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Abstract: Whispering-gallery-mode (WGM) microbubble resonators are ideal optical sensors due to their
high quality factor, small mode volume, high optical energy density, and geometry/design/structure
(i.e., hollow microfluidic channels). When used in combination with microfluidic technologies, WGM
microbubble resonators can be applied in chemical and biological sensing due to strong light–matter
interactions. The detection of ultra-low concentrations over a large dynamic range is possible due to
their high sensitivity, which has significance for environmental monitoring and applications in life-
science. Furthermore, WGM microbubble resonators have also been widely used for physical sensing,
such as to detect changes in temperature, stress, pressure, flow rate, magnetic field and ultrasound. In
this article, we systematically review and summarize the sensing mechanisms, fabrication and packing
methods, and various applications of optofluidic WGM microbubble resonators. The challenges of
rapid production and practical applications of WGM microbubble resonators are also discussed.

Keywords: whispering-gallery-mode microcavity; optical microbubble resonator; sensors; microfluidic
technology

1. Introduction

The invention of lasers in the 1960s promoted the rapid development of different types
of optical sensors. Optical sensors have had a significant impact based on their ability to
directly convert detected changes into the information of the light intensity, wavelength,
polarization and phase with a high sensitivity and a fast response time. Various types of
optical sensors, such as surface plasmon resonance (SPR) [1,2], planar waveguides [3,4],
optical fiber sensors [5,6], optical interferometers [7,8] and optical microcavities [9,10] have
been studied. Optical microcavities are miniature optical resonators at the micrometer or
sub-micrometer scale, which confine the photons to a small space through the reflection or
diffraction effects and are flexible for the integration in lab-on-chip systems.

Optical microcavities can be categorized according to the constraint mechanism of
the light as Fabry-Pérot (F-P) microcavities [11–14], photonic crystal microcavities [15–20]
and whispering-gallery-mode (WGM) [21–24] microcavities, as shown in Figure 1. Among
these, WGM microcavities have been widely used in lasers, sensors, nonlinear optics,
optomechanical and optical trapping due to their high quality factor (Q, as high as 1011),
extremely small mode volumes, and high optical energy density [9,25–34]. WGM was
discovered in the field of acoustics: during the twentieth century, Lord Rayleigh discovered
that sound waves could propagate inside the corridor in St. Paul’s Cathedral [35]. The
same phenomenon was discovered in the field of optics when light meets the conditions of
total internal reflection and constructive interference on a closed concave surface, as shown
in Figure 1c.
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Figure 1. Schematic of the (a) Fabry–Pérot, (b) photonic crystal, and (c) WGM optical 
microcavities. 

The optical WGM microcavities studied thus far include microrings [36–40], 
microtoroids [41–46], microdisks [47–52], microcylinders [53–55], microcapillaries [56–58], 
microspheres [59–62], microbottles and microbubbles [63–73], as shown in Figure 2. For 
different microcavity morphologies, the microcapillaries, microbottles and microbubbles 
have attracted attentions due to their natural optofluidic channels, which was always 
combined with the microfluidic technology for analyte delivery [74–83]. In 2005, the 
optical characteristics of microbottle resonators were studied theoretically by Louyer et 
al., who demonstrated that the microbottle resonators sustain modes with enhanced field 
strength due to the confinement of light between two turning points. This results in the 
superior optical characteristics of the microbottle resonators compared with the 
microsphere resonators [84,85]. Five years later, the first microbubble resonator was 
fabricated with a silica microcapillary by Sumetsky et al. [86]. In the same year, they also 
demonstrated that the tunable bandwidth of a silica microbubble resonator was 
approximately two times of its azimuthal free spectral range (FSR) [87]. The favorable 
optical characteristics of the microbubble resonators, such as their high Q-factor and small 
mode volume, have made them a focus of research in the studying of various sensors. 

 
Figure 2. Types of WGM optical microcavities: (a) microring cavity; (b) microtoroid cavity; (c) 
microdisk cavity; (d) microcapillary cavity; (e) microsphere cavity; (f) microbubble cavity. 

In this paper, we systematically review and summarize the information on 
optofluidic microbubble resonators, including their optical characteristics and sensing 
mechanisms, the fabrication and packaging methods and various sensing applications. 
Firstly, different sensing mechanisms of the microbubble resonators are introduced in 
Section 2. We summarize the methods for fabricating and packaging the microbubble 
resonators in Section 3. In Section 4, we provide an overview of the microbubble 
resonators, including their physical, chemical to biological sensing applications. Finally, a 
summary of the research status of the microbubble resonators and the further 
improvement outlooks are provided in Section 5. 

