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Label‑free imaging flow 
cytometry for analysis and sorting 
of enzymatically dissociated tissues
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Biomedical research relies on identification and isolation of specific cell types using molecular 
biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling 
processes potentially alter the cells’ properties and should be avoided, especially when purifying 
cells for clinical applications. A promising alternative is the label-free identification of cells based on 
physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique 
for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed 
by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for 
blood cells which show clear morphological differences and are naturally in suspension. Most cells, 
however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges 
including changes in morphology, or presence of aggregates. Here, we introduce methods to improve 
robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can 
distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor 
cells from dissociated retina for transplantation into the mouse eye.

Cell characterization is a major task in biomedical research as it allows for refined analyses and isolation of 
specific cell types for characterization or therapeutic applications. The current gold standard for cell-typing 
relies on the identification of unique proteins expressed by the target cell population. If the cell-specific protein 
is intracellular, it cannot be accessed in live cells and genetic engineering is required to introduce expression of a 
fluorescent reporter. If the protein is located on the cell surface, commercially available antibodies allow to label 
the cells with a fluorescent or magnetic marker. Thus, the target cells become detectable for fluorescent activated 
cell sorting (FACS) or magnetic activated cell sorting (MACS), respectively1–3. However, specific markers for 
many cell types have still not been defined and such labeling processes present a treatment which could alter the 
cells’ properties and therefore skew any subsequent analysis or cellular response. Additionally, enzymatic dis-
sociation of tissues frequently affects binding sites essential for the recognition by specific antibodies4. A promis-
ing alternative is the label-free identification of cells based on inherent physical and morphological properties.

Density gradient centrifugation and filtration-based approaches are well-established methods allowing to 
enrich cells based on their density and cell size—however these have limited sensitivity. Deterministic lat-
eral displacement is a microfluidic method for the enrichment of cells based on their deformation and size 
characteristics5. Similar to MACS, these techniques sort cells passively, allowing for bulk processing, resulting 
in an unmatched throughput. On the downside, these bulk sorting techniques only allow to enrich cells based 
on a small number of characteristics which are often shared by diverse cell types in a tissue and the sorting logic 
is hard-wired into the setup. In contrast, single cell approaches allow a flexible tuning of the sorting decision. 
Arguably, the most popular label-free single cell analysis and sorting device is FACS as it allows to obtain size and 
transparency information (forward scatter and side scatter) without the need for staining. Its high throughput, 
also compared to other interesting technologies like computer controlled micropipetting, is greatly advantageous, 
however not all cell types can be distinguished using this method6,7. Further inherent properties are chemical 
composition and mass density, and corresponding methods for single cell analysis or sorting have already been 
demonstrated8,9.
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A microfluidic method for capturing mechanical properties of single cells is real-time deformability cytometry 
(RT-DC), in which cells flow through a narrow channel where they are deformed and captured by a high-speed 
camera10. For retrieval of mechanical features, only the outline of the tracked object (contour) is required, but the 
technology also provides bright-field images. RT-DC was complemented with fluorescence detection capability 
(real-time fluorescence and deformability cytometry—RT-FDC11), which allows to record bright-field images 
and fluorescence information of conventional markers simultaneously at a throughput of up to 1,000 cells/s. 
This technology proved to be ideal to generate labeled image datasets for training deep neural nets (DNNs) 
which learn to detect cell types based on the bright-field image alone. More recently, a sorting unit was added 
to the RT-FDC setup (sorting real-time fluorescence and deformability cytometry—soRT-FDC12) which lev-
erages real-time image analysis by a DNN to actuate the sorting trigger based on the classification score. The 
throughput of soRT-FDC is 200 cells/s. The study demonstrated DNN-assisted, image-based sorting of blood 
cells, which are cells that are naturally occurring in suspension. However, most cells grow in tissues, resulting 
in a need for dissociation before any kind of single cell flow cytometry method can be applied. The same applies 
for 2D or 3D cell cultures such as organoids. Organoids are an increasingly popular tool in biomedical research 
for investigation of developmental and pathologic mechanisms, and they represent a promising cell source for 
therapeutic purposes13–15.

Besides possibilities for label-free sorting, tissue dissociations are subject to non-uniform outcome. While 
naturally suspended cells tend to show a round shape (e.g. cells from blood or bone marrow), the morphology of 
cells in tissues is more heterogeneous. Alone in the retina, the shapes range from elongated (e.g. Müller glia) to 
elliptical (e.g. retinal pigment epithelium), resulting in a broad range of cell morphologies even after dissociation. 
Furthermore, single cells are prone to aggregate. Aggregates are unfavorable as they could skew a measurement, 
create artifacts in analysis results, cause accidental sorting of undesired cells, or even congest a sorting unit. 
Due to the heterogeneous morphologies of dissociated cells and their tendency to aggregate, automatically dif-
ferentiating single cells and cell aggregates is challenging.

In the present work, we introduce software and hardware methods to improve reliability of RT-FDC data 
analysis and image-based cell sorting in the context of enzymatically dissociated tissues. We updated the chip 
design to promote a microfluidic based division of cell aggregates. Furthermore, we trained a convolutional neural 
net (CNN) for detection of aggregates in images which can be employed for offline analyses of RT-FDC datasets. 
For real-time detection of aggregates during sorting, we introduce efficient algorithms that employ object count-
ing and the frequency of the occurrence of cells. soRT-FDC was previously demonstrated for DNN-based sorting 
of blood cells which show prominent phenotype differences12. In this work, we describe a DNN architecture for 
optimized utilization of CPU (central processing unit) resources which improves the accuracy of image-based 
cell identification for sorting. To demonstrate the applicability of the method to biomedical research, we trained 
the DNN for detection of photoreceptors from dissociated mouse retinae. The trained model was employed for 
label-free image-based sorting of photoreceptors, which were subsequently transplanted into adult mice and 
were successfully shown to survive and interact with the host retina.

Results
Hardware based reduction of cell aggregates.  In the present work, we build upon the existing soRT-
FDC technology to improve reliability of measurement, analysis, and sorting of enzymatically dissociated tis-
sues. To develop and showcase the methods, we used dissociated retina cells originating from human retinal 
organoids (HROs) and mouse eyes (see Fig. 1A). HROs differentiated from a photoreceptor-specific reporter 
human induced pluripotent stem cell line (hiPSC-Crx mCherry14) were cultured for 125 days. Mice expressing 
GFP restricted to rod photoreceptors (Nrl-eGFP mouse15) were at postnatal day 4 (P04) when applying the dis-
sociation protocol (see Materials and Methods). For flow cytometry measurement in RT-FDC or sorting using 
soRT-FDC, cells were resuspended in a measurement buffer with elevated viscosity (see Materials and Methods), 
as illustrated in Fig. 1A.

soRT-FDC is a microfluidic technique allowing not only to capture bright-field images and fluorescence 
information from single cells at 1,000 cells/s, but also sort specific cells based on the decision of a DNN at 200 
cell/s. In soRT-FDC, suspended cells and sheath fluid are pumped into a microfluidic chip by means of two 
syringe pumps. The sheath flow focusses the sample flow towards a narrow channel. At the end of the channel 
the cells are captured by a high-speed camera and optionally fluorescence information is retrieved for up to 
three wavelengths. After the narrow channel, the microfluidic system widens and divides into a path towards 
the default and target outlet (see Fig. 1B and Figures S1A and S1B, Supporting Information). The narrow chan-
nel is a distinct feature of soRT-FDC as it allows to deform cells to obtain information about the mechanical 
properties of cells. Furthermore, cells are aligned in the channel which simplifies image analysis tasks due to the 
reduced degrees of freedom.

However, any constriction in a microfluidic design introduces the risk of being blocked by debris or large 
objects contained in the processed sample. A blocked or partially blocked channel will impair sorting. Moreover, 
presence of cell clumps in a dataset can skew analysis results. In samples containing suspension cells, such as 
blood, this rarely becomes a problem. In dissociated samples however, presence of cell aggregates like doublets, 
is very common. To prevent such objects from reaching highly confined parts of the chip, filter pillars were 
implemented and their design improved11. We introduce multiple columns of increasingly narrowly spaced filter 
pillars, allowing the successive retention or resolution of interfering objects. The distance between pillars at the 
first column is 60 µm (indicated as d1 in Fig. 1C), which allows to catch larger objects (see Fig. 1C). The pillars 
at the final column show a distance of 15 µm, which catch smaller objects and also contribute to separating and 
dividing aggregates into single cells. In the sheath inlet the first and last column of filters have an inner distance 
of 60 µm and 10 µm, respectively. Separation of cells is further promoted by serpentine channels of a width of 
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30 µm (see Fig. 1C and Figure S1, Supporting Information). We observed that debris particles are prone to get 
stuck in the curvature of the serpentines. To prevent a full blocking of the chip, multiple serpentines were placed 
in parallel, resulting in a practically undisturbed execution of measurements or sorting experiments for hours.

