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DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic
damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved
in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and,
consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Transformed
stem cells drive growth of a number of tumours (e.g., high grade gliomas) and being particularly resistant to chemo- and
radiotherapeutic agents often cause relapses. The contribution of DNA repair to resistance of these tumour-driving cells is the
subject of intense research, in order to find novel agents that may sensitize them to chemotherapy and radiotherapy.

1. Introduction

Endogenous damage (e.g., oxidative metabolism linked) and
external exposures (e.g., environmental pollution linked) all
damage DNA causing a number of modifications including
base and backbone alterations, single strand breaks (SSB)
and double strand breaks (DSB) that may limit survival
and the regenerative potential of both embryonic stem cells
(ESC) and adult stem cells (ASC). ESC differentiate to all
cell types in the mammalian body, including germ line
cells. The maintenance of genomic stability in ESC must
be stringent, any genetic alterations in those progenitor
cells compromising the genomic stability and functionality
of entire cell lineages. Consistently, the mutation rate
and the frequency of mitotic recombination are lower in
murine ESC than in adult somatic cells or isogenic mouse
embryonic fibroblasts (MEF). For instance, the frequency of
spontaneous mutation at the aprt gene is around 10−6 in
ESC and 100-fold higher (∼10−4) in MEF [1]. Mechanisms
of mutagenesis differ as well. Most mutation events involve
loss of heterozigosity (LOH) in both ESC and MEF but LOH
is generated mainly through nondisjunction in ESC and
through mitotic recombination in MEF [2]. Similarly, when
spontaneous mutation is assessed at the X-linked locus hprt,
it is undetectable in ESC (<10−8) and ∼10−5 in MEF. Hence,
robust mechanisms counteracting spontaneous mutagenesis
may exist in ESC and DNA repair is likely one of them [2–6].

On the other hand, ASC are important in the long-term
maintenance of tissues throughout life [7]. For instance, the
effector cells of the blood have limited lifetimes and must
be replenished continuously throughout life from a small
reserve of hematopoietic stem cells in the bone marrow.
Although the replicative potential of hematopoietic stem cells
may be finite, studies conducted in murine genetic models
indicate that DNA repair is critical to the longevity and stress
response of the hematopoietic stem cell pool [8]. This likely
applies to other ASC types including mesenchymal stem cells
(MSC) [9].

2. The Bright Side: DNA Repair in
Normal Stem Cells

2.1. ESC. Using single-cell gel electrophoresis (SCGE) May-
nard and coworkers [5] found that human ESC have more
efficient repair of different types of DNA damage [generated
from H2O2, ultraviolet (UV)-C, ionizing radiation (IR)
or psoralen] than human primary fibroblasts and, with
the exception of UV-C damage, HeLa cells (Table 1). A
microarray gene expression analysis showed that the mRNA
levels of several DNA repair genes, including some involved
in DNA base excision repair (BER) and interstrand crosslink
(ICL) repair, were elevated in human ESC compared with
their differentiated forms [embryoid bodies (EB)]. Hence,
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multiple DNA repair pathways are over-regulated in human
ESC, relative to differentiated human cells [5]. Consistently,
the expression of antioxidant and DNA repair genes was
reduced and the DNA damage levels increased during
spontaneous differentiation of two human ESC lines [10].
Replicating chromatin in ESC is particularly vulnerable to
strand breaks [11]. Two pathways seal DSBs in mammalian
cells, including ESC: non homologous end joining (NHEJ)
that is the main pathway and homology-directed repair
(HDR) that may act as a backup in the absence of NHEJ
components [12]. The expression of strand break repair
genes such as Rad51 fades when murine ESC differentiate [2,
10, 13] (Table 1). Despite their high expression of O6 methyl-
Gua DNA methyltransferase (MGMT), murine ESC undergo
apoptosis at much higher frequency than differentiated cells
after treatment with N-methyl-N′-nitro-N-nitrosoguanidine
(MNNG) [14] (Table 1). This is due to elevated expression
in ESC of the mismatch repair (MMR) proteins MSH2
and MSH6 that trigger futile cycles of O6 methylguanine
repair/replication [15]. It has been hypothesized that the
high apoptotic response of murine ESC may contribute
to reduce the mutational load in these cells [14, 16, 17]
(Table 1). Embryonic Fanconi anemia (FA) neural stem cells
(NSC) have a reduced capacity to self-renew in vitro [18, 19]
and the expression of FA G and FA L (but not FA C) genes
is enhanced in human ESC relative to human EB [5]. In
summary, 7 out of 9 (78%) studies indicate that ESC possess
more elevated DNA repair capacity than their differentiated
derivatives (Table 1).