Figure 1. Schematic of the (a) Fabry–Pérot, (b) photonic crystal, and (c) WGM optical microcavities.

The optical WGM microcavities studied thus far include microrings [36–40], micro-
toroids [41–46], microdisks [47–52], microcylinders [53–55], microcapillaries [56–58], mi-
crospheres [59–62], microbottles and microbubbles [63–73], as shown in Figure 2. For
different microcavity morphologies, the microcapillaries, microbottles and microbubbles
have attracted attentions due to their natural optofluidic channels, which was always
combined with the microfluidic technology for analyte delivery [74–83]. In 2005, the optical
characteristics of microbottle resonators were studied theoretically by Louyer et al., who
demonstrated that the microbottle resonators sustain modes with enhanced field strength
due to the confinement of light between two turning points. This results in the superior
optical characteristics of the microbottle resonators compared with the microsphere res-
onators [84,85]. Five years later, the first microbubble resonator was fabricated with a
silica microcapillary by Sumetsky et al. [86]. In the same year, they also demonstrated that
the tunable bandwidth of a silica microbubble resonator was approximately two times of
its azimuthal free spectral range (FSR) [87]. The favorable optical characteristics of the
microbubble resonators, such as their high Q-factor and small mode volume, have made
them a focus of research in the studying of various sensors.
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In this paper, we systematically review and summarize the information on optofluidic
microbubble resonators, including their optical characteristics and sensing mechanisms,
the fabrication and packaging methods and various sensing applications. Firstly, different
sensing mechanisms of the microbubble resonators are introduced in Section 2. We summa-
rize the methods for fabricating and packaging the microbubble resonators in Section 3. In
Section 4, we provide an overview of the microbubble resonators, including their physical,
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chemical to biological sensing applications. Finally, a summary of the research status of the
microbubble resonators and the further improvement outlooks are provided in Section 5.

2. Optical Characteristics and Sensing Mechanism of a Microbubble Resonator
2.1. Optical Characteristics

The optical characteristics of a microbubble resonator are typically described according
to their Q-factor, photon lifetime (τ), FSR and mode volume [88]. The Q-factor is related to
the energy attenuation or the ability to constrain energy in the microcavity, which can be
calculated as follows:

Q = ω0
U

−dU/dt
=

ω0

∆ω
=

λ0

∆λ
, (1)

where ω0 is the central frequency of a resonance mode, U is the energy inside the micro-
cavity, −dU/dt is the energy attenuation per unit of time, ∆ω is the spectral linewidth
for frequency, λ0 is the central wavelength of a resonance mode, and ∆λ is the spectral
linewidth for wavelength, which can be written as follows:

∆ω = −2π
c

λ02 ∆λ, (2)

where c is the speed of light in vacuum. The photon lifetime is defined as the time scale
when the light intensity decays to 1/e of its initial value, which is caused by a depletion in
the cavity. The photon lifetime can be written as follows:

τ =
Q
ω0

. (3)

The photon lifetime increases with the increasing of Q-factor, which indicates a
stronger interaction between the light and the analytes. The FSR is defined as the wave-
length interval between two adjacent resonance modes, which can be written as follows:

FSR = λm − λm−1 =
λ2

m
2πne f f R

, (4)

where neff is the effective refractive index (RI), and R is the radius of the microbubble.
The mode volume is the spatial distribution of a resonance mode in the cavity, which

can be written as follows:

V =

∮
V

ε(
→
r )
∣∣∣E(→r )∣∣∣2dV

max(ε(
→
r )
∣∣∣E(→r )∣∣∣2) , (5)

where ε(r) is the spatial dielectric constant, E(r) is the spatial electric field strength, and V is
the volume of the microcavity. The energy density increases as the mode volume decreases.
Therefore, a smaller mode volume can lead to a stronger interaction between the light and
the analytes.

2.2. Sensing Mechanism

Due to the extension of WGM fields into the surrounding analytes, any changes
occurring around the evanescent field can lead to the changes of the resonance mode.
Therefore, the sensing mechanism of WGM microbubble resonators are divided into the
wavelength shift [89,90], mode-broadening [91,92], and mode-splitting [46,55,64].

2.2.1. Wavelength Shift

WGM microbubble resonators are constituted of an inner air core and an outer spheri-
cal shell, which provides a fluidic channel for analyte delivery. Due to the total internal
reflection, the light propagates along the azimuth of the microbubble wall, and it will
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resonate stably when it meets the constructive interference. The resonance wavelength λ
can be written as follows [84]:

λ =
2πne f f R√

m2 + m(2q + 1)∆kR
, (6)

where m and q represents the azimuth quantum number and axial quantum number,
respectively, and ∆k is the microbubble curvature parameter, which increases with the

increases in the microbubble radius (∆k = 2
L

√
( R

Ra
)

2 − 1) [84,88], as shown in Figure 3. For
a zero-order axial mode that propagates along the microbubble equator (q = 0), due to
m2 � m∆kR, the resonance wavelength can be approximated as follows:

λ =
2πne f f R

m
. (7)
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Figure 3. Schematic of an optical WGM microbubble resonator.