The microfluidic design shown in Fig. 1C decreases the probability of the occurrence of large aggregates 
(see Figure S1, Supporting Information) but does not guarantee to generate a pure single cell suspension. In the 
following, a method for detection of aggregates such as cell doublets is introduced, allowing to exclude such 
events during data analysis.

DNN based detection of cell aggregates.  In flow cytometry, cell doublets can skew datasets and any 
subsequent analysis requires an exclusion of such events. For example, when a non-fluorescent cell is attached 
to a fluorescent cell, the event would be assigned to the fluorescence positive group but other features such as 
granularity are affected by both cells. Image flow cytometers like RT-FDC and soRT-FDC provide a bright-field 

Figure 1.   Cell preparation, soRT-FDC setup and chip design. (A) Retinae from reporter mice (Nrl-eGFP) or 
human retinal organoids (Crx-mCherry) are dissociated and resuspended in measurement buffer for soRT-
FDC. (B) Sketch of the soRT-FDC setup. Two syringe pumps supply a microfluidic chip with sample and sheath 
fluid. Lasers excite fluorescence signal which is measured by avalanche photodetectors and the cell is imaged 
by a high-speed camera. A high-power LED illuminates the cell. Interdigital transducers (IDTs) excite surface 
acoustic waves, which push selected cells towards the target outlet. (C) Figure shows the 2D-CAD design of the 
entire sorting chip and zoomed in versions show specific parts. The red rectangles indicate filter assemblies, 
which consist of a cascade of pillars with decreasing distance. The orange rectangles indicate a unit of several 
serpentines, which helps to divide aggregates of cells and to increase the spacing between cells. The layout was 
designed using KLayout 0.25.3.
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image and doublets of cells could be identified by human eye. As datasets typically contain several thousands of 
images, this task would be extremely labor intensive, resulting in a need for automation. Therefore, we visually 
assessed more than 60,000 cells (42,583 single cells and 21,137 doublets of cells) using RT-FDC measurements 
of HROs to create a labelled dataset. To speed up the labelling process, we developed a dedicated software (You‑
Label) with graphical user-interface (Figure S2, Supporting Information). Using the generated dataset we trained 
supervised machine learning models, more specifically, convolutional neural nets (CNNs, Fig. 2A), a type of 
DNN that is commonly used for image classification tasks. The input image size for the CNN is 36 × 36 pixels 
(= 24.5 × 24.5 µm) which is large enough to cover aggregates of cells and cells in proximity (Fig. 2A). Accidental 
sorting of multiple cells and erroneous assignment of fluorescence intensities is not only a problem when cells 
are directly attached to each other but also when they travel at a close distance (see Figure S3 A, Supporting 
Information). To train the CNN to detect such events, they were assigned to the class of doublets during the 
manual labeling process.

In order to span a wide variety of phenotypes, we used images of dissociated HRO cultures16. Based on the 
resulting dataset, we trained a CNN (Fig. 2A) to perform the task of identifying doublets, and the resulting model 
(CNNdoublet) reaches a validation accuracy of 80.3% (Fig. 2B). To test the applicability of the model to new data, 
we recorded a dataset of murine Nrl-eGFP cells. In Nrl-eGFP transgenic mice GFP expression is restricted to 
rod photoreceptors17. Each event was forwarded through CNNdoublet to obtain the probability that the event is a 
doublet (pdoublet) and the histogram in Fig. 2C shows the resulting distribution of probabilities. The correspond-
ing testing accuracy is 97.4% (see confusion matrix in Figure S3 B, Supporting Information). Interestingly, the 
model confidently predicts single cells and doublets into the correct class as shown by example images and the 
confusion matrix (Figure S3 B, Supporting Information). The CNN classifies an event as doublet if a second 
cell is closer than approximately 15 µm (Figure S3 C, Supporting Information). The model also delivers sensible 
results for a measurement of whole blood (Figure S3 D, Supporting Information, data taken from12), indicating 
that the model could be employed for a general-purpose doublet detection algorithm.

CNN based detection of cell aggregates is a helpful tool for analyzing RT-DC or RT-FDC data which could be 
employed for many datasets and comes at low computational cost. Forwarding a single image through CNNdoublet 
only requires 1.4 ms (Intel Core i7 3930 K @ 3.2 GHz). Processing 10,000 images at once (batch processing) allows 
to achieve an inference time of 0.75 ms per image. While these times are sufficient to process large datasets, for 
sorting an inference time below 250 µs is required. Therefore, faster doublet detection methods are required.

Detection and separation of cell aggregates for single cell sorting.  In RT-DC, RT-FDC, and 
soRT-FDC a real-time contour detection algorithm evaluates acquired images using efficient OpenCV imple-
mentations. By counting the number of contours in an image, we implemented a switch that allows to suppress 
sorting if more than n = 1 contours were detected (see Fig. 3A). The additional contour counting step comes at 
no additional computational cost. To reduce the chance of having multiple cells within the ROI, the cell concen-
tration could be decreased but since that would decrease the frequency of measurement and sorting, an optimal 
cell concentration needs to be determined.

The duration of a standing surface acoustic wave (SSAW) pulse is 2 ms. No additional cell should enter the 
SSAW region during that time to avoid accidental sorting of wrong cells. For the common flowrate of 0.04 µl/s, 
a volume of V2ms = 0.04µl

s • 2ms = 0.08nl is passing the chip during an SSAW pulse. One cell contained in V2ms 
corresponds to a concentration of 12.5 million cells/ml. To reach that concentration, an initial sample concen-
tration of c1 = 50 million cells/ml has to be applied since the sample flow ( Qsample = 0.01µl/s ) is diluted by the 
sheath fluid ( Qsheath = 0.03µl/s ). As a result, V2ms contains on average a single cell, but presence of a cell in a 
volume element is a random process and presence of individual cells is independent. Therefore, the number of 
cells ( n ) in a volume element ( V2ms ) can be described by a Poisson distribution:

Figure 2.   CNN for detection of cell aggregates. (A) Bright-field images of single cells and cell aggregates of 
human retinal organoid cells. Images are used to train a CNN for discrimination between single cells and 
cell aggregates. (B) Confusion matrix resulting when applying the CNN on the validation set. The validation 
accuracy is 80.3%. (C) Probability distribution resulting when applying the model to a testing dataset of 
dissociated Nrl-eGFP retina. Despite the different origin of the cells, the model is able to distinguish between 
single (left, low probability) and aggregated cells (right, high probability).
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where µ is the expected (average) number of cells in the volume element V2ms . Figure 3B shows the Poisson 
distribution for µ = 1 (blue, corresponds to c1 = 50 million cells/ml). The area under the curve (pale blue) shows 
the probability that more than one cell is contained in V2ms which is p1 = 26.4%. For sorting experiments, we 
reduced the concentration to c2 = 20 million cells/ml, which corresponds to an average of µ = 0.4 cells and a 
probability of getting multiple cells in V2ms of p2 = 6.2% (see red plot in Fig. 3B and pale red area under the curve).

The underlying assumption of the Poisson distribution is that cells travel independently, which is not entirely 
true, as they can stick together and form aggregates18. As a result, avalanches of cells occasionally traverse the 
channel (see Fig. 3C). Figure 3C shows the measurement time versus event number and the color code indicates 
the time difference between two captured events. Two steep increases of the curve indicate occasions where 
avalanches of cells flushed through the channel. As a result, each captured image contained an object, resulting 
in an average time difference of �T = 1

3000fps = 0.33ms (purple regions in the plot). For the rest of the plot, the 

event number rises steadily and the time difference between captured events is on average 0.09 s (yellow regions 
of the line), which is a bit lower than the expected frequency. This is likely caused by cell sedimentation over 
time. Figure 3C suggests that avalanches of cells can be identified based on the characteristic time difference 
between captured events of �T = 1

fps . Therefore, we implemented a timer, allowing to suppress the sorting pulse 
if �T is below a set threshold. In practice, we found that a �T of 0.38 ms results in reliable omission of sorting 
during cell avalanches. The image insets in Fig. 3C deliberately show only events with multiple cells in an image. 
While such events occur more often during avalanches, the majority of the images still shows a single cell. This 
fact highlights the advantage of time delay analysis in contrast to contour count. All methods were implemented 
into the C+ + based sorting software.