2.2. ASC. The repair capacity for DNA strand breaks dimin-
ishes during maturation of cells of the human lymphohe-
matopoietic system. Bracker and coworkers [20] have studied
the variation of DNA repair capacity and expression of DNA
repair genes during maturation of hematopoietic cells treated
with ENU or melphalan (Table 1). The removal of DNA
adducts, the resealing of strand breaks and the resistance
to DNA-reactive drugs were higher in stem (CD34+ 38−)
than in mature (CD34−) or progenitor (CD34+ 38+) cells
isolated from umbilical cord blood from the same individual
[20]. Hence, slow dividing stem cells may be protected by
extensive DNA repair while more mature and less valuable
cells, if damaged, could be rather eliminated by apoptosis.
The NHEJ components such as the Ku70 protein are
downregulated during ageing of the hematopoietic stem cell
donor. Ku70 expression shows highest levels in newborn,
2.6-fold lower levels in young (mean age: 30 years) and
6.3-fold lower levels in old (mean age: 87.6 years) donors
[21]. Transcription-coupled repair (TCR) is a subpathway of
nucleotide excision repair (NER) that preferentially repairs
the transcribed strand of active genes, as compared to the
non-transcribed strand, thus providing cells with a smart
mechanism of safeguard of expressed genes [37]. Likewise
strand break repair and BER, NER is strongly downregulated
in several human cell types undergoing differentiation (e.g.,
in cells of the monocytic lineage when they differentiate to
macrophages or NSC differentiating to neurons) [23, 24, 38]
(Table 1). Attenuation of NER during differentiation results

from lack of ubiquitination of NER proteins that in turn is
linked to differences in phosphorylation of the ubiquitin-
activating enzyme E1 [24]. To ensure proficient repair of
active genes, besides TCR, a second specialized mechanism
termed differentiation-associated repair (DAR) exists in
differentiated cells. DAR recruits to transcribed genes of
differentiated cells the remaining proficient NER enzymes
not yet engaged in TCR that eventually repair both DNA
strands [24]. Hence, DAR may be considered as a subpathway
of global genome NER, focussing on the chromatin domains
of differentiated cells within which transcription occurs [22,
24]. In human hematopoietic cord blood cells, Casorelli
et al. [25] found no difference in sensitivity to methy-
lating agents between cycling CD34+ (stem) and CD34−
(mature) cells (Table 1). In this study, MGMT significantly
protected against N-Methyl-N-Nitrosourea (MNU) toxicity
while MMR enhanced as expected the MNU sensitivity of
the cells by processing O6-methylguanine into a lethal lesion
[15, 25]. The important role of DSB repair in maintenance
of hematopoietic stem cell function has been recently
emphasized in two murine studies [8, 39, 40]. Progressive
loss of hematopoietic stem cells and a decrease of bone
marrow cell count were observed in mice with defective
DSB repair and stem cell function in tissue culture and
transplantation was severely impaired [40]. Stem cells in
the central nervous system (CNS) might behave differently.
No resistance of neural precursors to IR was observed in
two studies [26, 27] (Table 1). Nowak and coworkers [26]
reported massive apoptosis of neural precursors but not
of neurons in the developing mouse brain after gamma-
irradiation while the level of induced damage was similar
in the two cell types. In the second study, Panagiotakos
et al. [27] have observed a specific association between
radiation injury and irreversible damage to stem cells in
the subventricular zone (SVZ) and loss of oligodendrocyte
progenitor cells (OPC) in both rodent and human brain.
Hence unlike hematopoietic precursors, DSB repair might
be less efficient in the neural precursors in relation to their
greater radiosensitivity. Expression of 8-oxoguanine DNA
glycosylase (OGG1) is elevated in regions of the neonatal
mouse brain that are rich in neural stem/progenitor cells,
namely the medial wall of the lateral ventricle and the SVZ
[28] (Table 1). Both the expression and the activity of OGG1
are high in neural stem/progenitor cells from newborn mice
and decrease in adult animals and upon induction of cell
differentiation. Enhanced expression of OGG1 and other
BER enzymes may protect neural stem/progenitor cells from
oxidatively damaged DNA [28]. Murine Nei endonuclease
VIII-like 3 (Neil3) glycosylase follows as well an expres-
sion pattern involving brain regions harbouring stem cell
populations [29, 30] (Table 1). The glycosylase activities
are stable through prolonged in vitro culture required for
expansion of stem cells to clinically relevant numbers [41].
Downregulation of oxidatively damaged DNA repair genes
and a concomitant increase in 8-oxoguanine (8-oxoGua)
DNA levels during differentiation of mouse proliferating
(myoblasts) to terminally differentiated (myotubes) muscle
cells have been described by Narciso and coworkers [32]
(Table 1). Both short and long patch BER pathways were
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Table 1: DNA repair capacity in embryonic, adult and mesenchymal stem versus differentiated cells.

Stem cell system
DNA repair

mechanism/enzyme
Higher Similar Lower Remarks Ref.