The resonance wavelength is related to the effective RI and the microbubble radius,
and it increases when either the effective RI or the microbubble radius increase. Therefore,
it is possible to monitor the environmental disturbances by converting it into the changes
of the RI and microbubble radius, such as concentration, temperature, pressure, and stress.

The effective RI changes with the changing of the surrounding medium, resulting in a
wavelength shift. For different concentrations of the surrounding medium, the resonance
wavelengths will also differ. Generally, the resonance wavelength red shifts with the in-
creasing of the medium concentration, as shown in Figure 4a. However, the sensitivity
of the microbubble resonator is low due to most of the mode field is constrained inside
the microbubble wall. To achieve a higher sensitivity, the microbubble is usually corroded
with hydrofluoric acid (HF), or a higher order radial mode is chosen for sensing [89,90,93].
Furthermore, the effective RI changes with the changing of the temperature [94,95] and
magnetic field [96,97] due to the thermo-optical effect and magneto-optical effect, respec-
tively. Changing of geometric shapes can also lead to a wavelength shift. For example, the
microbubble size is easily changed by the pressure, flow rate, stress, tension, and thermal
expansion [98–101]. By monitoring the wavelength shift, the changes in the external physi-
cal parameters are easily determined, as shown in Figure 4b. Note that the wall thickness
of a microbubble resonator is dependent on its practical applications: a thin wall is always
chosen for the detection of media inside the microbubble, while a thick wall is chosen for
physical sensing, such as the temperature.
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2.2.2. Mode-Broadening

The spectral linewidth of a resonance mode is related to the Q-factor, as shown in
Equation (1). Variations in the optical loss will result in different values of the Q-factor.
Generally, the total Q-factor of a microbubble resonator can be written as follows [88]:

1
QTotal

=
1

QMaterial
+

1
QScattering

+
1

QSur f ace
+

1
QRadiation

+
1

QExternal
, (8)

where 1⁄QMaterial is the absorption loss of the material; 1⁄QScattering is the scattering loss
caused by the surface roughness and other artificially introduced scattering points; 1⁄QSurface
is the unclean surface loss; 1⁄QRadiation is the radiation loss due to the evanescent field leaks
outside the microbubble wall; and 1⁄QExternal is the coupling loss due to the coupling
between the cavity and the external coupling device. The spectral linewidth increases
with increasing the cavity loss, such as the scattering loss and radiation loss [91,92], as
shown in Figure 4c. Different from the wavelength shift, mode-broadening is not affected
by the disruptions in external environment due to its self-referenced sensing mechanism.
Therefore, it has smaller detection limits for the small molecules and single nanoparticles.
However, the additional loss of the surrounding medium can significantly damage the
microbubble surface and preclude its reuse.

2.2.3. Mode-Splitting

WGM microcavity has a degenerate state between clockwise- and counterclockwise-
propagating resonance modes [23]. When a small molecule or nanoparticle enters the
optical evanescent field, coupling between the counterpropagating modes is introduced
due to the node and antinode of each mode at the molecules or nanoparticles location.
Therefore, the eigenstates are transformed into two orthogonal standing waves in the
cavity, as shown in Figure 4d. The size and number of scatters, such as the nanoparticles,
can be determined by measuring the frequency-splitting [46,55,64]. Note that the two
modes experience the same thermal noise. Therefore, disturbances in the surrounding
environment and thermal fluctuations are eliminated by the self-referencing of the two
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modes. Compared with the mode-broadening, a cavity of the ultra-high Q-factor is required
to differentiate the two modes in the splitting spectrum.