DNN architecture for optimized CPU utilization.  Intelligent image-activated cell sorting allows to 
sort cells based on the decision of a trained DNN. While a CNN would be the preferred architecture for image 
classification tasks, CNNs usually require more computational time and are thus too slow for rapid cell sorting 
with commonly used hardware. As an alternative to a CNN, in Ref.12, a multilayer perceptron (MLP) was used 
due to considerably better computational efficiency. Originally, the MLP was optimized to provide an inference 
time t < 200µs, allowing for real-time inference to trigger a cell sorting mechanism, while conserving a high 
classification accuracy for the distinction between different blood cell types. However, CPU specifications were 
not regarded in the choice of MLP design. Modern CPU chipsets provide methods for parallel computations 
(Hyper-Threading, Intel Advanced Vector Extensions), allowing to increase the complexity of an MLP, without 
changing its inference time. We therefore chose to, first, screen various MLP architectures for their computa-
tional speed and, second, for their image classification performance (see Sect. 2.5). The screening was carried out 
on the same PC that is used to operate the soRT-FDC setup (Intel Core i7 3930 K @ 3.2 GHz).

The MLP base architecture is designed as follows. The input layer of the MLP model accepts grayscale values 
of an 8-bit raw image divided by 255. Then, hidden layers perform a transformation of the input information 
by a set of weights and biases and an activation function (Rectified linear unit—ReLU) as indicated in Fig. 4A. 
The complexity of an MLP depends on its number of parameters. The number of parameters increases the more 
layers and nodes are present in the neural net. Therefore, we built MLPs with k ( 1 ≤ k ≤ 4 ) hidden layers and 
iterated through a set of numbers of nodes ni (Fig. 4A). The number of nodes ni of each layer was set to a multiple 
of 8 between 8 and 240 and for every possible combination, a model was built to determine the inference time 
and the number of trainable parameters N . To limit the computational resources, we omitted models containing 

p(n) =
µne−µ

n!
,

Figure 3.   Detection and separation of cell aggregates. (A) Examples of images captured during sorting. A single 
contour is detected in the upper image, while three contours are detected in the lower image. Sorting trigger is 
omitted when more than one contour is detected. Scale bar: 20 µm. (B) The histogram shows the probability 
to have n cells in a unit volume. The chance of having more than one cell in the sorting region during a sorting 
pulse is 26.4% (blue) and 6.2% (red) for an initial cell concentration of 50 million cells/ml and 20 million cells/
ml, respectively. (C) Plot shows the measurement time and number of captured events of a measurement of Nrl-
eGFP mice retina cells. Color code indicates the time difference between two events. While most of the time, 
events are captured with a time difference of > 0.02 s, during an avalanche, each captured frame contains cells, 
resulting in a time difference of approximately 0.00033 s = 0.33 ms. Scale bar: 10 µm.
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N>80,000 parameters from the screening, resulting in a total number of 396,521 models (30, 671, 16,527, and 
379,293 models for k=1,2,3, and 4, respectively) whose results are shown in Fig. 4B (red, orange, blue, and 
magenta indicate models for k=1,2,3, and 4, respectively).

As expected, MLPs with more layers but the same number of parameters have a higher inference time due to 
reduced potential of parallel computation. The MLP architecture suggested by Nawaz et al.12, is included in our 
screening, and results in an inference time of tNawaz = 174µs (indicated as MLPNawaz in Fig. 4B). Interestingly, no 
4-layer MLP reached an inference time ≤ tNawaz . Multiple models with k = 1,2, and 3 comprehend more trainable 
parameters while having an inference time close to tNawaz . We searched for models with the maximum number 
of parameters in the range 170µs ≤ t ≤ 175µs . The identified models with k=1,2, and 3 layers are indicated in 
Fig. 4B by MLP1, MLP2, and MLP3, respectively. The models MLP1, MLP2, and MLP3 contain 2.7 to 9.1 times 
more trainable parameters compared to MLPNawaz and the total number of parameters for each model is shown 
in Table 1. The screening is independent of actual classification performance, but allows to find models with 
optimized CPU utilization. In the following, these models are employed to solve an image classification problem 
to assess the resulting accuracy levels.

DNN classifier for photoreceptor detection and sorting.  We performed seven independent experi-
ments using RT-FDC to acquire data from dissociated retinae of Nrl-eGFP mice at postnatal day 4 (P04) ± 1 day. 
To that end, we used the Nrl-eGFP mouse line, which expresses eGFP under the control of the Nrl promoter, 
labelling rod photoreceptors from an early stage onwards. Figure 5A shows an example measurement and gates 
indicate certain subpopulations of cells. In a size region between 20 and 35 µm2, there are cells of various fluo-
rescence expressions. To minimize wrongly labelled cells in the dataset, we employed CNNdoublet to remove all 
events with pdoublet > 0.3, excluding doublets and too proximate cells. Furthermore, we used a conservative gating 
strategy by only keeping cells with very low and very high fluorescence for the class of small GFP- and small 
GFP+ cells, respectively (see gray and green rectangles in Fig. 5A). Debris (area < 20 µm2) and objects larger than 
35 µm2 were not considered for the deep learning image classification task as they can be gated out based on their 
size during sorting. The challenging classification task that should be solved using DNNs is to distinguish small 
GFP+ (green in Fig. 5A) and small GFP- cells (gray in Fig. 5A).

In the current experimental setup, the focus is adjusted manually, resulting in slight differences between ses-
sions and even slight focus drifts during long sorting procedures. To include phenotypes from different focus 
positions in the dataset, the focus was manually altered during acquisition of the training dataset. The range of 
alteration was kept in a range that would in practice be used for sorting or measurement. For acquisition of the 
validation dataset, the focus was left at a fixed position. Table 2 shows the number of events captured for small 
GFP- and small GFP+ cells.

Figure 4.   MLP screening. (A) Sketch shows general design of multilayer perceptrons. The input layer contains 
all pixels of the provided image. Each of the following k hidden layers contains ni(1 ≤ i ≤ k) nodes. Each node 
represents a linear combination of the input values, which is modulated by an activation function (ReLU for 
the hidden layers and Softmax for the output layer). The output layer returns probabilities for each class of the 
classification task. (B) The scatterplot shows the inference time and number of trainable parameters of 396,521 
different MLP architectures with k =1 (red), k =2 (orange), k =3 (blue), k =4 (magenta). Chosen models with 
identical inference time, but more trainable parameters compared to MLPNawaz are indicated by MLP1, MLP2, 
and MLP3.

Table 1.   MLP screening summary.

Name Nr. of layers Nr. of parameters n1 n2 n3

MLPNawaz 3 8,708 24 16 24

MLP1 1 78,964 240 – –

MLP2 2 39,284 96 80 –

MLP3 3 23,396 24 88 144
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As focus alteration increases the variety of phenotypes contained in the training dataset we would like to 
introduce the phrase “experimental data augmentation”. In contrast, “mathematical data augmentation” refers 
to computational operations applied to the image data after the measurement. Mathematical data augmentation 
allows to modify the image phenotype during DNN training and was shown be an effective tool to improve the 
accuracy and robustness of DNNs19. A strong modification of the phenotype may enable the DNN to become 
robust to such alterations, but also increases the difficulty to converge. Therefore, data augmentation should ide-
ally modify the images in a range that could occur in practice. In the following, image augmentation operations 
are introduced and assessed to identify sensible parameter settings. Each augmentation option is implemented 
into AIDeveloper which is a software for training DNNs for image classification without need for programming. 
All model training in this study has been performed using AIDeveloper 0.2.320.

In the current soRT-FDC setup, there is variation in brightness between experiments. Alteration of brightness 
can be performed computationally. To get an intuition for the range of brightness levels of different experiments, 
we assessed pixels at the upper border (10 × 255 pixels, see red rectangles in Fig. 5B) of one image from each of 
29 measurements (Figure S4 A, Supporting Information). This region allows to obtain information about the 
background brightness as it is located outside the measurement channel. Based on these pixels, we also com-
puted the standard deviation to get an estimate of image noise. Furthermore, we assessed the alignment of cells 
in the channel and found an average tilt of 11° (see Fig. 5C). The typical ranges of brightness difference, image 
noise, and rotation were employed to tune image augmentation methods to slightly change images during model 
training. Moreover, we employed random vertical flipping and random shifting (left–right and up-down) of the 
cropped images by one pixel during model training. For more details on each data augmentation method please 
see Materials and Methods.

Learning rate screening.  The learning rate ( l  ) is one of the most important hyper-parameters when training 
DNNs as it controls how strong the weights W of a model are adjusted in each training iteration. To discover a 
sensible value for l  , a screening of a range of learning rates can be performed21. To provide an easy access to that 
method, we implemented it into AIDeveloper. Graphical software elements guide the user through the analysis 
and tooltip annotations offer basic information (see Figure S5, Supporting Information). To our knowledge, this 
is the first time, the learning rate screening method is implemented into a software with graphical user-interface 
for easy accessibility.

