaurus and text words related
to ML, text terms related to type 2 diabetes mellitus, and text
terms related to cohort studies. These three elements were com-
bined using the BOOLEAN operator ‘AND’ (Appendix S1).
Inclusion criteria were as follows: (i) longitudinal study; (ii) as
the index test, the study used an ML algorithm for determining
whether or not each participant will develop type 2 diabetes
mellitus in the future; and (iii) as the reference standard, the
study ascertained whether or not each participant actually
developed type 2 diabetes mellitus during the follow-up period.
One critical characteristic of ML algorithms is a function that

operates on input variables to predict a response variable with-
out a hypothesis for a stochastic data model (e.g., Cox regres-
sion)13. Thus, included studies had to: (i) train two or more
possible ML algorithms, and choose one or use an ensemble
that combined these algorithms; or (ii) embed the selection of
features in the ML algorithm to concurrently build and test a
model. Studies meeting neither of those two criteria were
excluded.
The outcome of the present meta-analysis was the extent to

which results of the index test and reference standard were
consistent. Included studies had to present data on the number
of true positives, false positives, true negatives and false nega-
tives. If not directly presented, we identified a point maximizing
the Youden Index (calculated as [sensitivity + specificity - 1])
from the receiver operating characteristic (ROC) curve, and
measured sensitivity and specificity using graphics software
(Canvas 11; ACD Systems of America, Inc., Seattle, WA, USA).
If one study had two or more ML classification models, we
chose the model with the largest area under the ROC.

Data extraction
Two authors (SK and KF) independently extracted data rele-
vant to study characteristics. Disagreements were resolved by a
third author (H So). Extracted variables were the first author,
published year, location (country), follow-up period, mean age,
percentage of men, number of participants and cases, ML clas-
sifier, methods for ascertaining type 2 diabetes mellitus, method
for separating training and test data, and features that were
finally selected for predicting type 2 diabetes mellitus. We used
a revised tool for quality assessment of diagnostic accuracy in
studies (QUADUS-2) to evaluate study quality. The QUADUS-
2 consists of four domains: selection of participants, index test,

reference standard, and flow and timing. All four domains
assessed risk of bias, and the first three domains were also used
to assess consensus of applicability14. One question was related
to each domain as to the risk of bias and/or applicability for a
total of seven questions (Appendix S2). One point was given
for each ‘yes’ answer.

Statistical analysis
We synthesized the dataset consisting of the number of true
positives, false positives, true negatives and false negatives in
each study. The pooled sensitivity, specificity, positive likelihood
ratio (PLR; calculated as [sensitivity / (1 - specificity)]) and
negative likelihood ratio (NLR; calculated as [(1 - sensitivity)/
specificity]) were estimated by a hierarchical summary ROC15.
The area under the ‘summarized’ ROC curve (AUROC),
wherein sensitivity and specificity in each study were ‘summa-
rized’, was estimated by a bivariate random effects model. The
hierarchical summary ROC and bivariate random effects mod-
els have different approaches, but give a consistent result16. For
the PLR and NLR, study heterogeneity was assessed by I217

using a multivariate random effects meta-regression, which con-
sidered within- and between-study correlations18. Publication
bias was statistically assessed, as proposed by Deeks et al.,19

where a logarithm of the diagnostic odds ratio is regressed
against its corresponding inverse of the square root of the effec-
tive sample size. Two-sided P value <0.05 was considered statis-
tically significant. All statistical analyses were carried out using
STATA 16 (StataCorp., College Station, TX, USA).

RESULTS
Literature searches
Figure 1 shows the procedure for selecting studies for evalua-
tion. There were 1,086 articles retrieved from MEDLINE and/
or EMBASE. Among the 13 studies that met our initial inclu-
sion criteria (see Materials and Methods), we had to exclude
one study20 from our meta-analysis. That study did not provide
reliable information because of inconsistencies between the text
and tables, which made it impossible to determine the four val-
ues (i.e., number of true positives, false positives, true negatives
and false negatives). We queried the author of the study about
this serious error, but received no response. Finally, 12 eligible
studies4–6,21–29 were selected.