3. Fabrication and Packaging Methods of a Microbubble Resonator
3.1. Fabrication Methods of a Microbubble Resonator

The fabrication of microbubbles is based on the fuse-and-blow method [86,102–105].
For melting of the silica microcapillaries, different methods, such as the electrode-discharge
heating [102,103], oxyhydrogen-flame heating [104,105], and carbon dioxide laser heat-
ing [106], have been proposed. Differently from the carbon dioxide laser heating and
oxyhydrogen-flame heating, the electrode-discharge heating is accomplished using a
portable, low-cost fiber fusion splicer. A microbubble is fabricated through the following
four steps: (I) sealing one end of the silica microcapillary via a high temperature while the
other is left open to allow air to be pushed into the microcapillary, as shown in Figure 5(a2);
(II) removing the outer polymer coating of the silica microcapillary at the intended location
and then cleaning it until there is no residue, as shown in Figure 5(a3); (III) heating the
position where the coating has been removed and pressing air into the silica microcapillary
at the same time, as shown in Figure 5(a4); (IV) repeating the process of step (III) until
a symmetrical and high-optical-quality microbubble has been fabricated, as shown in
Figure 5(a5),(a6),b.
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resonator by the electrode discharge heating. (1) Silica microcapillary; (2) sealing one end of the
silica microcapillary; (3) burning and cleaning the polymer coating; (4–6) fuse-and-blow process for
microbubble fabrication; (b) optical microscopy image of a microbubble resonator.

To reduce the wall thickness of the microbubble to meet special experimental require-
ments, different methods have been proposed. One method involves corroding a silica
microcapillary with HF solution before fabrication [89]. The wall thickness of a silica
microcapillary can be controlled via the corrosion time. However, the internal surface
smoothness of the microbubble may be reduced due to the uneven corrosion. Therefore,
a new method by melting and tapering the silica microcapillary was proposed. The wall
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thickness of the silica microcapillary and its outer diameter were controlled by the tapering
time [105].

In addition to the microbubble fabrication with a silica microcapillary, other new
materials have also been used. For example, a gas microbubble was generated by locally
heating a fiber tip, where a gold nanofilm had been coated [107]. To further improve
the sensitivity, additional materials have been used for the microbubble fabrication, such
as polymethylmethacrylate (PMMA)-based optical microbubbles for temperature sens-
ing [108] and lead-silicate-based optical microbubbles for nonlinear optical effects [109],
etc. [110–112].

3.2. Packaging Process of a Microbubble Resonator

The optical coupling between a microbubble resonator and the tapered fiber is easily
affected by surrounding perturbations, such as the mechanical vibration and airflow.
Therefore, noise levels limit its practical application as well as result in the poor detection
of weak signals. To improve the stability while maintaining a high Q-factor for a long
working period, specific packing schemes have been proposed [89–91,93]. As shown in
Figure 6a, a glass scaffold was fabricated for a coupling system. Firstly, the tapered fiber
was fixed on the glass scaffold, and two ports were further fixed with a low-RI polymer
(e.g., MY 133) to reduce the vibration of the tapered fiber, as shown in Figure 6b,c. Then, the
gap between the tapered fiber and the microbubble resonator was precisely controlled by
5D stages until the optimal coupling condition was realized, which was monitored through
the transmission spectrum. Thirdly, the two ports of the microbubble were also fixed to
the glass scaffold to reduce the coupling position change between the tapered fiber and
the microbubble resonator, as shown in Figure 6d. Finally, the optical coupling region was
wrapped with a low-RI polymer via the UV exposure, which further improved the stability
of the coupling system, as shown in Figure 6e. A coverslip was placed on the glass scaffold
to insulate the low-RI polymer from oxygen and accelerate its solidification, as shown in
Figure 6f. Various coupling methods, such as the waveguide coupling, prism coupling, and
fiber-tip coupling have been proposed for the WGM microcavity. However, the tapered
fiber has typically been used for the microbubble resonators due to its high efficiency and
ease of integration [113–116].
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optical coupling region with low-RI polymer; (f) placement of a coverslip on the glass scaffold.
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4. Sensing Applications of Microbubble Resonators
4.1. Physical Sensing
4.1.1. Temperature Sensing

Due to the thermo-optical effect and thermal expansion, the RI and geometric shape
are easily affected by temperature. Furthermore, the optical characteristics of a high Q-
factor and a small mode volume imply a high sensitivity for the temperature sensing [94].
The thermal drift of two different cores of the microbubble, such as water and ethanol,
were measured by Ward et al. in 2013 [95]. They found that the liquid core with a negative
thermo-optical coefficient material can realize a high sensitivity of 100 GHz/K while
effectively reducing the thermal drift. Furthermore, microbubbles based on polymethyl
methacrylate (PMMA) material were proposed by He et al. in 2018 [108], as shown in
Figure 7a. Different microbubble sizes were fabricated using a volume-controllable pipette,
and a sensitivity of 39 pm/◦C for a temperature range of 25 ◦C to 80 ◦C was obtained.
To address the issues of the microbubble structure fragility and solution evaporation, a
stable and encapsulated quasi-droplet microbubble was used for temperature sensing by
Chen et al. in 2018 [117]. A high sensitivity of 205.3 pm/◦C was experimentally achieved,
as shown in Figure 7b. Optical WGM barcode technology based on the simultaneous
measurement of multiple WGM modes was proposed by Liao et al. in 2021 [118] for
temperature sensing, as shown in Figure 8a,b. Compared with monitoring the relative
wavelength drift of a specific mode, the dynamic detection range was further increased,
and the temperature was directly derived by searching the spectrum in the database. This
method achieved a detection limit of 0.002 ◦C. Compared with other optical temperature
sensors, the thermal drift can be reduced by introducing materials with negative thermo-
optic coefficients inside the WGM microbubble resonators. Therefore, a high sensitivity and
large dynamic detection ranges for the temperature sensing can be realized using WGM
microbubble resonators.
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4.1.2. Bulk RI and Liquid-Concentration Sensing