ESC

Human ESC
Expression of double

strand break repair genes
√ Compared to human

embryoid bodies and
fibroblasts

[5]

Human ESC Expression of BER genes
√ Compared to human

embryoid bodies and
fibroblasts

[5]

Human ESC Expression of NER genes
√ Compared to human

embryoid bodies and
fibroblasts

[5]

Human ESC
Expression of antioxidant

and DNA repair genes
√ Compared to differentiated

cells
[10]

Murine ESC
Expression of strand break

repair genes
√ Compared to differentiated

cells
[1, 2]

Murine ESC
Expression of antioxidant
and strand break repair

genes

√ Compared to differentiated
cells

[13]

Murine ESC NER
√

Strong apoptosis [16]

Murine ESC NER
√ Strong apoptosis

S-phase delay
[17]

Murine ESC
MGMT
MMR

√
Compared to differentiated

cells
Highly sensitive to

methylation damage
Strong apoptosis

[14]

ASC

Human CD34+ 38−
hematopoietic stem cells

Removal of ENU or
melphalan-induced DNA

adducts

√
Compared to progenitor or

mature cells
Resistant to DNA-reactive

drugs

[20]

Human CD34+ 38−
hematopoietic stem cells

Resealing of strand breaks
and repair gaps

√
Compared to progenitor or

mature cells
Resistant to DNA-reactive

drugs

[20]

Human CD 34+
hematopoietic stem cells

KU70 expression
√ Negatively correlated with

donor age
[21]

Human cells of the
monocytic lineage

NER
√

Compared to macrophages [22]

Human neural precursors NER
√

Compared to neurons [23, 24]

Human cycling CD34+
hematopoietic stem cells

MGMT
MMR

√
Compared to mature
CD34− cellsNormally

sensitive to methylation
damage

[25]

Murine neural precursors
√

Sensitive to IR [26]

Stem cells in the
subventricular zone and
oligodendrocyte precursor
cells in rodent and human
brain

√
Sensitive to IR [27]

Murine neural
stem/progenitor cells

BER (OGG1)
√ Compared to differentiated

cells
[28]

Murine neural
stem/progenitor cells

BER (NEIL3)
√ Compared to differentiated

cells
[29, 30]
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Table 1: Continued.

Stem cell system
DNA repair

mechanism/enzyme
Higher Similar Lower Remarks Ref.

Murine fetal hematopoietic
cells

BER (DNA pol β)
√

Compared to adult
hematopoietic cells
Low point mutation

frequency

[31]

Murine myoblasts
BER (DNA ligase I and

XRCC1)
√

Compared to myotubes [32]

Murine keratinocytes NER
√

[33]

MSC

Human fetal MSC
DNA repair gene

expression
√

Compared to adult MSC [34]

Human MSC from bone
marrow transplantation
patients

DSB repair
√ Compared to lung or breast

cancer cells
Resistant to IR

[35]

Human MSC obtained
from bone marrow
transplantation patients

ROS-scavenging capacity
√

Resistant to IR [35]

Human MSC
Single and double-strand

break repair
√ Resistant to IR

High telomerase activity
[36]

Rat MSC
DNA repair gene

expression
√ Compared to senescent

MSC
[9]

impaired in myotubes. The defect in BER was linked to
the nearly complete lack of DNA ligase I and to the strong
down-regulation of XRCC1 with consequent destabilization
of DNA ligase III [32]. The FA pathway exerts a central role
in neural stem and progenitor cells during developmental
and adult neurogenesis [18, 19]. Reduced proliferation
of neural progenitor cells and enhanced NSC depletion
has been observed in ageing FA mice. Lower reactive
oxygen species (ROS) levels may be achieved in NSC by
higher expression of key antioxidant enzymes involved in
basal mitochondrial metabolism (e.g., uncoupling protein
2 (UCP2) and glutathione peroxidase (GPX)) as compared
to postmitotic neural cells [42]. Following exposure to
the mitochondrial toxin 3-nitropropionic acid and unlike
postmitotic cells, NSC fastly upregulate UCP2, GPX and
superoxide dismutase 2 and successfully recover. Thus, a fast
response of antioxidant enzymes may represent an important
“vigilance” mechanism of NSC to counteract oxidatively
damaged DNA in the CNS. Summary reckoning indicates
that in 8 out of 13 (61%) studies, ASC display more elevated
DNA repair capacity than mature cells (Table 1; [31, 33]).