Summary of characteristics and quality of the included studies
Study characteristics are described in Table 1. Follow-up dura-
tion ranged from 1 to 8 years (median 4.5 years). Included
classifiers were decision tree, forward neural network, k-nearest
neighbor, logistic regression, logistic regression using the L1
regularization method, support vector machine, random forests,
reverse engineering and forward simulation and an ensemble of
three decision trees. Selected features varied from six to 1,312.
Table 2 is a summary of selected features from the 12

included studies. Of the 11 representative features, the most fre-
quently selected features were age, obesity and blood glucose
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(nine studies). Rarely selected features were physical activity
(one study) and family history of diabetes (three studies),
although these factors are well known as traditional type 2 dia-
betes mellitus risk factors.
Table 3 shows results of the assessment of study quality

using QUADAS-2. The mean score (standard deviation) for
study quality was 5.1 (1.0). This low-quality score was mainly
attributed to a high risk of bias in the index test in nine studies
for at least one of the following reasons: (i) results of the index
test were not interpreted without knowledge of the results of
the reference standard because of a case–control or historical
cohort design; and (2) the threshold of the index test was not
pre-specified, because the n-fold cross-validation method was
used for separating training and test data.

Data synthesis
For each study, the estimated sensitivity, specificity and Youden
Index for predicting incident type 2 diabetes mellitus are shown
in Table 4. Sensitivity, specificity and the Youden Index in each
study ranged from 0.31 to 0.99, from 0.65 to 0.99 and from
0.28 to 0.81, respectively. Based on these values, the hierarchical
summary ROC curve and pooled estimates of sensitivity and
specificity are shown in Figure 2. The point estimates (95%
confidence interval [CI]) of sensitivity, specificity, PLR and
NLR were 0.81 (0.67–0.90), 0.82 (0.74–0.88), 4.55 (3.07–6.75)
and 0.23 (0.13–0.42), respectively. The AUROC was 0.88 (95%
CI 0.85–0.91). Study heterogeneity expressed as I2 was large
(100%, 95% CI 98–100% for PLR and 100%, 95% CI 99–100%
for NLR). Publication bias was not statistically significant

(P = 0.99), which is visually supported by Deek’s funnel plot
(Appendix S3).

DISCUSSION
While we prepared the present manuscript, a meta-analysis
having the same topic as ours was published30. However, that
meta-analysis had a significant defect, as its protocol combined
longitudinal and cross-sectional studies, which means that the
prognostic value was confused with the diagnostic value. In
addition, it did show the overall AUROC, but failed to include
pooled sensitivity, specificity, PLR and NLR as study end-points
that are essential for each individual to predict their incident
disease risk31.
Equal AUROC does not mean that two ROC curves are

identical, although the AUROC is a measure of overall perfor-
mance. For example, Figure 3 shows two ROC curves, with
test A and test B having the same AUROC. However, at the
point where the Youden Index (i.e., sensitivity + specificity - 1)
is maximized, the PLR and the NLR is 0.96 / (1–0.5) = 1.92
and (1–0.96) / 0.5 = 0.08, respectively, for test A and 0.5 / (1–
0.96) = 12.5 and (1–0.5) / 0.96 = 0.52, respectively, for test B.
When screening a high-risk group, the test should provide
high-sensitivity/low NLR, because otherwise a false negative test
could result in many individuals developing a disease that
might have been prevented by early interventions32. In contrast,
in screening populations with a low prevalence of a disease,
high specificity/high PLR is required, because false positives
could lead to many unnecessary examinations and treatments32.
In the former situation (e.g., Pima Indians in type 2 diabetes

1,086 retrieved from electronic literature
searches

(MEDLINE: 415; EMBASE: 1,019) 

(overlapped 348) 

1,010 excluded according to title and abstract 

1 excluded because of serious 
data error (no response) 