As the distribution of an evanescent field penetrates to the microbubble core, the
changing of RI and concentrations can result in wavelength shifts. Therefore, bulk RI and
liquid-concentration sensing can be accomplished through a combination of microfluidic
technologies. Lab-on-fiber sensing technology based on gas microbubbles was proposed by
Zhang et al. in 2018 [107], in which they locally heated a fiber tip with a gold nanomem-
brane, as shown in Figure 9a. The growth rate of the air microbubbles is dependent on the
surrounding solution. For the evaporation of a solution, the growth rate of a microbubble
decreases as the concentration increases due to the increase in boiling point. In addition,
chemical decomposition can also lead to the generation of air microbubbles. The growth
rate usually increases when the concentration increases, which is due to the increasing of
decomposition rate. The dynamic detection range of the sucrose solutions from 0.5% to
50% and five orders of the magnitude (10−5~1 M) for hydrogen peroxide were realized.
Such air microbubbles can also be repeatedly reused. However, they are easily affected by
surrounding mechanical disturbances. To reduce the effect of environmental perturbance,
a packaged microbubble tapered-fiber coupling system was proposed by Tang et al. in
2016 [89], as shown in Figure 9b. A type of low-RI polymer was used as the cladding
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layer. They found such a sensing system maintained a high Q-factor for a significant
length of time and had a high signal-to-noise ratio. Furthermore, bulk-RI sensitivity of
18.8 nm/RIU and a detection limit of 5.4 × 10−5 RIU were experimentally achieved, as
shown in Figure 9c. In 2018, this same research group proposed a new packaged microbub-
ble tapered-fiber coupling system. The signal-to-noise ratio and stability were further
increased, and the detection of a low concentrations of small molecules was realized [90].
The microfluidic channel in microbubble resonators provides advantages when used for
RI-based and liquid-concentration-based sensing. In addition, ultra-low detection limits
can be realized due to the high Q-factor. However, only a small part of the WGM field
extends into the surrounding analytes, resulting in a low sensitivity of the RI sensing.
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formerly the Optical Society of America); (d) pressure sensing with the microbubble resonators
(reprinted with permission from [106], © Optica, formerly the Optical Society of America).

4.1.3. Pressure and Flow Rate Sensing

Due to the hollow microfluidic channel, an accurate measurement of the pressure
and flow rate can be realized through a combination with microfluidic technologies. For
different pressures inside the microbubble, the geometric shape is different [119]. By
changing the pressure inside a microbubble, the resonance mode was tuned over hundreds
of GHz [98]. To further improve the sensitivity, an ultra-thin microbubble wall (500 nm)
was used for aerostatic pressure sensing by Yang et al. in 2016 [106], as shown in Figure 9d.
A high sensitivity of 19 GHz/bar at 1.55 µm, 38 GHz/bar at 0.78 µm and a resolution
of 0.17 mbar were realized. In addition, the microbubble wall thickness was precisely
measured with a combination of pressure sensing by Lu et al. in 2016 [99]. The minimum
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measurement uncertainty of the microbubble wall thickness was approximately 0.02 µm.
The advantages of such pressure sensors are their simple structures and their low detection
limits. However, the sensitivity is limited due to the large Young’s modulus of the silica
material. Therefore, new materials are needed for the fabrication of microbubble resonators
aimed at pressure or flow rate sensing.

The pressure inside the microbubble decreases with increasing of velocity. Therefore,
a microbubble resonator can also be used for the flow rate sensing. As shown in Figure 10a,
a flow rate sensor whereby detection is based on the Bernoulli effect was proposed and
experimentally proven by Chen et al. in 2019 [100]. By combination with a packaged
microbubble resonator, a dynamic detection range of 10 µL/min to 200 µL/min and
sensitivity of 0.0196 pm/(µL/min) were realized. To further improve the sensitivity, a
higher order radial mode and a thinner microbubble wall were applied for the flow rate
sensing by Wang et al. in 2021 [101]. A high sensitivity of 0.079 pm/(µL/min) and
a dynamic detection range of 0 µL/min to 200 µL/min were realized. Moreover, the
microbubble resonators were also used for air-coupled ultrasound sensing [120]. By the
combination with an optical frequency comb, a femtometer resolution of the resonance
wavelength shift and sub-microsecond response time were realized to trace the ultrasound
pressure, as shown in Figure 10b. The noise equivalent pressure was 4.4 mPa/

√
Hz.