2.3. MSC. The gene expression profiles of undifferentiated
MSC derived from first trimester fetal liver and adult bone
marrow were compared by serial analysis of gene expression,
and validated by either reverse transcription polymerase
chain reaction or immunoblotting of selected genes [34].
Transcripts implicated in cell cycle promotion, chromatin
regulation and DNA repair were more abundant in fetal
than in adult MSC (Table 1). Likewise, MSC obtained from
bone marrow transplantation patients display increased DSB
repair capacity and resistance to IR and possess elevated
ROS-scavenging capacity as compared to lung cancer and

breast cancer cells [35] (Table 1). Telomerase activity is an
additional mechanism by which MSC may resist IR damage.
Telomerase-immortalized derivatives of human MSC have
been found IR-resistant as compared to primary stem cells
while DNA repair capacity was similar in the two cell types
[36] (Table 1). Considering the aforementioned study by
Galderisi and coworkers on senescence of MSC [9], 4 out
of 5 (80%) studies indicate that DNA repair is elevated in
MSC although appropriate comparison to differentiated cells
is not available.

3. The Dark Side: DNA Repair in
Cancer Stem Cells

Stem cells and cancer cells share some features: similar
signalling pathways may regulate self-renewal in stem cells
and cancer cells, and cancer cells may include “cancer stem
cells”—rare cells with indefinite potential for self renewal
and differentiation that drive tumorigenesis [56]. A detailed
knowledge of the biological distinctness of cancer stem cells
may be crucial for the development of specific therapies
aimed to tumour eradication [57–59]. In particular, the exis-
tence of cells endowed with features of primitive progenitor
cells and tumor-initiating function has been demonstrated in
high grade gliomas [60] (Figure 1).

3.1. High Grade Gliomas. Despite aggressive surgical resec-
tions using preoperative and intraoperative neuroimaging,
along with recent advances in radiotherapy and chemother-
apy, the prognosis for high grade glioma patients remains
dismal, the median survival being 24–60 months for patients
with anaplastic astrocytoma (World Health Organization
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Table 2: Stem cell involvement in high grade glioma patient’s outcome.

Stem cell marker Clinical model Animal model Association to poor outcome Ref.

CD133 Human bulk gliomas Yes [43]

CD133
Gliomas of various grade and

histology
Yes [44]

CD133
Low-grade and high-grade

glioma specimens
Yes [45]

CD133
Cell lines from GBM specimens
established under neural stem

cell conditions
Yes [46]

CD133
U251 human glioma cells with

knocked-down CD133
Yes [47]

CD133
Two types of GSC within

different regions of the same
human GBM

No [48]

Expression signature dominated
by HOX genes, which comprises
CD133

GBM from initial surgery or
resected at recurrence

Yes [49]

CD133, Nestin, Sox-2,
Musashi-1, CXCR4,
Flt-4/VEGFR-3 and
CD105/Endoglin

Astrocytomas of different WHO
grades

Yes [50]

Sox2, Musashi-1, nestin
Surgical specimens of human

gliomatosis cerebri
Yes [51]

Renewable neurosphere
formation

Cultured human gliomas Yes [52]

CD133
Mouse line whose

CD133-expressing cells can be
eliminated conditionally

No [53]

CD133 Rat C6 cell line No [54]

CD133, nestin
Rat N29 and N32 experimental

gliomas
Yes [55]

(WHO) grade III) and 12–15 months for patients with
glioblastoma multiforme (WHO grade IV) [60, 61]. Estab-
lished prognostic factors are limited and include age at diag-
nosis, Karnofsky performance status, extent of surgery and
possibly MGMT promoter methylation [60, 62]. Standard
treatment includes resection of >95% of the tumor, followed
by concurrent chemotherapy (usually performed with the
alkylating agent temozolomide (TMZ)) and radiotherapy.
Malignant gliomas are associated with such dismal prognoses
in part because glioma cells can actively migrate through
the brain, often travelling relatively long distances, making
them elusive targets for effective surgical removal and
almost invariable sources of relapse [63]. In children, the
management of high grade gliomas remains an even greater
challenge for neuro-oncologists in part because of the greater
vulnerability of the developing brain to treatment-related
toxicity [64].

3.2. Origins of Glioma Stem Cells. Although the brain is
completely formed and structured few weeks after birth, it
maintains a degree of plasticity throughout life, including
axonal remodeling, synaptogenesis, but also neural cell birth,
migration and integration [65]. The SVZ and the dentate