63 excluded for the following reasons: 
11 not original article 

2 outcome was not incident T2DM 

42 cross-sectional design 

2 did not use ML algorithm 
3 no data on sensitivity/specificity 

3 participants had T2DM at baseline 

76 further reviewed 

13 met initial inclusion criteria 

12 included in this meta-analysis

Figure 1 | Study flow in this meta-analysis. ML, machine learning; T2DM, type 2 diabetes mellitus.
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mellitus screening33), test A is superior to test B, whereas test B
is superior to test A in the latter situation (e.g., screening of
individuals without classic risk factors, such as obesity and par-
ental history of type 2 diabetes mellitus34). In general, according
to these calculations, higher sensitivity corresponds to a lower
NLR, whereas higher specificity corresponds to a higher PLR35.
A higher PLR in a test identifies individuals with a higher like-
lihood of developing a disease; in other words, it is a better
‘rule in’ test. Conversely, a lower NLR identifies persons who
could reasonably hope not to develop a disease; thus, such a
test performs better as a ‘rule-out’ test35. The prognostic perfor-
mance of a test should be judged in the context of the specific
situation to which it is applied.
For predicting incident type 2 diabetes mellitus, from the

meta-analysis of 12 eligible studies, the current ML algorithms
were 0.88 of ROC, 4.55 for the PLR and 0.23 for the NLR.
According to Hosmer and Lemeshow36, 0.8 ≤ AUROC < 0.9 is
considered to provide excellent discrimination. This would indi-
cate that the current ML algorithms would help clinicians to
distinguish individuals at high risk of type 2 diabetes mellitus
from low-risk individuals in clinical practice. However, accord-
ing to the Users’ Guide to Medical Literature31, the PLR for
prognostic tests needs to be ≥5 to moderately increase the
probability of incident disease, and the NLR should be ≤0.2 to
moderately decrease the probability of incident disease after
taking the index test. It could be interpreted that diabetes pre-
diction tests using ML algorithms did not have sufficient ability
to affect the persons’ attitude toward future diabetes risk.
We surveyed the predictive ability of previously proposed

type 2 diabetes mellitus risk models described by a previous sys-
tematic review3. When the survey was limited to cohort studies

that reported every value for sensitivity, specificity and AUROC,
the minimum and maximum values were 0.15 and 0.92 for sensi-
tivity, 0.47 and 0.98 for specificity, and 0.11 and 0.65 for the You-
den Index. The mean AUROC was 0.79 (Appendix S4). These
values suggest that ML algorithms are superior in predicting
type 2 diabetes mellitus to these risk models (see Results). In the
studies included in the current meta-analysis, data were gathered
from uncontrolled observations on complex systems, such as elec-
tronic medical records13. In addition, information on many well-
known risk factors, such as family history of type 2 diabetes melli-
tus and physical inactivity, were often unavailable (see Table 2).
Considering these disadvantages, it is possible that ML algorithms
further outperform established risk models than the above com-
parison suggested. Future research should compare the ability to
predict type 2 diabetes mellitus among ML algorithms, previously
established risk models and, furthermore, clinicians, using the
same database. In addition, using state-of art technology (e.g.,
Transformer, Gated Recurrent Networks) would make it possible
to improve ML performance. Research for predicting future
type 2 diabetes mellitus risk should be focused on the further
development of MLmodels considering their high potentiality.
The strength of the present study is that this meta-analysis is

the first to assess the current ability of ML to predict incident
type 2 diabetes mellitus after a systematic search for longitudi-
nal studies. As shown in Figure 1, there have been many cross-
sectional studies of detection of undiagnosed type 2 diabetes
mellitus using ML algorithms. The rationale for limiting the
analysis to longitudinal studies is that effective methods for
identifying individuals who will develop type 2 diabetes mellitus
in the future is in greater demand than those for identifying
individuals that already have type 2 diabetes mellitus,

Table 2 | Summary of features selected by machine learning for predicting type 2 diabetes mellitus

Study source Age Sex BP [*1] Obesity [*2] PA [*3] FH of DM Glucose [*4] HDL-C/TG Chol [*5] Liver [*6] Kidney [*7]

