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Simple Summary: The lattice technique is a particular form of spatially fractionated radiation therapy,
which was demonstrated to be safe and effective for treating advanced cancers. Bulky tumor disease
is difficult to treat. In this clinical scenario, radiotherapy has a role in the palliation of symptoms. The
lattice technique allows high doses to be delivered within tumor masses. Combining lattice delivery
with IMRT/VMAT to bulky tumors offers optimal symptom control and could emerge as the best
therapeutic option in this setting of patients.

Abstract: Purpose: To evaluate feasibility, toxicities, and clinical response in Stage IV patients treated
with palliative “metabolism-guided” lattice technique. Patients and Methods: From June 2020 to
December 2021, 30 consecutive clinical stage IV patients with 31 bulky lesions were included in this
study. All patients received palliative irradiation consisting of a spatially fractionated high radiation
dose delivered in spherical deposits (vertices, Vs) within the bulky disease. The Vs were placed at
the edges of tumor areas with different metabolisms at the PET exam following a non-geometric
arrangement. Precisely, the Vs overlapped the interfaces between the tumor areas of higher 18F-FDG
uptake (>75% SUV max) and areas with lower 18F-FDG uptake. A median dose of 15 Gy/1 fraction
(range 10–27 Gy in 1/3 fractions) was delivered to the Vs. Within 7 days after the Vs boost, all the
gross tumor volume (GTV) was homogeneously treated with hypo-fractionated radiation therapy
(RT). Results: The rate of symptomatic response was 100%, and it was observed immediately after
lattice RT delivery in 3/30 patients, while 27/30 patients had a symptomatic response within 8 days
from the end of GTV irradiation. Radiation-related acute grade ≥1 toxicities were observed in 6/30
(20%) patients. The rate of overall clinical response was 89%, including 23% of complete remission.
The 1-year overall survival rate was 86.4%. Conclusions: “Metabolism-guided” lattice radiotherapy is
feasible and well-tolerated, being able to yield very impressive results both in terms of symptom relief
and overall clinical response rate in stage IV bulky disease patients. These preliminary results seem to
indicate that this kind of therapy could emerge as the best therapeutic option for this patient setting.
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1. Introduction

Palliative radiation therapy in advanced/metastatic cancer patients is devoted to
control symptoms, to relieve pain or bleeding, to maintain an adequate quality of life, and
in some instances, to ameliorate the overall survival by facilitating systemic treatments in
controlling a lesser disease burden. In palliative settings, irradiation has to be delivered in
a judicious manner. Indeed, the radiation oncologist has to balance the pros and cons of pal-
liative intent radiation therapy to maintain a favorable therapeutic ratio: treatments should
not cause either acute or late sequelae in already suffering patients. In the management of
advanced/metastatic incurable cancer with radiotherapy, historical results showed that
good symptomatic palliation is obtained using hypo-fractionated irradiation delivering
20 Gy in 4–5 fractions or 30 Gy in 10 fractions [1]. With this kind of treatment, it is possible
to obtain adequate palliation without the alteration of patients’ quality of life due to a low
toxicity profile and a rapid onset of symptom control. In addition, the low number of
hospital accesses does not occupy time in patients with short life expectancy. Bulky disease
in solid cancers presents many challenges when the purpose is to deliver adequate radia-
tion doses using large irradiation fields. Spatially fractionated radiation therapy (SFRT) is
an irradiation technique that allows the delivery of high doses to small volumes [2], and
some papers seem to demonstrate its feasibility in palliative settings [3–6]. A particular
form of SFRT is the lattice technique, which has the particularity to deliver a high radiation
dose to so-called “vertices” while maintaining a low dose to the gross tumor volume (GTV)
periphery; this permits the preservation of peritumoral lymphocytes that could help to
activate an immunological reaction against cancer cells, and so, we might use the potential
of radiotherapy to mobilize a systemic immune-mediated tumor response [7]. Moreover,
such a peculiar dose delivery method could counteract the typical non-homogeneous
tumor growth by selecting different metabolic areas (which could include both hypoxic
regions and different tumor microenvironments) to be boosted to overcome their relative
radio-resistance [8,9]. A therapeutic option is to differentiate the radiation dose delivery
according to the local distribution of oxygenated areas: this is so-called “oxygen-guided
radiotherapy”, a new investigational approach not yet reported in large clinical trials [10].
The 18F-FDG uptake could be higher in hypoxic cancer cells than normoxic cancer cells;
this finding has been reported both in in vitro [11] and in in vivo studies [12]. In addi-
tion, non-classical radiation doses provoke radiation-induced tumor cells’ damage with
the production of tumor antigens and molecular products with a secondary activation of
antigen-presenting cells and T-lymphocytes. The immune activation is defined as “in situ”
radio-vaccination [13]. Finally, high radiation doses stimulate some mechanisms in the
tumor microenvironment [14,15], which permit bystander, abscopal, and immunological
effects to be activated. According to this background, we decided to treat small subvolumes
(vertices) astride the different metabolic areas of bulky tumor masses. Here, we report the
clinical results derived by the implementation of a “metabolism-guided” vertex placement
in the lattice technique to treat patients with metastatic bulky disease.