MLP training.  During acquisition of the training and validation dataset, the number of available cells was dif-
fering between samples. Therefore, some measurements contained more events than others. To avoid overfitting 
of the model to the phenotype of the measurement with most events, we performed random sampling to achieve 
an equal contribution of each measurement. In each training iteration of the model, a different batch of train-
ing images was sampled from each measurement. Using the same routine, the validation dataset was assembled 
before the first training iteration and left constant throughout all training iterations.

Figure 5.   Dataset assembly. (A) The scatterplot shows a measurement of dissociated retina (Nrl-eGFP) in 
soRT-FDC. Axes show the cell size (area in  µm2) and the fluorescence expression of Nrl-eGFP. Red, green 
and gray rectangles indicate regions in the plot which correspond to debris, small GFP+, and small GFP- cells, 
respectively. Images show examples of the appearance of cells at different locations in the scatterplot. The color 
code indicates the density of data points. Scale bars: 10 µm. (B) Images show three different measurements with 
various brightness levels. To evaluate the background brightness and image noise, a region above the channel 
was used (red rectangle). Scale bars: 10 µm. (C) Histogram shows the absolute tilt of contours of small GFP+ 
events (same measurement as shown in A). The red line indicates the median tilt at 13°. Image insets show 
exemplary phenotypes of cells at low (left) and high (right) tilt. While a low tilt indicates a good alignment with 
the flow, a tilt of 90° shows a cell aligned orthogonal to the flow direction. Scale bars: 10 µm.

Table 2.   Number of images in training and validation set.

Class name Nr. of training images Nr. of validation images

Small GFP- 52,127 14,000

Small GFP+ 43,321 14,000
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Training and validation data were loaded into AIDeveloper and the following data augmentation parameters 
were set: rotation: ± 10°, left–right shift: ± 1 pixel, up-down shift: ± 1 pixel, additive brightness: ± 12, multiplicative 
brightness: 0.6…1.3, standard deviation of Gaussian noise: 3.0, and random vertical flipping. A learning rate 
screening was performed (see Fig. 6A), considering the image augmentation parameters. For all MLP models, 
we found a steep decrease of the loss approximately at l = 10−5 , which is 100 times smaller than the default 
learning rate ( l = 10−3 ) as shown in Fig. 6A and Figure S5 B, Supporting Information. Using the learning rate 
l = 10−5 , the models MLPNawaz, MLP1, MLP2, and MLP3 were trained for 30,000 training iterations (see Fig. 6B, 
Figure S6 F, Supporting Information). Table 3 shows the maximum validation accuracy for MLP1, MLP2, MLP3, 
and MLPNawaz, indicating that the architecture of MLP2 is the best choice for this classification task. To obtain a 
benchmark for the classification accuracy if there was no restriction of the inference time, we trained two dif-
ferent convolutional neural net architectures. These architectures contain two (CNNLeNet) and four (CNNNitta) 
convolutional layers (see Figure S6 D, E, Supporting Information). Interestingly, CNNLeNet performs worse com-
pared to all MLPs (see Figure S6 F, Supporting Information). Only CNNNitta was able to outperform the MLPs. 
For comparison, we also trained each model using the default learning rate (10–3) but the overall performance 
was lower for each model (see Figure S6 F).

When applying MLP2 to an image, the model returns the probability that the image contains a small GFP+ cell: 
P(GFP+). The histogram in Fig. 6C shows P(GFP+) for all events of the validation set. As expected, events that 

Figure 6.   MLP training and assessment. (A) Plot shows a learning rate screening for all MLP architectures. 
During screening, MLPs are trained using the available training data and data augmentation methods are 
applied. The learning rate screening was performed using AIDeveloper 0.2.3. (B) Plot shows the validation 
accuracy during training of four MLPs to distinguish GFP- and GFP+ cells. For a smooth appearance, each line 
shows the rolling median (window size = 50). (C) Green and gray histogram show the probabilities returned 
by MLP2 for each event the GFP+ and GFP- class of the validation set. (D) Scatterplot shows the concentration 
and yield of GFP+ rod photoreceptors when applying MLP2 to the validation set using different threshold values 
P(GFP+)thresh for prediction. (E) Confusion matrices when using a threshold P(GFP+)thresh of 0.5 and 0.67. The 
red rectangle indicates the events that are predicted to be GFP+. Those events would be sorted during a sorting 
experiment, resulting in a particular concentration of GFP+ cells (cGFP+) in the sorted sample.

Table 3.   Comparison of best models based on the maximum validation accuracy (max. val. acc.) of each MLP 
architecture.

Name Max. val.acc Training iterations to reach max.val.acc Training time [h] to reach max.val.acc

MLP1 0.735 21,790 37.3

MLP2 0.737 11,442 20.1

MLP3 0.732 21,271 35.5

MLPNawaz 0.731 25,024 38.5
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are actually GFP+ cells return high values for P(GFP+) (green histogram), while GFP- cells tend to return lower 
P(GFP+) values (gray histogram). But there is also a considerable overlap between the distributions, which is the 
reason for the imperfect classification performance of the model. Typically, a threshold of P(GFP+)thresh = 0.5 is 
used to assign events to different classes. By increasing this threshold, only cells are predicted to be GFP+ where 
the model returns a high enough P(GFP+). Increasing P(GFP+) causes an increase of the precision (see Materials 
and Methods), which would in practice correspond to a higher concentration of GFP+ cells in the target sample 
after sorting. At the same time, increasing the threshold reduces the sensitivity of the model, which in practice 
means a reduced yield of GFP+ cells after sorting. The evolution of concentration and yield for different threshold 
values is plotted in Fig. 6D.

For one photoreceptor transplantation experiment, 100,000 cells are required and the sorting duration should 
be limited to one hour to assure high viability of the cells22. Calculations above showed that in average 0.4 cells are 
passing the camera within 2 ms (for a sample concentration of 20 million cells/ml). As a result, in average one cell 
is captured every 5 ms, which corresponds to a measurement frequency of 200 cells/s. As there are approximately 
50% GFP+ cells, 100 cells/s could potentially be sorted. Due to the presence of cell aggregates, a more realistic 
sorting rate is 75 cells/s. Based on these boundary conditions, the minimum yield can be computed as following:

The yield of 40% is reached for a P(GFP+)thresh of 0.67 (marked in plot), which corresponds to a concentra-
tion of GFP+ cells of 77%. Figure 6E shows confusion matrices for P(GFP+)thresh = 0.5 and P(GFP+)thresh = 0.67.

Photoreceptor sorting and transplantation.  To verify the working principle, we employed the meth-
ods introduced in this work for image-based sorting of rod photoreceptors of dissociated Nrl-eGFP mouse 
retina. After sorting, the initial sample and the sorted target sample were both measured using RT-FDC to 
evaluate the number of fluorescent cells. The color code of scatter plots in Fig. 7 illustrates the event-density, 
which suggests that the maximum density is located at 300 and 4,000 a.U. of fluorescence for the initial and 
target sample, respectively. An elevated fluorescence of cells in the target sample is also confirmed by the medi-

yieldmin =
100.000cells

75 cells
s • 3600s

= 37.0% ≈ 40%

Figure 7.   Label-free photoreceptor sorting of dissociated Nrl-eGFP mouse retina cells & transplantation. (A) 
Scatterplots show RT-FDC measurements of the initial sample and the target sample after label-free sorting. The 
axes show the area and fluorescence expression and the color code represents the density of events. The median 
fluorescence expressions are given as MInit (= 728) and MTarg (= 1,684). The gating strategy for selection of GFP+ 
events is indicated by a green rectangle, resulting in 53.2% and 69.5% GFP+ cells in the initial and target sample, 
respectively. (B) Immunofluorescence images showing sorted GFP+ cells in the murine SRS, two weeks after 
transplantation. GFP+ cell bodies and segments can be found in the host ONL (magnification), likely as a result 
of cytoplasmic material transfer from donor to host cells. SRS subretinal space, ONL outer nuclear layer, INL 
inner nuclear layer.
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ans of the fluorescence intensity (MInit = 728 and MTarg = 1,684 in Fig. 7A). To evaluate the number of GFP+ and 
GFP- events a gate was chosen manually (solid green line in Fig. 7A). The percentage of events within that gate 
is cInitGFP+ = 3957

7428 • 100 = 53.2% for the initial sample and cTargGFP+ = 1516
2180 • 100 = 69.5% for the target sample.