gyrus of the hippocampus are the two main neurogenic
sites in the adult brain. NSC reside in these structures
and produce progenitors that possess migratory ability.
One current fashionable model suggests that gliomas may
arise from the transformation of neural stem or progenitor
cells, originating cancer cells that are undifferentiated, self-
renewing, with the capacity for driving tumor development
and designated glioma stem cells (GSC), because of their
stem-like properties. The origin of GSC has been investigated
by activating oncogenic K-RAS in mouse neuronal precursor
cells and adult SVZ cells [66]. K-RAS-activated mice showed
a marked expansion of stem cell populations in the SVZ
and developed intermediate grade, infiltrating glioma with
100% penetrance. Tumors were consistently located in the
amygdalohippocampal region and nearby cortex and tumor
cells expressed markers associated with neural progenitor
cells, including OLIG2, BMI1, and platelet-derived growth
factor (PDGF) receptor-alpha. Therefore, infiltrating tumor
cells arose in this study from NSC transformed by onco-
genic activation in vivo [66]. In a different approach, a
mouse strain where tumor induction would be restricted
to myelinating OPC was generated [67]. PDGF-B trans-
fer to OPC could induce gliomas with an incidence of
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Figure 1: Resistance in GSC. Normal NSC self-renew and give rise to multipotential progenitor cells that form neurons, oligodendroglia,
and astrocytes. GSC arise from the transformation of either NSC or progenitor cells (red) or, less likely, from de-differentiation of
oligodendrocytes or astrocytes (thin red arrows) and lead to malignant gliomas. GSC are relatively resistant to standard treatments such
as radiation and chemotherapy and lead to regrowth of the tumor after treatment. Therapies directed at stem cells can deplete these cells and
potentially lead to more durable tumor regression (blue) (from [60] with permission).

33%. The majority of tumors resembled human WHO
grade II oligodendroglioma based on close similarities in
histopathology and expression of cellular markers. Thus, in
this system OPC could act as cell of origin for experimental
glioma [67]. The generation of mouse gliomas following
the overexpression of PDGF-B in embryonic neural pro-
genitors has been described by Appolloni et al. as well
[68]. Histopathological, immunohistochemical and genome-
wide expression features of PDGF-B induced tumors were
surprisingly uniform, despite they were generated by trans-
ducing a highly heterogeneous population of progenitor
cells known for their ability to produce all the cell types
of CNS. This uniformity is likely due to the ability of
PDGF-B overexpression to respecify competent embryonic

NSC toward the oligodendroglial lineage. PDGF-B-induced
tumors harbored different proliferating cell populations but
only PDGF-B-overexpressing cells were tumorigenic [68].
The possibility that GSC originate in some cases from de-
differentiation of tumoural cells cannot yet be ruled out
[69, 70]. It has been recently observed that the reversion
of mature astrocytes to an embryonic state is sufficient to
sensitize them to oncogenic stress [71]. Prolonged exposure
of astrocytes to transforming growth factor (TGF)-alpha is
sufficient to trigger their reversion to a neural progenitor-like
state (de-differentiated astrocytes). When dedifferentiated
astrocytes were grafted intra-cerebrally, they showed the
same cytogenomic profile as astrocytes, survived in vivo
and did not give birth to tumors. After exposure to IR yet,
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they acquired cancerous properties: they were immortalized,
showed cytogenomic abnormalities, and formed high-grade
glioma-like tumors after brain grafting [71]. Anyway, what-
ever the GSC origin, malignancy of gliomas often correlates
with the stem phenotype [43–47, 50, 51] (Table 2) and
accordingly, if only a subset of glioma cells drives tumour
progression it is important to target it specifically (Figure 1)
[60, 72, 73].

3.3. What are GSC? Although methods of deriving GSC
from glioma tumours and sorting them according to certain
marker expression (CD133, Nestin, Sox-2 and Musashi-1)
have been described [50, 75, 76], the exact identity of GSC
remain elusive [70]. The most extensive of the limited data
on this topic relate to GSC identified by the surface marker
CD133 (Table 2). The stem cell marker CD133/prominin-1
is a a five transmembrane domain glycoprotein which has
been identified as a cancer stem cell marker in several solid
tumor types, including those of the brain. CD133 is often
expressed on the surface of human GSC and CD133-positive
cells may represent >85% of certain human and animal
glioma cell lines [55, 77]. To verify if CD133-expressing
cells are essential for tumorigenesis, a glioma-initiating
mouse cell line whose CD133-positive cells can be eliminated
conditionally by a Cre-inducible diphtheria toxin fragment
A (DTA) gene on the CD133 locus, was generated by Nishide
and coworkers [53]. After induction of the DTA gene, the cell
line maintained the capacity to form tumour spheres culture
and transplantable multiform glioblastoma (GBM) in vivo.
Hence at least in this mouse model, CD133-expressing
cells are dispensable for gliomagenesis [53]. The presence
of two types of GSC within different regions of the same
human GBM supports this conclusion [48]. Cytogenetic
and molecular analysis showed that the two types of GSC
bore quite diverse tumorigenic potential and distinct genetic
anomalies, and yet, CD133 expression was similar. Those two
GSC populations might represent distinct cell targets, with a
differential therapeutic importance independently of CD133
expression [48]. CD133 failed to identify the total cancer
stem-like cell population in the rat C6 glioma cell line, since
both CD133-positive and CD133-negative cells displayed
cancer stem-like cell fractions showing characteristics of self-
renewal, multilineage differentiation potentials in vitro, and
tumorigenic capacity in vivo [54]. Methodological problems
concerning purification of CD133-expressing cells may exist.
It has been recently reported that the specific expression
and enrichment of CD133 can be obtained in fresh human
gliomas and gliomasphere cultures purified by fluorescence
activating cell sorting while purification of CD133-positive
GSC using the widely used CD133-microbeads may be
affected by lack of specificity and lead to mixed populations
[78]. In conclusion, CD133-positive GSC likely drive only
an as yet unquantified subset of malignant gliomas, the
remainder deriving from CD133-negative GSC with distinct
phenotypical features [46, 79]. The neurosphere formation
ability and tumorigenic capacity of cultured glioma cells have
been recently explored as independent predictors of patient’s
outcome [52]. Those features of cultured glioma cells signif-
icantly correlated with an increased hazard of patient’s death