2. Patients and Methods
2.1. Eligibility Criteria and Pretreatment Evaluation

Patients with >5 cm masses developing from solid cancers (bulky disease) in clinical
stage IV and age >18 years were considered to be eligible. Other requirements for eligibility
were an ECOG Performance Status ≤2, a life expectancy >2 months, and the absence
of a clinical diagnosis of superior vena cava syndrome, extradural spinal compression,
and severe bleeding. Patients with a history of previous irradiation to the bulky disease
site were excluded. All patients received an “internal multicenter study group” recom-
mendation for radiotherapy with or without chemotherapy, or immunotherapy, hormone
therapy, or targeted therapy. Patients who received or planned to receive chemotherapy or
immuno-/targeted therapy before or after lattice SFRT were eligible on the condition that
an arbitrarily defined 5-day break for drug washout was observed.
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The pretreatment evaluation included: physical examination and complete blood
count; head, neck, thoracic, and superior/inferior abdomen computed tomography (CT);
[18F]-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-
PET/CT); and an MRI study was carried out when needed. Other investigations were
conducted in the presence of clinically suspect signs. We considered every lesion unsuitable
for surgical resection or ablative stereotactic irradiation with 18F-FDG uptake on the whole
body PET/CT scan as bulky disease.

The treatment described in this article was delivered to patients on the basis of their
clinical circumstances, without the specific testing of a research hypothesis. All the pa-
tients received a detailed explanation of the treatment risks from the treating radiation
oncologist and provided written informed consent to treatment. The present observational
study, performed prospectively and named LATTICE_01, was approved by Messina Ethics
Committee with protocol number 1611-38-21.

2.2. Treatment
2.2.1. Vertex Positioning and Treatment Planning for Bulky Disease

Within the tumor mass we defined: 1. a “Photopenic PET Area” (PPA) showing
lower activity than the blood pool and corresponding to a low-density (sub-solid) area on
CT images, suggesting a necrotic core; 2. an “Avid” PET Area (APA) with SUV > 2.5; 3.
a “Super-Avid” PET Area (SAPA) as the part of APA showing SUV >75% SUVmax. We
attributed such differences to a heterogeneous oxygen landscape within the tumor, and we
positioned a 1 cm-diameter sphere called “Vertex” between the SAPA and the remaining
part of the APA (Figure 1). When the SAPA was almost coincident with the APA, and
a PPA was present, the vertex was positioned between the PPA and APA. This choice was
arbitrary because there is not any theory supported by evidence on this issue; however,
regions with different SUVs within a bulky mass could have different rates of cell growth,
oxygenation, and tumor microenvironment. The number of spheres (median 4, range 1–6)
was chosen arbitrarily by each radiation oncologist participating in the study, according to
the neighboring organs at risk (OARs) and mass volume: caution was exercised to avoid
placing high-dose vertices in or close to neural structures, large vessels, and bones. In
addition, vertices had to have at least a 2.0 cm (center to center) distance from each other.
The vertices had no geometrically defined arrangement in an analogous way, as previously
carried out by Tubin et al. [16]. On day 1, all patients had stereotactic/Intensity Modulated
Radiation Therapy (IMRT)/Volumetric Modulated Arc Therapy (VMAT) delivered to the
vertices using the following Linear Accelerators (LinAc): A. True-beam (Varian, Palo Alto,
CA, USA); B. Agility (Elekta, Stockholm, Sweden); C. Synergy (Elekta, Stockholm, Sweden);
D. robotic-arm linear accelerator (Cyberknife, Sunnyvale, CA, USA). All not-dedicated
LinAcs were not specifically designed for the lattice technique; they were equipped with
cone-beam-CT (with the exception of D) and A, B, and D also had a 6D-Robotic-Couch
(Brainlab®, Munich, Germany).