Cahn (2020)21 † † † † † † †

Abbas (2019)22 †

Choi (2019)4 † † † †

Farran (2019)23 † † † † †

Nguyen (2019)24 † † † † † † † † †

Talaei-Khoei (2018)6 † † † † † †

Alghamdi (2017)25 † † † † †

Allalou (2016)26 †

Casanova (2016)5 † † † † † † † † †

Anderson (2015)27 † † † † † † † † †

Razavian (2015)28 † † † † † † †

Mani (2012)29 † † † † † † †

[#1] Including systolic blood pressure, diastolic blood pressure, hypertension and blood pressure-lowering agents. [#2] Including body mass index
and bodyweight, as well as the presence of obesity. [#3] Including sedentary lifestyle. [#4] Including fasting plasma glucose, hemoglobin A1c, and
2-h plasma glucose after a 75-g oral glucose load. [#5] Including total cholesterol, low-density lipoprotein cholesterol, presence of hyperlipidemia
and statin use. [#6] Including aspartate aminotransferase and alanine aminotransferase, as well as the presence of liver disease. [#7] Including
creatinine and glomerular filtration rate as well as chronic kidney disease. BP, blood pressure; Chol, cholesterol; FH of DM, family history of diabetes
mellitus; HDL-C, high density lipoprotein cholesterol; PA, physical activity, TG, triglycerides. †Indicates that the corresponding feature was selected.
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Table 4 | Estimated sensitivity and specificity for predicting incident
type 2 diabetes using machine learning

Study source Sensitivity Specificity Youden Index

Cahn (2020)21

THIN 0.82 0.75 0.57
MHS 0.88 0.83 0.70
AppleTree 0.85 0.81 0.66

Abbas (2019)22 0.82 0.99 0.80
Choi (2019)4 0.78 0.65 0.43
Farran (2019)23 0.72 0.73 0.44
Nguyen (2019)24 0.31 0.97 0.28
Talaei-Khoei (2018)6 0.68 0.95 0.63
Alghamdi (2017)25 0.99 0.75 0.74
Allalou (2016)26 0.74 0.69 0.43
Casanova (2016)5 0.75 0.74 0.49
Anderson (2015)27 0.66 0.75 0.40
Razavian (2015)28 0.77 0.70 0.47
Mani (2012)29 0.76 0.73 0.49

AppleTree, Appletree Medical Group; MHS, Maccabi Health Services;
THIN, The Health Improvement Network.
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Figure 2 | The hierarchical summary receiver operating characteristic
(HSROC) curve for prediction of type 2 diabetes mellitus using machine
learning algorithms. The size of each circle is proportional to study
sample size. The pooled point estimates of sensitivity and specificity are
plotted in a filled square.
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considering that diabetes treatment causes a substantial eco-
nomic burden on individuals and health systems1.
We must address several study limitations. First, one

included study in the present meta-analysis24 suggested that
deep learning models that have been developed outperform
classical ML methods. However, no articles except for that
study used such sophisticated models, which might have under-
estimated the ability of ML to predict type 2 diabetes mellitus.
Second, we could use only two search engines (i.e., EMBASE
and MEDLINE), because it was technically difficult to use other
databases. In addition, the literature searches could not cover
state-of-the-art models having specific names, because such
names would not be included in the thesaurus terms. The com-
bination of the two search engines is the most optimal in terms
of identifying relevant studies37. Furthermore, manual searches
were carefully carried out to identify relevant articles that were
not retrieved from the literature searches. Although we believe
that no eligible study was missed, the existence of an unidenti-
fied relevant study cannot be ruled out. Third, studies included
in the present meta-analysis were carried out in high-income
countries. Evidence of the usefulness of ML in low-to-middle
income countries could not be established, although the burden
of diabetes treatment is particularly large in such countries.
In conclusion, current ML algorithms are effective resources

for clinicians to determine whether an individual will develop
type 2 diabetes mellitus in the future. It is likely that the cur-
rent ML algorithms have already outperformed traditional risk
models to predict type 2 diabetes mellitus. However, persons
should be cautious regarding changing their attitude toward
future diabetes risk after getting results of a diabetes prediction
test using ML algorithms. The ML algorithms have a high
potential for further improvement of predictive ability for

type 2 diabetes mellitus, although such an improvement might
depend on data completeness. Continuous efforts should be
made to develop more accurate ML algorithms than currently
exist, given that the feasibility of applying ML in a clinical
setting would be enhanced in comparison with relying on
frequent costly and time-consuming blood tests.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1 | Search strategy in this meta-analysis.

Appendix S2 | Study quality assessment using the quality assessment of diagnostic accuracy studies (QUADUS-2).

Appendix S3 | Deeks’ funnel plot asymmetry test for publication bias.

Appendix S4 | Summary of predictive ability for incident type 2 diabetes using traditional risk models limited to cohort studies
that reported every value for sensitivity, specificity and area under the receiver operating characteristic curve (AUROC).3
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