Cells contained in the target fraction were washed and subretinally transplanted into adult female C57Bl/6JRj 
mice. Two weeks after transplantation, GFP+ signal could be detected marking transplanted cells in the subretinal 
space of recipient mice (Fig. 7B), as well as in photoreceptor cell bodies within the host ONL (Fig. 7B, insert), 
the latter likely as a result of material transfer from donor to host cells23. Although control eyes, in which similar 
numbers of unsorted cells were transplanted, contain more GFP+ cells at analysis (Figure S9, Supplementary 
Information), this is a proof of concept that cells enriched via soRT-FDC can be used for transplantation and 
survive in the murine retina, making soRT-FDC a useful method to provide cells for downstream applications.

Discussion
High-throughput imaging flow cytometry with the option for label-free cell classification and sorting has the 
potential to complement biomedical research as it removes the dependency on molecular labels. In this work 
we introduce methods to improve reliability of soRT-FDC with respect to data analysis and cell sorting of dis-
sociated tissues.

Hardware based reduction of cell aggregates.  As soRT-FDC is based on a measurement of single cells 
in a narrow channel, we introduce a microfluidic chip design that promotes division of cell aggregates by means 
of serpentines and filter structures (see Fig. 1C). The majority of cells contained in human retinal organoids, 
young postnatal mouse retina, and human blood have a diameter below 15 µm. For the sample inflow, the mini-
mum distance of the filter structures is therefore 15 µm, allowing most cells to pass without mechanical impact. 
A better separation of aggregates could be achieved using filters with an even smaller distance, or higher flow-
rates. We also placed filter structures in the sheath inflow part with an even smaller minimum inner distance of 
10 µm. As pre-clinical experiments are typically not carried out in a clean-room atmosphere, this filter structure 
serves to catch dust particles and also debris of the PDMS chips, which occur even in the sheath inlet and the 
filter structures allow to catch those objects.

DNN based detection of cell aggregates.  While doublet detection is not trivial in FACS as doublets 
are defined only indirectly through the ratio of event size and width, in imaging flow cytometers like soRT-FDC, 
a bright-field image is available for visual inspection24,25. Because of the large datasets, containing several thou-
sands of images, an automated doublet detection is desired. Many doublets can be identified by a larger area or 
less smooth contour. Interestingly, many HRO photoreceptors show a characteristic shape with an appended tail 
(Fig. 2A), likely presenting neural processes such as inner and outer segments. With such irregular morpholo-
gies, area and area ratio (measure for smoothness of contour) are insufficient to distinguish cell doublets from 
singlets. Since single cells and doublets of cells can be categorized by the human eye, we manually trained a 
convolutional neural net for doublet detection using data from HROs. When creating the dataset, events were 
also labeled as doublet when a second object travelled too closely (distance < 15 µm) for confident assignment of 
the fluorescence intensities to the correct cell (see Figure S3 A, Supporting Information). Cells of HRO samples 
show a heterogeneous morphology, rendering the discrimination of single cells and clusters difficult for many 
objects. Highly irregularly shaped cells occur less frequently in samples of dissociated Nrl-eGFP retinae. There-
fore, the resulting validation accuracy of 80.3% is lower compared to the testing accuracy of 97.4%, indicating a 
robust classification performance of the model in real-life applications.

Due to its reliable capacity of avoiding wrong assignment of fluorescence signals in RT-FDC datasets and 
detecting aggregates, this model will also be helpful for RT-DC datasets where cells possess a heterogeneous 
shape and are likely to cluster, e.g. when assessing activated neutrophils26.

Labelling software: YouLabel.  To facilitate the manual labelling process, we developed YouLabel. YouLabel is a 
software with graphical user-interface allowing to view images of an RT-DC, RT-FDC or soRT-FDC dataset and 
perform binary labelling. YouLabel is especially useful to screen large datasets for rare events such as doublets. 
The open-source software is provided as an executable for Windows and as Python script on GitHub: https://​
github.​com/​maikh​erbig/​YouLa​bel. YouLabel cannot only be employed for retina datasets or datasets of dissoci-
ated samples, but for any (RT-FDC) dataset which needs to be split into two groups. However, splitting into more 
than two groups is currently not supported.

Despite originating from a different species and more than one year between capturing of training and testing 
dataset, the doublet discrimination model shows a robust classification performance for primary mouse retina 
cells and even for cell types of entirely different lineages, such as blood cells (see Figure S3 B,D, Supporting 
Information).

So far, the doublet discrimination model was only trained using data from a single microscope system using 
fixed settings and sorting chips. As the substrate of sorting chips is birefringent, the phenotype is different from 
normal glass chips. Therefore, the model will likely fail to make correct predictions for images of cells in chips 
with glass substrate, different magnification levels or illumination. To optimize the model for altered system set-
tings, transfer learning could be employed27. Such an approach requires the acquisition of only a small dataset 
using the new system, which can then be employed to continue training the existing model. Building on pre-
existing capabilities, transfer learning has the advantage of saving time and computational power compared to 
training a new model from the beginning.

https://github.com/maikherbig/YouLabel
https://github.com/maikherbig/YouLabel
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Detection and separation of cell aggregates for single cell sorting.  Due to the computational time 
required, we unfortunately could not use the doublet discrimination model during sorting. To recognize cell 
aggregates and avalanches of cells, we instead used the number of contours and the time delay between detected 
objects. However, these methods are purely image based and are therefore limited to the framerate of the camera. 
By integrating a laser for acquisition of forward scattered light, the cell count could be tracked for up to 50,000 
cells/s (similar to FACS), which would allow for improved detection of cell avalanches6.

To further manually decrease the occurrence of cell aggregates, the cell concentration could be reduced, 
leading to an increase of the average space between cells in the sample and thus in the measurement channel 
(Figure S7 A, Supporting Information). For example, for concentrations of 50, 20, and 10 million cells/ml, the 
free space between cells in the channel is 190 µm, 490 µm, and 990 µm, respectively (assuming each cell has a 
diameter of 10 µm). However, high measurement throughput requires high cell concentrations (Figure S7 B, 
Supporting Information e.g. average measurement frequency of 500, 200, and 100 cells/s at 50, 20, and 10 million 
cells/ml, assuming a total flowrate of 0.04 µl/s), so an optimization of aggregate prevention without the need for 
sample dilution would be preferable.

DNN architecture for optimized CPU utilization.  The most popular DNN architecture for image clas-
sification is the CNN. In CNNs, convolutional filters are fixed and applied across the image to transform the pix-
els of a certain neighborhood, which reduces the degrees of freedom of the model. This approach often results in 
a robust classification performance of CNNs, but comes at a cost of computational time, because convolutional 
filters are facilitated by sparse matrix operations. To run inference using CNNs with sub-millisecond inference 
time, special hardware such as FPGAs are required, rendering CNNs unfavorable for sorting when computation 
capacities are limited to a CPU9. The requirement for low inference time calls for utilization of very small models 
with a low number of parameters. MLPs allow an efficient usage of the available parameters as every node in a 
layer is connected to each node in the subsequent layer. However, the increased flexibility of MLPs makes them 
more prone to overfitting. In this work, we performed a screening to identify MLPs that offer a high number 
of trainable parameters at low inference times. However, the result of that screening is only valid for our PC 
hardware and power settings. Therefore, we provide the script (Zenodo: https://​doi.​org/​10.​5281/​zenodo.​47389​
36), allowing everyone to perform the screening, for example using the Python editor that is integrated into 
AIDeveloper.

DNN classifier for photoreceptor detection and sorting.  To train a DNN for prospective sorting, a 
biologically diverse dataset containing data from multiple biological replicates needs to be used. Therefore, we 
acquired data of seven Nrl-eGFP mice at maturation stage postnatal day 4 (P04) ± 1. A control of the maturation 
stage is required as retinal development occurs rapidly before and within 10 days after birth and it was demon-
strated that murine photoreceptors at P04 are best suited for subretinal transplantation28–31. Variation in image 
phenotype cannot only be due to biological, but also technical reasons. Since the substrate of microfluidic chips 
for sorting is a birefringent material, the phenotype differs slightly between chips. Therefore, we used a new chip 
for each sample. To reduce the differences between chips, a more standardized and automated chip production 
would be beneficial. Automation would also allow to eliminate focus and brightness differences between meas-
urements. An autofocus system would not only omit the need to record training data at many focus positions, 
but also simplify neural net training as fewer degrees of freedom would have to be considered by the model.