A CT simulation (1.25 mm thickness slices) was used for treatment planning and
was co-registered with the 18F-FDG-PET-CT. In most cases, an MRI simulation scan was
performed and was merged with the planning CT scan with IV contrast for accurate tu-
mor delineation. The Bulky-Gross Tumor Volume (B-GTV) was delineated. Additionally,
a Clinical Target Volume (CTV) was determined around the GTV on a case-by-case basis
to duly take into account the possible subclinical tumor spread. The PTV definition var-
ied according to the LinAc equipment (including tumor motion tracking) ranging from
2 to 12 mm of isotropic margin expansion, which could be manually trimmed to spare
any neighboring critical OARs. Set-up verification was conducted daily with orthogonal
anterior–posterior/lateral low-energy X-rays/MV pair and cone beam CT. The prescrip-
tion of the radiation dose was performed according to the International Commission on
Radiation Units & Measurements (ICRU) recommendations and with due regard for the
dose-volume constraints suggested by the Quantitative Analyzes of Normal Tissues Effects
in the Clinic (for dose fraction <5 Gy) and Hanna et al. [17] for dose fraction ≥5 Gy. The
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planned dose to be delivered to the vertices was at least 10 Gy/1 fraction, and the optimized
plan had to result in ≥98% dose coverage of the vertices volume.

Figure 1. PET (A) and PET/CT (B) images showing the segmentation of the metabolic activity of
a retroperitoneal mass with SUVmax = 13.31: the pink line delimits the “avid” PET area (APA) with
SUV >2.5, whereas the light blue line delimits a “super-avid” PET area (SAPA) with SUV >75%
SUVmax of APA. The white circle on the same PET (C) and PET/CT (D) slices of (A,B) represents
a 1 cm-diameter sphere called “Vertex” placed between SAPA and the remaining part of APA.

Patients were followed-up with contrast-enhanced CT 30 and 60 days after the com-
pletion of radiotherapy; afterwards, if no suspected progressive disease was detected,
CT and/or CT/PET scans were performed every 3 months for the first year and every
six months after.

2.2.2. Treatment Scheme

On day 1, a high radiation dose was delivered to the vertices. Within 7 days, a ho-
mogeneous PTV irradiation started with a total dose prescription based on the radiation
oncologist’s preferences.

2.3. Endpoints

We accrued a consecutive series of patients to obtain a consistent population with
precisely defined characteristics and homogeneous treatment. The primary endpoints were
symptomatic response, radiation-therapy-related early and late toxicities evaluation, and
local control rate. The overall survival (OS), the time from primary treatment to death, was
also evaluated as a secondary endpoint.