Compared with other flow rate sensors, microbubble resonators provide a simple and
flexible structure while maintaining a high sensitivity.
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4.1.4. Magnetic-Field Sensing

By coating with magnetic material, the microbubble resonators have been used for
magnetic field sensing due to the magneto-optical effect [121]. Terfenol-D with a high
magnetostriction coefficient was fixed to one side of the microbubble resonator [96]. When
the strength of the surrounding magnetic field was altered, the longitudinal length and RI
of microbubble were changed. A sensitivity of 0.081 pm/mT and a dynamic detection range
of 0.41 mT to 21.8 mT were realized. To further increase the sensitivity, magnetic-fluid-filled
microbubble resonators were proposed by Liu et al. in 2021 [97], as shown in Figure 10c.
A high sensitivity of 25.21 pm/mT was realized. Due to their high Q-factor, small mode
volume, and high optical energy density, microbubble resonators can provide the high
sensitivity required to sense the magnetic-fields. Compared with other magnetic-field
sensors, the microbubble resonators have the advantages of its small size and having high
accuracy for magnetic-filed sensing.

4.2. Chemical Sensing
4.2.1. Gas Sensing

By modifying the inner surface of the microbubble with special materials, the detection
of low concentrations of chemical gases becomes possible, especially for harmful gases.
Due to the high Q-factor and the hollow microfluidic channel of the microbubble resonator,
real-time and high sensitivity gas sensors were realized. As shown in Figure 11a, an
approach that extended electron–photon interaction to electron–phonon–photon interaction
in a graphene-deposited microbubble was proposed by Yao et al. in 2017 [122]. Ultra-
sensitive and rapid detection of ammonia gas was realized with a noise equivalent limit
of 1 ppb and a dynamic detection range of more than five orders of magnitude, as shown
in Figure 11b. In addition, a carbon dioxide (CO2) gas sensor developed by coating
polyhexamethylenebiguanide (PHMB) inside the microbubble surface was proposed by
Li et al. in 2019 [123], as shown in Figure 11c. When the CO2 gas is delivered into the
microbubble resonator, it interacts with the PHMB molecular layers, resulting in a blue shift
in resonance wavelength. A sensitivity of 0.46 pm/ppm and a detection limit of 50 ppm
in a range of 200 ppm to 700 ppm with a good selectivity was realized. Furthermore, a
self-assembled polydimethylsiloxane (PDMS) microbubble was proposed for the detection
of ethanol gas [111]. When the ethanol gas concentrations changes, the volume and RI
of PDMS change accordingly, resulting in a resonance wavelength shift, as shown in
Figure 11d. A sensitivity of 36.24 pm/ppm and a dynamic range of 4.19 ppm to 272.35 ppm
were realized. However, those gas sensors were dependent on the internal surface coating
and can only detect one medium.

To overcome the difficulty of surface coating and allow the detection of different
gases at the same time, a method based on pressure-induced geometric deformation and
gas-molecules-induced heat dissipation in the microbubble resonator was proposed by
Peng et al. in 2020 [124]. When the flow rate increases, the resonance frequency red-
shifts while the thermal effect decreases due to the heat dissipation. The different thermal
conductivities of He, N2, and CO2 gases allowed them to be simultaneously distinguished.
Using a combination of microbubble resonators, different chemical gases were detected
with high sensitivity and low detection limits. In addition, the sensor size was further
decreased. However, the complicated coating process has limited its practical application.

4.2.2. Ion and pH Sensing

The ultra-sensitive and real-time specificity detection of lead ions was proposed by
Fu et al. in 2020 [125], as shown in Figure 12a. Preprocessing with the piranha solution and
poly-L-lysine solutions results in the inner surface of the microbubbles being positively
charged. The GR-5 DNAzyme and substrate strands were then successfully modified by
electrostatic adsorption. When the lead ions solutions are delivered into the microbubble,
they cleave the substrate strands, resulting in blue shifts of the resonance modes, as shown
in Figure 12b. A detection limit of 15 fM and a dynamic detection range of 0.1 pM to 100 pM
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were realized. In addition, a pH-sensitive polymer, N-isopropylacrylamide (polyNIPA),
was coated onto the inner surface for pH sensing by Stoian et al. in 2019 [126], as shown
in Figure 12c,d. When changing the pH inside the microbubble, the polymer particles
changed from a shrunken to a swollen state, resulting in a change in the RI. A response
time of 10~15 s and a resolution of 0.06 pH were realized. The drawback of such a method
is the large size of the polyNIPA particles, and it was not adapted to the thin-film-related
theoretical models.
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4.2.3. Hydrogel Phase Sensing