For data acquisition, RT-FDC was employed as it allows to simultaneously record a bright field image and a 
1D track of fluorescence information (see Figure S3 A, Supporting Information). The section on the fluorescence 
track corresponding to a certain cell in the image varies due to slightly differing object velocity in the channel. 
Doublets of cells, or cells travelling closely, present a risk of assigning the wrong fluorescence expression value 
(see Figure S3 A, Supporting Information), which would lead to wrongly labeled images in the dataset. As such, 
GFP+ cells that are larger than 35 µm2 refer to cell doublets i.e. photoreceptor cells attached to another cell (see 
example image in Fig. 5A). Therefore, the dataset was cleaned through application of CNNdoublet and through 
size exclusion of cell debris (< 20  µm2). The remaining cells in the size region between 20 and 35  µm2 show a 
continuous range of fluorescence values, as expected for the Nrl-eGFP mouse line32, and were considered for 
the DNN training process.

Prior to the MLP training, we performed a learning rate screening using AIDeveloper. We found that the 
learning rate l = 10−5 results in a steep decrease of the loss for all MLPs and CNNs (see Figure S5 B, Supporting 
Information) and trained all models using that constant learning rate (Fig. 6B and Figure S6F). However, there 
is no guarantee that this value is optimal throughout the entire training process. Therefore, we implemented 
learning rate schedules (exponential decay and cyclical learning rates) into AIDeveloper, but we could not find 
any setting that outperformed the constant learning rate21.

All trained model architectures, including the CNNs, appear to plateau at 73% validation accuracy (see Fig. 6B 
and Figure S6F), indicating that further improvements would be difficult to achieve by further optimizing the 
model architecture. A more promising approach would be an improvement of the image quality, for example by 
using a higher magnification, a brighter LED, or by optimizing the LiNbO3 substrate to achieve less distortion. 
Higher quality images would contain more details of the cellular structure which could be employed by DNNs 
for classification.

In order to prevent overfitting that is more common for MLPs compared to CNNs, we introduced methods 
to find optimal parameters for data augmentation. While the augmentation methods are already enabled in 
AIDeveloper, the methods to find optimal ranges for augmentation are not implemented yet. After training 
using these tools, the model with the highest validation accuracy theoretically allows to enrich rod photore-
ceptors to 71%, or 77%, depending on the sorting threshold P(GFP+)thresh (see Fig. 6E). An established sorting 

https://doi.org/10.5281/zenodo.4738936
https://doi.org/10.5281/zenodo.4738936
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method using CD73 antibodies and MACS allows to obtain a concentration of photoreceptors of ≈80%22. MLP2 
would theoretically also allow such a concentration when using a sorting threshold P(GFP+)thresh of 0.7622,32. 
Unfortunately, since the curves for concentration and yield are developing in opposite direction (see Fig. 6D), 
the corresponding yield is only 31%.

In this work we focused on MLPs due to their lower inference time. However, for image classification tasks, 
CNNs would be preferred as they typically allow to reach higher accuracies. For comparison, we also trained 
two CNNs, which required considerably longer training times, despite using a GPU (Nvidia GTX 1080). While 
the MLP1, MLP2, MLP3, and MLPNawaz reached the maximum validation accuracy after 37.3 h, 20.1 h, 35.5 h, 
and 42.8 h, CNNLeNet and CNNNitta took 242.0 h and 93.6 h, respectively.

The GFP- cells that are in the same size region as rod photoreceptors could be any other cell type of the retina. 
Given the almost equal cell number of GFP+ and GFP- cells in the size range 20  µm2 to 35  µm2, those GFP- cells 
must either be a highly abundant cell type, or a superposition of multiple cell types. After rods, the most abundant 
retinal cell types are bipolar and amacrine cells33. Unfortunately, we only had access to a bipolar reporter mouse 
line (mGluR6-GFP) which we measured using RT-FDC. Bipolar cell size was larger than 35  µm2 (see Figure S8 
A, Supporting Information), indicating that the Nrl-eGFP- cells cannot be caused by presence of bipolar cells. 
Furthermore, we measured retina cells from a cone reporter line, indicating that cones tend to be larger than 
35  µm2 (see Figure S8 B, Supporting Information). At P04, there are still retinal progenitor cells present because 
cell differentiation continues until P1028,34. However, retinal progenitor cells are larger than rod photoreceptors35. 
Furthermore, despite lacking retinal progenitor cells at P10, the Nrl-eGFP- population still contains cells in the 
area range 20  µm2 to 35  µm2 (Figure S8 C, Supporting Information)35. Cells that could meet the sizes of the 
Nrl-eGFP- cells are horizontal, Müller, and amacrine cells33. While we cannot yet specify the cell types of the 
Nrl-eGFP- population, cell numbers suggest that amacrine cells should be assessed in the future28,33. Currently, 
the MLPs are trained for the binary classification task to distinguish bright-field image differences between GFP+ 
and GFP- cells. As the GFP- fraction is likely composed of multiple cell types, the MLP has to learn weights that 
suit all of the occurring phenotypes. A more detailed labelling of cell types and training using multiple classes 
would allow the model to assign individual weights to each class which could result in higher accuracies.

Photoreceptor sorting and transplantation.  One common reason for blindness are retinal degenera-
tions which result in a loss or malfunctioning of photoreceptors. A promising approach to treat retinal degen-
erations is photoreceptor transplantation, using photoreceptors generated in vitro from human embryonic or 
induced pluripotent stem cells16. Nowadays, photoreceptors are most efficiently produced in three-dimensional 
organoids, which often contain a complex mix of cell types and a tissue-like architecture36,37. Although trans-
plantation of organoid sheets retaining that architecture is possible, it is surgically complex and might introduce 
undesired cell types. The donor material can alternatively be dissociated in order to obtain single cells, allowing 
for prospective cell sorting and purification. Established sorting techniques like MACS or FACS however require 
molecular markers which label the target cells38,39. Unfortunately, such markers are not always well-defined and if 
they are, their binding could potentially alter the cells, which should be avoided in a clinical setting. For example, 
labelling photoreceptors in HROs is currently still challenging due to a lack of defined surface markers16. Given 
that all parts of the soRT-FDC are disposable, the system would potentially be adaptable to GMP applications.

Here, we employ soRT-FDC to enrich young murine photoreceptors in a label-free fashion for subretinal 
transplantation. This proof-of-concept study shows that the cells survive the sorting process well enough to not 
only be detected in situ two weeks later but to also interact with the host tissue, as shown by potential material 
transfer to host cells (Fig. 7B, insert). Despite this important progress, it must be noted that eyes transplanted with 
the sorted fraction contain markedly fewer cells than eyes transplanted with unsorted control samples, suggesting 
the sorting itself to be strenuous and potentially damaging to the cells (Figure S9, Supporting Information). Loss 
of cell viability is an inherent problem in most cell sorting methods22, as high pressure and shearing forces are 
often required. Thus, it will be necessary to improve sorting conditions further in order to obtain better viability 
of the sorted populations. On the biological side, this might be possible through the addition of neuroprotective 
or anti-apoptotic factors to the cell suspension. On the technological side, it would be beneficial to increase the 
efficiency of the sorting setup and develop faster sorting mechanisms e.g. through shorter inference times and 
further reduced sorting actuation durations.

Overall, in this report we enable soRT-FDC to perform label-free image-based sorting of photoreceptor cells 
from dissociated retinae of Nrl-eGFP mice. To decrease falsely labeled cells in the dataset, we present a model 
reliably identifying cell doublets and cells travelling too closely. For photoreceptor cell identification, we train 
a deep neural net using complex samples of murine retina, a tissue diverse in cell phenotypes. Different experi-
mental and mathematical data augmentation techniques exerted upon the training dataset allowed to obtain a 
model with high robustness. Finally, we show that the model can be applied to make sorting decisions in a true 
experiment and that cells sorted with the described setup can successfully be used in downstream applications.