Evaluation of Toxicities and Response Assessment

Toxicity was evaluated using the Radiation Therapy Oncology Group (RTOG) criteria
and the Common Terminology Criteria for Adverse Events (CTCAE) version 4.1. Acute
toxicity was defined as toxicity occurring during or at the end of radiation therapy or
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within 60 days from the end of irradiation. Symptomatic response was defined as the
subjective amelioration of symptoms (pain, moderate bleeding, and annoying swelling).
The pain score was evaluated using the visual analog scale (VAS). This consists of a 10 cm
straight line with the endpoints defining extreme limits such as “no pain” and “worst
pain”; the following descriptive terms, mild, moderate, and severe, were added to the VAS.
The symptomatic response included three settings: complete response (CR), defined as
the complete resolution of symptoms; partial response (PR), defined as some symptomatic
improvement; and no response (NR) for no symptomatic improvement. Clinical response
was defined according to the clinician’s point of view: palpable mass/node shrinking and
initial or definitive ulcer healing. Clinical evaluation was performed at the beginning and
end of treatment, and subsequently, at 8, 30, and 60 days after the completion of radiation
therapy. Chronic toxicity was defined as toxicity occurring after 90 days from the end
of irradiation, or when acute reactions persisted over 90 days. The Response Evaluation
Criteria in Solid Tumors, version 1.1, and/or PET/CT Response Criteria in Solid Tumors
were used to evaluate treatment efficacy. The overall survival (OS) was defined as the time
from the start of RT until reported death due to any cause or censoring by the date of last
follow-up if the patient was alive. Local control (LC) was defined from the start of RT until
local progression or last imaging available. OS distribution was estimated according to the
Kaplan–Meier method.

3. Results

Between June 2020 and December 2021, thirty patients were enrolled. As a patient
was irradiated in 2 disease sites, the total number of treated tumor sites was 31. There
were 10 female and 20 male patients with a median age of 74.5 years (range 42–91) and
a median ECOG status of 2 (range 0–2). Primary tumor sites in 30 patients were: six lung
(20%), five soft tissue (16.6%), three bladder (10%), three kidney (10%), three skin (10%),
two uterus (6.7%), two breast (6.7%), two ureter (6.7%), two rectum (6.7%), one penis (3.3%),
and one unknown primary site (3.3%). In 13/30 patients, the bulky disease also involved
the bone. Table 1 shows patients and tumors characteristics. All patients had a mass with at
least an axial dimension >5cm; median GTV was 146, 48cc (range 50.9–2039.7cc). A median
of 4 Vs (range 1–6) was placed within the GTV. Figure 2 shows an example of Vs placement.
A median dose of 15 Gy/1 fraction (range 10 Gy/1 fr–27 Gy/3 fractions) was delivered
to the Vs. The median dose delivered to the PTV was 20 Gy/4 fractions (range 18 Gy/3
fr–40.05 Gy/15 fr). The treatment of PTV started within 7 days after Vs irradiation.

Table 1. Patient and tumor characteristics.

Age (years)

Median 74.5
Range 42–91

ECOG Status

Median 2
Range 0–2

Sex

Female 10
Male 20

Tumor-Related Symptoms

Pain 24
Neuropathic pain 3
Palpable mass 5
No pain 3

VAS Score

Median 5
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Table 1. Cont.

VAS Score

Range 0–10

Histology

Adenocarcinoma 8
Squamous cell carcinoma 7
Urothelial carcinoma 5
Soft tissue sarcoma 5
Ductal carcinoma 2
Malignant melanoma 3

Bulky Disease Location in 31 Sites/30 Patients

Head and neck 4
Trunk
- Intrathoracic 5
- Abdomen–pelvis 15
- Breast 2
- Soft tissue 4
Lower extremities 1

Tumor size in 31 Sites/30 Patients

5–10 cm 25
>10 cm 6

Gross Tumor Volume, cc
Median 146,8
Range 50.9–2039.7

Figure 2. White arrows show Vs (light-blue spheres) position in a patient with retroperitoneal bulky
disease. Purple encloses the entire gross tumor volume and the adjacent vertebra (CTV).

Table 2 shows treatment characteristics. Median follow-up time was 10.75 months
(range: 6.8–20.5 months), with 23 patients being still alive and 3 patients lost to follow-up.