Real-time monitoring of the internal structural changes of hydrogel was proposed
by Yang et al. in 2020 [91,92,127]. The phase transition from hydrophilic to hydrophobic
with changing of temperatures was studied, as shown in Figure 13a. By simultaneously
monitoring the resonance wavelength shift, spectral linewidth broadening and microscope
imaging, RI increase and light scattering enhancement were observed during the transition
from hydrophilic to hydrophobic, as shown in Figure 13b. Compared with other methods,
rapid and real-time monitoring of the phase transition dynamics of certain materials was
achieved via the microbubble resonators. In addition, the cost was further decreased.
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4.3. Biosensing

Due to their favorable optical characteristics and microfluidic channel, microbubble
resonators have been used for the biosensing, such as biotin and protein. In 2013, a self-
referencing optofluidic microbubble resonator was studied and used for bovine albumin
(BSA) detection [64]. The noise was further suppressed to 0.029 pm by monitoring two
splitting modes. A detection limit of 0.5 pg/mL was realized. Furthermore, a method of
theoretical analysis for the sensitivity and the detection limit of biosensing was proposed
by Barucci et al. in 2016 [128]. By decreasing the microbubble wall thickness or choosing a
higher order radial mode, the sensitivity and detection limit for biosensing were further
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increased. As shown in Figure 14a,c, D-biotins of different concentrations could be detected
with the microbubble resonators [90]. A detection limit of 0.41 pM was realized. However,
the noise limited its further measurement of ultra-low concentrations of biomolecules. To
further reduce the noise, an external referencing microbubble resonator was proposed
by Guo et al. in 2019 [93]. An ultra-low concentration of 1 fg/mL for BSA and D-biotin
were reported, as shown in Figure 14b,d. The drawback of this method is its complicated
referencing systems.
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Furthermore, ultrasensitive biomolecule detection employing the amplification of
liquid crystals (LC) was proposed by Wang et al. in 2021 [129], as shown in Figure 14e,f. The
orientation of the LC molecules changed with the increasing of biomolecule concentrations,
resulting in the amplification of the wavelength shift. Different biomolecules were detected
at the concentrations of 2 fM. In addition, a single DNA molecule with 8 kDa was detected
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by the plasmonic-enhanced interface mode in the microbubble resonators [130]. However,
the above methods can only detect one specific biomolecule. To realize the simultaneous
detection of multiple biomolecules, a method based on selectively immobilizing antibodies
on a specific microbubble was proposed by Berneschi et al. in 2016 [131]. As shown in
Figure 15a,b, by the combination with the photochemical activation method, multiple
antibodies were modified on different microbubbles for parallel antigen detection. Using
a combination of microbubble resonators, an ultra-low detection limit of biosensing was
realized with a miniature sensor system. However, the internal surface modification had
low efficiency, which would need to be further improved for practical application.
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5. Summary and Outlook

Here, we summarize the recent developments in the use of WGM microbubble res-
onators, including the sensing principles, fabrication methods, as well as various physical,
chemical, and biological sensing applications, as shown in Table 1. Due to their high
Q-factor, small mode volume, high optical energy density and hollow microfluidic channel,
microbubble resonators possess advantages for the sensing of small changes. Miniaturized
sensors have been fabricated using a combination of microfluidic technologies and can be
used for the detection of temperature, stress, strain, pressure, flow rate, RI, ultrasound, gas,
ions, and biomolecules, as shown in Figure 16. The different types of microbubble sensors
used indicate their broad potential research value and future practical applications.

Micromachines 2022, 13, 592 18 of 24 
 

 

 
Figure 15. (a,b) Parallel biomolecule detection based on a photochemical activation method with 
microbubble resonators (reprinted with permission from [131], © Elsevier). 

5. Summary and Outlook 
Here, we summarize the recent developments in the use of WGM microbubble reso-

nators, including the sensing principles, fabrication methods, as well as various physical, 
chemical, and biological sensing applications, as shown in Table 1. Due to their high Q-
factor, small mode volume, high optical energy density and hollow microfluidic channel, 
microbubble resonators possess advantages for the sensing of small changes. Miniatur-
ized sensors have been fabricated using a combination of microfluidic technologies and 
can be used for the detection of temperature, stress, strain, pressure, flow rate, RI, ultra-
sound, gas, ions, and biomolecules, as shown in Figure 16. The different types of mi-
crobubble sensors used indicate their broad potential research value and future practical 
applications. 