Materials and methods
Microfluidic chip with sorting mechanism.  Microfluidic chips for soRT-FDC are manufactured in 
house. In detail, a mixture of polydimethylsiloxane (PDMS, SYLGARD 188, Dow Corning) and curing agent 
(10:1, w/w) is poured over a silicon wafer master with the microfluidic design (see Fig. 1C). After baking at 65 °C 
for 60 min, the PDMS layer is removed from the master and holes for sheath inlet, sample inlet, default outlet, 
and target outlets are punched using a biopsy puncher (Biopsy Punch with Plunger no. 49115, size 1.5 mm, pfm 
medical AG). To seal the microfluidic structures on the PDMS layer, a lithium niobate substrate is covalently 
bound using plasma activation (50 W, 30 s; Plasma Cleaner Atto; Diener Electronic). Bonded devices were then 
cured for 48 h in an oven at 65 °C.
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The 128° Y-cut lithium niobate (LiNbO3, Roditi International) substrate is equipped with two gold electrodes 
(interdigital transducers—IDTs) that allow to excite surface acoustic waves for sorting. Gold electrodes were 
deposited onto the substrate by a metal evaporation process (NANO36, Kurt J Lesker). Each IDT has 40 electrode 
pairs and a distance between electrode fingers of 70 µm, which results in an excitation frequency of 55.23 MHz. 
By simultaneously exciting both IDTs, counter-propagating surface acoustic waves are generated, resulting in 
a standing surface acoustic wave (SSAW) with a wavelength of � = v

f =
3978.2m/s
55.23MHz = 72.03µm (speed of sound 

on LiNbO3 is 3978.2 m/s40).
Objects interact with the SSAW via the acoustic radiation force41:

The acoustic contrast factor φ,

Is defined computed using acoustic pressure p0 , wavelength � , cell volume Vc , cell compressibility βc , fluid 
compressibility βw , cell density ̺c , and fluid density ̺w . Since cells have a higher density ( ̺ Water ≈ 1.0g/m3 , 
̺Protein ≈ 1.3 . . . 1.4kg/m3 ) and a higher compressibility compared to water ( βw ≈ 4.5GPa−1 , βc ≈ 4 GPa−1)42–44, 
they have a positive φ , and therefore move towards the pressure node. The maximum translocation of an object by 
a SSAW is �/4 = 18.01µm.

To excite the substrate, the signal of a surface acoustic wave generator (BSG F20, BelektroniG) is duplicated 
using two fast-switches (BPS-300, BelektroniG). LiNbO3 is a birefringent material. The resulting image distortion 
was corrected using a Polarizer (Polarizer D, Zeiss).

soRT‑FDC device.  Sorting real-time fluorescence and deformability cytometry (soRT-FDC) device was 
assembled as shown in12. In brief, a microfluidic chip is placed on an Inverted microscope with a 20 × objective 
(Plan-Apochromat, 20x/0.8 NA; no. 440640–9903, Zeiss). Two syringe pumps (neMESYS 290  N, neMESYS) 
drive sheath and sample fluid into the chip at flowrates of 0.03 µl/s and 0.01 µl/s. Another syringe pump with-
draws fluid from the default outlet (− 0.027 µl/s), while the target outlet is at atmospheric pressure. Within the 
chip, the cells flow into a narrow channel where they are aligned and slightly deformed by hydrodynamic forces. 
At the end of the channel, the cells are illuminated by 2 µs flashes from a high-power LED (CBT-120, Luminus 
Devices). The LED flashes are triggered by a high-speed camera (EoSens CL, MC1362, Mikrotron), which cap-
tures images of cells at 3000 frames per second. Image data is sent to a PC (Intel Core i7 3930 K @ 3.2 GHz) via a 
full camera link frame grabber card (NI-1433, National Instruments) and a C+ + based software analyzes images 
using the OpenCV library45. A running average of the last 100 frames is computed as a background image, which 
is then subtracted from each subsequent image. Next, the image is binarized by a thresholding operation. In the 
following, erosion and dilation operations are applied to finally obtain a smooth contour from a contour finding 
algorithm46. Based on the coordinates of the contour, a bounding box is computed. The middle of the bounding 
box is used to crop the image such that the cell body is centered. Finally, the cropped image is forwarded through 
a defined neural network and resulting prediction probabilities are used to trigger a sorting unit located behind 
the narrow channel (see Fig. 1C).

Besides image acquisition, also fluorescence information can be obtained for each single cell. Fluorescence 
is excited using up to three lasers of wavelengths 640, 561, and 488 nm (OBIS 640 nm LX 40 mW, OBIS 561 nm 
LS 50 mW, OBIS 488 nm LS 60 mW, Coherent Deutschland). The laser beams form a light sheet in the middle 
of the region where images are captured. The emitted fluorescence signal from cells passing the light sheet is 
collected by a photodiode detector assembly (MiniSM10035, SensL Corporate), resulting in 1D fluorescence 
traces for each captured cell11.

Alignment of cells in the channel (tilt).  For quantification of the alignment of cells in the channel, the 
tracked contour is employed. The orientation ϕ of a contour with respect to −→e x is computed by47:

with the second moments Ixx =
∫∫

Ay
2dxdy , Iyy =

∫∫

Ax
2dxdy , and the biaxial second moment 

Ixy = −
∫∫

Axydxdy.

Multilayer perceptron.  In an MLP, all pixel values of the image are combined using weights, biases and an 
activation function in a defined number of nodes. If matrix W (1) contains the weights, b(1) the biases and s the 
activation function of the first hidden layer, then the transformation performed by the first hidden layer can be 
expressed as:

The design of layered neural networks limits the number of parallel tasks. While all nodes in a single layer 
could be computed in parallel, subsequent layers first require the preceding layer to complete computations. 

(1)Ft = −

(

πp20Vcβw

2�

)

φ(β , ̺)sin(2kx).

(2)φ(β , ̺) =
5̺c − 2̺w

2̺c + ̺w
−

βc

βw
,

(3)ϕ =
1

2
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(
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−
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Iyy − Ixx
)

)
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While in MLPs, each node is connected to all subsequent nodes, in convolutional neural nets the connections 
are limited to a certain neighborhood, defined by the size of the convolutional kernel. While this constraint 
typically results in more robust modes that can be trained with less data, the number of trainable parameters is 
reduced, resulting in less flexibility.

Data augmentation.  Brightness.  Based on 29 measurements (validation dataset) we found minimum, 
maximum, and median brightness levels of 24, 49, and 39, respectively. For each case, one example image is 
shown in Fig. 5B and a histogram of the background brightness values of 29 measurements is shown in Fig-
ure S4 A, Supporting Information. AIDeveloper allows a linear brightness alteration: I ′ = mI + n , where I is 
the original image and m and n are random values. Assuming an image of median brightness level, the full range 
of brightness levels could be covered using a multiplicative factor of 0.6 < m < 1.3 (given n = 0 ). Similarly, the 
range of brightness values could approximately be covered using n = ±12 (given m = 1 ). During model train-
ing, we employed both, additive and multiplicative brightness alteration.

Gaussian noise.  The captured images of soRT-FDC already contain image noise, which is static, i.e. the same 
noise pattern is present in each image. By applying Gaussian noise, the noise pattern of an image can be altered. 
To determine the level of noise in original images, the standard deviation of the pixel values in the background 
regions (red rectangle in Fig. 5B) was determined for each measurement of the training and validation set. In 
average, the standard deviation of the background pixels is 2.9. For a histogram of the values from 29 experi-
ments, see Figure S4 B, Supporting Information.

Rotation.  In the current soRT-FDC setup, there is variation of the alignment of individual cells in the channel. 
Rotation of images can also be performed computationally. To assess the typical range of rotational variation of 
cells, the tilt of the contours was determined for small GFP+ cells of all measurements of the training and vali-
dation set. Tilt is computed based on the contour of the tracked object (see Materials and Methods). The tilt of 
the small GFP+ events of the measurement displayed in Fig. 5A is shown in Fig. 5C. The red line indicates the 
median tilt, located at 13°, meaning, 50% of cells have a tilt ≤ 13°. In average, the median tilt across all measure-
ments of the training and validation set is 11°.

Flipping.  The measurement principle of RT-DC infers a vertical symmetry, allowing to perform a vertical flip-
ping of images without changing the typical phenotype. In contrast, horizontal flipping would result in unusual 
phenotypes as cells are deformed in the channel according to the flow direction. Therefore, only vertical flipping 
is a useful image augmentation operation for RT-DC, RT-FDC and soRT-FDC data.

Left–right, up‑down shift.  During a measurement or during sorting, the contour of each object is tracked in 
real-time and the bounding box is determined. To crop the original image of size 80 × 250 down to 18 × 18 pixels 
with the cell body centered, the middle of the bounding box is used. Image noise affects the location of the con-
tour and the resulting middle point of the cell. Therefore, we used random shifting (left–right and up-down) of 
the cropped image by one pixel during model training.

Learning rate.  The error of a model is determined by a loss function L (categorical cross entropy) and sto-
chastic gradient descent allows to find in which direction the weights of a model ( W ) need to be updated in order 
to reduce the loss (loss gradient ∂L

∂W)48. The learning rate ( l  ) is one of the most important hyper-parameters when 
training DNNs as it controls how strong the weights W of a model are adjusted in each training iteration ( n):

The framework for deep learning which was used in this study (TensorFlow, Keras) suggests a default learn-
ing rate of l = 0.001 , but there is no guarantee that this is an optimal value for each dataset and model49,50. Low 
learning rates correspond to slow learning of the model and therefore unnecessarily long training times. On the 
other hand, high learning rates can result in strong weight updates, preventing from reaching the minimum, or 
even a divergence of L.