and more rapid tumor progression independently of Ki67
proliferation index [52]. These results suggest that the ability
to propagate brain tumor stem cells in vitro is associated with
clinical outcome although the lengthy duration of this assay
may preclude direct clinical application. The ultrastructural
features of GSC isolated from both a primary glioma tissue
and the human glioma cell line SHG-44 have been described
[80]. The ultrastructural features of the two kinds of GSC
were similar, with relatively developed mitochondria, Golgi
apparatuses, ribosomes, undeveloped rough endoplasmic
reticula, rare lysosomes and no typical autophagosomes, and
high nuclear-cytoplasmic ratio. Their nuclei, frequently con-
taining huge amounts of euchromatin and a small quantity
of heterochromatin, were mostly globular and the majority
of them had only one nucleole. Typical apoptotic cells could
hardly be found in tumor spheres, and between adjacent cells
there were cell junctions, which probably were incompletely
developed desmosomes or intermediate junctions [80]. A
definite (and sometimes disregarded) feature of GSC is
their ability to differentiate. This is the only parameter
that unequivocally permitted, in our experience, to distin-
guish stem from nonstem glioma cells [77]. In this study,
stem cells cultured as adherent monolayers conveniently
allowed morphologic analysis of differentiation under the
inverted light microscope. Removal of growth factors and
addition of foetal calf serum (FCS-differentiating conditions)
resulted after 3 weeks in acquisition of a typical astroglial
morphology by genuine GSC. Recent evidence shows that
even single GSC possess multilineage potential [81]. Analysis
of marker expression usually confirms the morphologic
analysis. For instance glial fibrillary acidic protein (GFAP)
is an intermediate filament protein that is typical, although
not exclusive, of cells of astroglial lineage and may indicate
that differentiation of stem cultures is mostly oriented to
astroglial commitment. In a sense, nothing is better than
visual inspection for morphological changes upon growth
factors removal to determine whether cells are bona fide stem
or not. Tumourigenic glioma cells unable to acquire any of
the astrocyte, neuron, or oligodendrocyte morphology upon
growth factors removal may be called “tumour initiating
cells” or “tumour-driving cells” but not tumour stem cells,
even if they express so-called “stemness” markers.

3.4. Deregulated Pathways in GSC. Invasive malignant
glioma cells often show a decrease in their proliferation rates
and a relative resistance to apoptosis that may underlie their
resistance to conventional chemotherapy and radiotherapy
[61]. Invasive growth and resistance to apoptosis results
from changes at the genomic, transcriptional and post-
transcriptional level of a number of cellular factors involved
in complex signal pathways (reviewed in [74]) (Figure 2). For
instance, the proliferation of normal stem and progenitor
cells in the brain is under control of p53 [84]. The altered
expression of several cell cycle regulators, in particular a
pronounced downregulation of p21, has been observed in
p53-mutant NSC indicating that p53 may act as a growth
suppressor of GSC [85]. Deregulation of a number of
additional cell cycle control pathways, including the p16-
CDK4-RB pathway may underlie the generation of GSC in
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Figure 2: Complex signal pathways and cellular factors regulate GSC. GSC are controlled at multiple levels by complicated regulatory
networks. Signals initiated by receptor tyrosine kinases (RTK), bone morphogenetic protein receptors (BMPR), Hedgehog, and Notch result
in complicated intracellular events to help balance self-renewal and differentiation of GSC as well as the promotion of cell survival and
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are also highly potent of maintaining GSC populations due to their ability to regulate massive downstream targets simultaneously (from [74]
with permission).