 
Figure 16. Overview of the application of microbubble resonators in sensing. 

  

Figure 16. Overview of the application of microbubble resonators in sensing.



Micromachines 2022, 13, 592 18 of 23

Table 1. Summary of different application of the microbubble resonators.

Application Q-Factor Fabrication
Material Sensitivity Dynamic

Detection Ranges
Detection

Limit

Temperature Sensing

[95] 106 Glass capillary 100 GHz/K - 8.5 mK
[108] 1.6 × 104 PMMA 39 pm/◦C 25 ◦C–80 ◦C -
[117] 5.8 × 103 Silica capillary 205 pm/◦C 22 ◦C–26 ◦C -
[118] 106–107 Silica capillary 205 pm/◦C ~65 °C 0.002 °C

Liquid-concentration
Sensing

[89] 5.8 × 106 Silica capillary 18.8 nm/RIU - 5.4 × 10−5 RIU
[93] 1.8 × 106 Silica capillary 11.4 nm/RIU - 5.5 × 10−5 RIU

Pressure Sensing

[98] 103–107 Glass capillary −1.1 GHz/bar - -

[99] - Silica
microcapillary 6.21 GHz/bar - 0.02 µm

[106] 5 × 107 Silica Capillary 38 GHz/bar - 0.17 mbar
[119] 1.5 × 106 Silica capillary 51.2 pm/bar - -

Flow Rate Sensing [100] 1.8 × 105 Silica capillary 0.0196 pm/(µL/min) 10 µL/min–
200 µL/min -

[101] 1.7 × 105 Silica capillary 0.079 pm/(µL/min) 0 µL/min–
200 µL/min -

Magnetic Sensing [96] 2.1 × 104 Hollow Fiber 0.08 pm/mT 0.41 mT–21.8 mT -

[97] 4.0 × 106 Microcapillary
(Magnetic Fluid) 25.2 pm/mT 2 mT–20 mT -

Gas Sensing
[111] 2.2 × 104 PDMS 36.24 pm/ppm 4.2 ppm–

272.4 ppm -

[122] 4.4 × 104 Silica capillary
(Graphene) 200 kHz/ppm 1 ppm–400 ppm 1 ppb

[123] 1.1 × 105 Silica capillary
(PHMB) 0.46 pm/ppm 200 ppm–700 ppm 50 ppm

Ion Sensing [125] 4.7 × 104 Silica capillary 265.2 nm/RIU 0.1 pM–100 pM 15 fM

pH Sensing [126] - Silica capillary
(polyNIPA) 33 nm/RIU pH 3.4–pH 5.6 pH 0.06

Hydrogel Sensing [92] 9.1 × 107 Silica capillary - Hydrophobic
-hydrophilic -

Biosensing

[64] 3.0 × 105 Silica capillary - 0 ng/mL–
20 ng/mL 2 pg/mL

[90] 3.7 × 105 Silica capillary - - 0.41 pM

[93] 1.8 × 106 Silica capillary 11.4 nm/RIU 1 fg/mL–
100 pg/mL 1 fg/mL

[129] 1.4 × 104 Silica capillary
(5CB liquid crystal) - 10−12 g/Ml–

10−3 g/mL
1.92 fM

[130] 8.6 × 108 Microcapillary ~0.9 fm/(pg.cm−2) - 0.3 pg/cm2

[131] 3 × 107 Silica
microcapillary - 10−3 mg/L–

102 mg/L
0.015 mg/L

However, there remain technical challenges to overcome regarding their production
and practical application. Firstly, microbubble resonators with three-dimensional structures
are difficult to prepare quickly and in batches using the conventional semiconductor
processing technology. Therefore, it is possible to further optimize the fabrication method
based on an automated process. Secondly, it can be difficult to miniaturize a tunable
laser while maintaining a high stability. The large size of a tunable laser is not flexible
for integration and commercialization. Thirdly, it is important to maintain the same
performance of the sensor outside the laboratory environment for applicability in real-
world measurements. Therefore, it will be necessary to further improve the stability and
signal-to-noise ratio of microbubble sensors. In addition, new data processing and analysis
techniques are required to fully utilize the multiple WGMs formed. The level of sensitivity
and the dynamic measurement range of the sensor will also require further improvement.
Among the potential analysis methods developed for WGM microbubble sensors thus far,
the barcode technology may be a feasible solution.
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