Inference time.  Inference time is the time required to compute the output of an algorithm. The present 
work introduces different DNNs and the inference time describes how much time the PC requires to forward a 
single image trough the network to compute a prediction. Importantly, inference time is different from training 
time. During training, the model parameters are updated based on the computed gradient. The computation of 
the gradient is performed for batches of images in parallel. At inference time, these gradients don’t need to be 
computed and for sorting, only one image has to be forwarded at a time. Therefore, training of DNNs is often 
done on high performance computing clusters, while for single image inference, a CPU is sufficient. Sending 
single images to a computing cluster would result in varying data transfer times. In contrast, a local CPU can be 
accessed fast, especially if images are already stored on RAM.

Under low load, modern CPUs can throttle to save power, and full reactivation requires time. For exact 
determination of the inference time, we pre-heated the CPU by forwarding one image. Immediately after pre-
heating, 500 images were forwarded through the DNN individually (not in parallel). The process of sequentially 
forwarding 500 images is repeated 10 times to compute an average inference time.

(5)Wn = Wn−1 − l •
∂L

∂W
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Labelling software YouLabel.  We used Python 3.5.6 to establish a software for fast labelling of events 
in RT-DC datasets which is open source: https://​github.​com/​maikh​erbig/​YouLa​bel. We provide a standalone 
executable for Windows. Alternatively, the software can be executed using the provided Python script.

Statistical analysis.  The performance of machine learning models is assessed using the confusion matrix 
and metrics, computed based on the confusion matrix. For computing the confusion matrix, a labelled dataset 
is required and the matrix shows the true and predicted label for each class. Assuming a binary classification 
task with a positive and a negative class, there are four options: a positive event is correctly classified as posi-
tive (true positive—TP), a positive event is falsely predicted as negative (false negative—FN), a negative event 
is correctly classified as negative (true negative—TN), or a negative event is falsely predicted as positive (false 
positive—FP). Metrics, derived from the confusion matrix are: accuracy = TP+TN

TP+FP+TN+FN  , sensitivity = TP
TP+FN  , 

specificity = TN
TN+FP , and precision = TP

TP+FP . The terms “recall” and “true positive rate” are synonyms for 
sensitivity . In the context of rod photoreceptor sorting, TP would correspond to correctly identified GFP+ cells 
and therefore, precision equals the concentration of GFP+ cells of the target fraction. Similarly, sensitivity cor-
responds to the yield of GFP+ cells after sorting:

(with FN: false GFP-).

Measurement buffer preparation.  We complemented phosphate buffered saline (PBS, 10,010–023, 
Gibco) with 10% (v/v) Leibovitz’s L15 medium (11,415,064, Thermo Fisher Scientific) to support viability of 
cells. As cells need to stay in suspension for at least one hour during sorting experiments, we added 0.6% (w/w) 
methyl cellulose (4,000 cPs; Alfa Aesar) to reduce sedimentation. The resulting viscosity of the buffer is 25 mPas 
(at 24 °C). The buffer was adjusted to pH 7.4 and an osmolality of 310–315 mOsm/kg. For reduced formation 
of cell aggregates, 2% (v/v) DNase stock solution was added, with DNase I stock solution containing 5 mg/ml 
(= 10.000 Kuntz Units/ml) DNase I (DNase I, D5025-150KU, Sigma) in 0.15 M NaCl (A2942, Applichem).

Animal welfare statement.  All animal experiments were approved by the ethics committee of the Tech-
nische Universität Dresden and the Landesdirektion Dresden (approval no. TVV 10/2018 and TVV 25/2018) 
and performed in accordance with the regulations of the European Union, German laws (Tierschutzgesetz), the 
ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, as well as the National Institutes 
of Health Guide for the care and use of laboratory animals. Furthermore, all animal experiments, methods, and 
reporting were conducted in accordance with the ARRIVE guidelines.

Retina single cell preparation.  Neural retina leucine zipper-enhanced green fluorescent protein (Nrl-
eGFP), cone-GFP and metabotropic glutamate receptor 6-GFP (mGluR6-GFP) mouse lines were used as source 
for rods, cones and bipolar cells, respectively17,51,52. Single cell suspensions of P04 ± 1 retina were prepared as 
described in Ref.32. Briefly, pups were decapitated and heads transferred to a petri dish containing cold PBS. 
Eyes were dissected and retinae were isolated, washed in ice-cold Cell Buffer (2 mM EDTA, 1% w/v BSA in PBS 
without calcium or magnesium) and transferred to 37 °C Papain solution supplied with 2.5% DNase I stock 
solution (> 200 KU/ml DNase I). Retinae were digested 40 min at 37 °C, with mixing of the samples by inverting 
the tube every 10 min. After careful manual trituration, the suspension was washed with EBSS wash (EBSS, 10% 
v/v DNase I stock solution, 10% v/v Ovomucoid inhibitor) after which digestion was fully stopped by overlaying 
onto Ovomucoid inhibitor and centrifuging for 5 min at 300 g. Supernatant was removed and cells resuspended 
to 20 × 106 cells/ml in measurement buffer. Papain solution, EBSS and Ovomucoid inhibitor were taken from the 
Papain Dissociation System (PDS Kit, Cat. No.: LK003182, Worthington Biochemical Corporation).

Human retinal organoid sample preparation.  For analysis of human photoreceptor cells, human reti-
nal organoids (HRO) derived from the Crx-mCherry iPSC line (kindly provided by O. Goureau, Paris) and 
generated as described in Ref.53 were dissociated as follows: organoids were washed 3 × in 37 °C PBS, transferred 
to 37 °C Papain solution and incubated for 2 h at 37 °C on a horizontal shaker shaking at 90 rpm54. Then, DNase 
I stock solution was added to 5% v/v (> 400 KU/ml) and HRO triturated carefully using a glass pipette. After 
filtering through a 30 µm filter (Cat.No.: 130-041-407, Miltenyi Biotech), cells were washed with EBSS wash, 
digestion was stopped and cells were resuspended as described above, centrifuging for 6 min at 600 g.

Sample preparation for photoreceptor transplantation.  For transplantation, the target, unsorted 
and default fractions containing 30,000 or 80,000 cells were washed with cell buffer and centrifuged for 5 min at 
800 g. Cells were resuspended in transplantation (TP) buffer (Cell Buffer containing 2% v/v DNase I stock solu-
tion) transferred to a fresh tube and centrifuged again for 5 min at 800 g. The cell pellet was then resuspended in 
1–2 µl TP buffer and kept on ice until subretinal transplantation. Adult (> 10 w) C57Bl/6JRj females were used as 
recipients and trans-vitreal subretinal transplantation was performed as described in detail in Ref.32.

Tissue processing, immunohistochemistry and imaging.  Experimental animals were euthanized, 
eyes enucleated and fixed for 1 h in 4% paraformaldehyde (CAS: 50-00-0 , Cat.No.: 100504–858, VWR) ) in 
PBS at 4  °C. After removal of the cornea, lens, vitreous and excess muscular tissue, eyes were cryoprotected 

(6)sensitivity =
TP

TP + FN
=

Nr. of correctly predictedGFP+

Total nr. of GFP+
= yield
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in 30% sucrose in PBS overnight and frozen in Neg-50 (Cat.No: 6502, Thermo Fisher Scientific). 12 µm sec-
tions were treated with 0.3% Triton-X100, 5% donkey serum and 1% BSA in PBS and immunostained (Primary 
antibody: chicken-anti-GFP, ab13970, Abcam, 1:500; Secondary antibody: donkey-anti-chicken-Cy2, 703-225-
155, Jackson Immuno Research, 1:1000; Counterstain: DAPI, Sigma, 0.2 µg/ml). Stained sections were imaged 
using an Apotome Imager Z1 equipped with ApoTome.2 and ZEN 2.5 pro blue edition (Carl Zeiss Microscopy 
GmbH).

Data availability
All datasets and trained models are publicly available at Zenodo: https://​doi.​org/​10.​5281/​zenodo.​47389​36. Python 
scripts to reproduce analysis tasks and generate plots are contained in the repository. Each script can be executed 
using PyBox 0.1.0 (https://​github.​com/​maikh​erbig/​PyBox). PyBox 0.1.0 is a readily installed Python environment 
that contains all required Python packages. AIDeveloper is open source software and can be downloaded from 
GitHub: https://​github.​com/​maikh​erbig/​AIDev​eloper. YouLabel is open source software and can be downloaded 
from GitHub: https://​github.​com/​maikh​erbig/​YouLa​bel.
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