the brain [86, 87]. Activation of signaling pathways like the
PDGF pathway [88], often accompanied by Ras inactivation
[89], has been implicated in transformation of SVZ NSC
(Figure 2). Another contributor is the Sonic Hedgehog (Shh)
pathway that regulates the patterning, proliferation and sur-
vival of NSC within the CNS [90]. Shh signalling is mediated
by Gli1 [91] that likely serves as a protective mechanism
against premature mitosis in normal NSC. Deregulation of
Gli1 has been observed in GSC [91] (Figure 2). Similarly,
the WNT Notch and TGF-beta/Bone Morphogenetic Protein
(BMP) developmental pathways have been also found aber-
rantly expressed in GSC [92]. Secretion of the angiogenic
factor vascular endothelial growth factor (VEGF) by GSC
has been observed and this phenomenon is further induced
by hypoxia [93, 94] (Figure 2). Monoclonal antibodies and
low molecular-weight kinase inhibitors of some of the above
pathways may be of help in targeting GBM. For instance,
the anti-VEGF neutralizing antibody bevacizumab limits the
proangiogenic effects of GSC and may suppress the growth of
GSC-derived xenografts in some cases [95]. However, most
clinical trials of these agents as monotherapies have failed
to demonstrate significant survival benefit, likely linked
to the complexity of GBM biology that is characterized
by a constantly changing microenvironment that greatly

influences both tumor growth and response to therapy [63,
96].

3.5. DNA Repair as a Resistance Mechanism in GSC. Whether
DNA repair is a major mechanism of resistance to apoptosis
in cancer stem cells, likewise normal stem cells, still is an
open question [6, 97]. For instance, myeloid progenitor
bone marrow cells derived from BER-defective mice display
unexpected bone marrow alkylation resistance as compared
to progenitor cells from wild-type mice [98]. Hence, in this
case, repairing the damaged base seems more lethal than
leaving it unprocessed. The phosphatidylinositol-3-kinase
(PI3K)-Akt pathway, a protumorigenic signaling cascade
involved in several human cancers, is frequently up regulated
in gliomas (Figure 2) (reviewed in [99]). Hyperactivation
of the PI3K-Akt pathway occurs in gliomas through a
variety of mechanisms, including loss of the inhibitory
effects of the phosphatase and tensin homolog (PTEN)
tumor suppressor [100]. Enhanced Akt signaling may cause
a tumourigenic phenotype with increased cell proliferation,
metastasis and angiogenesis. Akt inhibitors may significantly
reduce viability of GSC relative to matched non stem cells
[101] and sensitize them to chemotherapeutic agents [102].
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Figure 3: Cell cycle checkpoint pathways, possible targets in GSC. (a) Once DNA damage is identified with the aid of sensors, the checkpoint
transducers ATM and ATR undergo conformational change and/or localisation, resulting in their activation. ATM and ATR activate a series
of downstream molecules, including the checkpoint kinases Chk1 and Chk2. The latter inactivate CDC25 phosphatases, culminating in cell
cycle arrest. AZD7762 (AstraZeneca) and DBH are specific inhibitors of Chk1 and Chk2 kinases. CP466722 (Pfizer) is a specific inhibitor
of ATM (modified from [82] with permission). (b) Targeting GSC may yield durable tumor regression. Glioblastomas are heterogeneous
tumours containing CD133-positive GSC among other, more differentiated, CD133-negative cells, including glioblastoma progenitor cells.
Following radiation, the bulk glioblastoma responds and the tumour shrinks but CD133-positive cells activate checkpoint controls for DNA
repair more strongly than CD133-negative cells, resist radiation and prompt the tumour to regrow. These cells could be targeted with DNA-
checkpoint blockers (e.g., AZD7762, CP466722 and DBH) to render them radiosensitive (modified from [83] with permission).

Inhibiton of the Akt pathway further causes delayed repair of
IR-induced DSB detected by gamma-H2AX foci formation
and radiosensitization [103]. Hence activation of the Akt
signaling may underlie at least some cases of radioresistance
in GSC. Another route involves the activation of the
DNA damage checkpoint response. Tumour cells expressing
CD133 increase in gliomas treated with IR. CD133-positive
GSC are more resistant than CD133-negative cells to IR
in both in vitro experiments or when expanded in the
brains of NOD/SCID mice and activate the DNA damage
checkpoint response with unusual intensity [104]. Increased
DNA repair capacity, evaluated by the SCGE assay has been
also reported [104, 105]. Debromohymenialdisine (DBH), a
specific inhibitor of the Chk1 and Chk2 checkpoint kinases,
delayed the checkpoint response and reversed the resistant

phenotype [104]. Similarly, IR-mediated phosphorylation of
Chk1 and Chk2 have been found distinctly higher in undif-
ferentiated human embryonal carcinoma cells compared
with differentiated cells [106]. G2 and G1-arrested NSC
rapidly increase after IR in the mouse, with concomitant
phosphorylation of cdc2 and p53 and inhibition of Notch
[107]. Hence, although the selective resistance of GSC has
been questioned [108], CD133-positive cells may represent
the cellular population that resists to IR and chemotherapy
at least in a subset of glioma tumours and activation of
the DNA damage checkpoint response may be a major
underlying mechanism in this regard [49, 77, 104]. On
the contrary, we could not confirm enhanced DNA repair
capacity in GSC [77]. It should be pointed out that the
concept “enhanced DNA repair capacity” implies “per time
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unit”. Five GSC lines isolated from primary grade IV gliomas
were examined for their cell cycle and DNA repair features
[77]. The population doubling time of the GSC lines was
significantly longer as compared to nonstem cell lines while
no enhanced DNA repair examined by an in vitro BER assay,
the SCGE assay or resolution of pH2AX nuclear foci, could
be observed. The DNA damage checkpoint response was
constitutively activated in CD133-positive but not in CD133-
negative cells, with Chk1 and Chk2 kinases phosphorylated
in the absence of treatment. Recent studies indicate cell cycle
restriction as a mechanism of resistance in leukaemia as well
[109]. Hence, constitutive activation of the DNA damage
checkpoint response may confer GSC increased time for
the removal of radio- and chemotherapeutic- induced DNA
lesions before arrival of the replication fork while whether
improved efficacy of repair (per time unit) is a common
resistance mechanism in GSC still requires further studies.

3.6. Targeting the Checkpoint Response in GSC. Once DNA
damage is identified with the aid of sensors, the checkpoint
transducers ATM (ataxia-telangiectasia mutated) and ATR
(ATM and Rad3-related) proteins undergo conformational
change and/or localisation, resulting in their activation.
ATM and ATR phosphorylate the downstream effectors
checkpoint kinase-2 (Chk2) and checkpoint kinase-1 (Chk1)
respectively, two serine/threonine kinases that serve as
functional analogues (reviewed in [110, 111]) (Figure 3(a)).
Significant crosstalk exists between the two pathways [112].
Sites of Chk2 phosphorylation by ATM include Ser 33/35,
Thr68, Ser19, Thr387 and Thr432 while ATR phosphorylates
Chk1 mainly at serines 280, 296, 317 and 345. The first and
second-level transducers ATM, ATR, Chk1 and Chk2 phos-
phorylate a number of effector molecules, such as p53 and
CDC25 phosphatases. In particular, CDC25 phosphatases
are key checkpoint kinase targets for controlling cell cycle
transitions. Human cells have three CDC25 proteins that
regulate cell cycle transitions by removing the inhibitory
phosphorylation from cyclin-dependent kinases (CDKs).
Chk1 and Chk2 phosphorylation of the CDC25 proteins
inhibits their activity through either ubiquitin-mediated
degradation or cytoplasmic sequestration and prevents CDK
activation. This negative regulation of the CDC25 phos-
phatases is a major checkpoint mechanism for entry of cells
into mitosis.

Releasing the constitutively-pressed brake that prevents
GSC from dividing may push them into cell cycle and
sensitize them to IR and chemotherapeutic agents such
as TMZ that primarily act by damaging DNA [82]. To
this purpose, specific inhibitors for the key actors of the
checkpoint response namely ATM, ATR, Chk1 and Chk2
are the object of intense academical and industrial research
[113]. One possible candidate could be AZD7762 developed
by Zabludoff and coworkers at AstraZeneca [114]. AZD7762
is a potent ATP-competitive checkpoint kinase inhibitor that
was shown to potentiate the cytotoxicity of DNA-damaging
drugs towards different types of tumours cultivated in
vitro, by abrogating the DNA damage checkpoint response.
Importantly, the potentiation was observed in vivo as

well, using multiple xenograft models and several DNA-
damaging agents, indicating that the drug could be worth
exploring in the clinical setting to increase patient’s response
rates. Another potentially interesting drug is CP466722
developed by Rainey and coworkers [115]. These authors
identified CP466722 as a potent and specific ATM inhibitor
after screening a targeted compound library. Inhibition by
CP466722 abrogated the ATM-dependent phosphorylation
activity and the cell cycle checkpoint response and could be
reversed by removing the drug. HeLa and AT GM02052 cells
were sensitized to IR in the presence of CP466722 in vitro. No
in vivo experiments were reported in this study. A number of
additional cell cycle checkpoint inhibitors are available (e.g.,
the aforementioned DBH) or under development [113].
Their use could permit significant sensitization of GSC to
radiotherapy and chemotherapy.

4. Conclusions

Enhanced DNA repair capacity is often observed in normal
(embryonic or adult; human or murine) stem cells as
compared to differentiated cells, suggesting that normal stem
cells often protect their genome through enhanced DNA
repair. This may not be the case for cancer stem cells.
At least in gliomas, DNA repair rates are normal but low
proliferation and constitutive activation of the DNA damage
checkpoint response confer increased time for lesion removal
or bypass before arrival of the replication fork. Hence, GSC
do not repair DNA better. They just have more time to do
that. Those features may be common to stem cells from
other tumour types as well [109]. Drugs targeting cell cycle
restriction in GSC could be of help for complete eradication
of the tumor and several novel agents of this kind are under
development. In particular ATM and Chk1 and Chk2 kinase
inhibitors may effectively sensitize GSC to IR and alkylating
agents by stimulating their proliferation.
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