All patients showed symptomatic response at the treatment site (31 sites in 30 patients)
during irradiation. Acute toxicities were observed in nine patients: one had G2 mucositis,
two had G1 dysphagia, five had G1 skin toxicity, and one had G1 gastrointestinal toxicity
(diarrhea). During irradiation, 30/30 patients showed some treatment benefit; in particular,
3 patients showed pain disappearance 2 days after Vs irradiation. On the eighth day from
the end of radiation therapy, a median VAS score of 1.5 was observed (range 0–4) with
descriptive terms “mild” and “moderate” in 11 and 20 treated sites. No flare pain has
been reported. From a clinical point of view, response was complete in 11 patients and
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partial in 4 patients with palpable mass/nodes; definitive ulcer healing has been reported
in 3

4 patients with this clinical scenario. One patient showed telangiectasia as chronic
cutaneous toxicity. In the imaging follow-up studies, one in-field disease progression was
reported. A complete regression was observed in 5/30 patients, while 24 patients showed
a partial regression. Table 3 summarizes the responses to treatment and radiation toxicities.
Symptomatic relapse was reported in two patients who were submitted to re-irradiation.
Six- and 12-month overall survival was 86.4%.

Table 2. Treatment characteristics.

Systemic Therapy Immediately Preceding Irradiation

Chemotherapy 17
Immunotherapy 3
Chemo-Immunotherapy 6
None 4

Dose Fraction to Vertices in 31 Sites/30 Patients

Median 15 Gy/1 fx
10 Gy/1 fx 12
15 Gy/1 fx 13
18 Gy/1 fx 1
21 Gy/3 fx 1
24 Gy/3 Fx 1
27 Gy/3 Fx 3

Dose-Fraction Schemes to GTV in 31 Sites/30 Patients

Median 20 Gy/4 fx
18 Gy/3 fx 1
20 Gy/4 fx 17
22.4 Gy/4 fx 1
30 Gy/3 fx 10
30 Gy/5 fx 1
40.5 Gy/15 fx 1

Table 3. Response to treatment and radiation toxicities.

Symptomatic Benefit after Irradiation

Yes 30
No 0

VAS Score

Median 1.5
Range 0–4

Acute Toxicity

None 21
G2 mucositis 1
G1 dysphagia 2
G1 skin 5
G1 diarrhea 1

Late Toxicity
None 29
Skin 1

4. Discussion

In our study, we used a particular form of the lattice approach, which presents dif-
ferences with respect to the “classic” SFRT techniques [18]. In fact, we did not follow
a “geometric” pattern for Vs positioning within the GTV: Vs were placed looking at the
differences in 18F-FDG-uptake within the bulky disease; this choice was justified by the
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fact that the 18F-FDG uptake could be higher in hypoxic than normoxic cancer cells; this
finding has been reported both in in vitro [11] and in in vivo studies [12]; on the other
hand, the low-18F-FDG-uptake portion of a tumor may not indicate the lack of viable cancer
cells [12]. We observed low toxicity profiles and impressive clinical results. Actually, we
reported a symptomatic response in 100% of patients, maintaining long-lasting symptom
control in 28/30 patients. These results confirm both the low toxicity profile and clinical
response observed in other published case series and case reports [19–22]. It is noteworthy
to underline that in our patients, we observed a rapid symptomatic response after the first
day of irradiation (radiotherapy to the vertices) in 3/30 patients, while a symptomatic
benefit with a reduction in VAS score was reported within 8 days from the end of irradiation
in all treated patients. These observations seem to confirm both the efficacy of our approach
for treating bulky tumors and the results reported by Duriseti et al. [5], who reported
a symptomatic response within 14 days from the start of radiotherapy in 20 patients with
22 lesions. Surprisingly, in our patients with bone involvement, we did not observe the
occurrence of flare pain, which has been reported to occur in 2–44% of patients with bone
metastases after irradiation [23]. We are unable to explain this issue. A complete clinical
response in patients with palpable mass/nodes was obtained in 11 patients, confirming
the rapid onset of response using lattice RT delivery; in addition, definitive ulcer healing
was obtained in 75% of patients presenting this clinical scenario. Similarly, imaging studies
confirmed a complete or partial regression of bulky disease in 30/31 sites in 29/30 patients.
These data also confirm what has been reported in other published series [4,20,21,24,25]. It
is worth noting the high rate of the long-term local control of disease, which was reported in
almost all cases (29/30 patients) with only two symptomatic relapses that required a second
course of irradiation. These observations have not previously been reported. The choice to
place the Vs on the border between different metabolic areas (plausibly reflecting different
oxygenation) should be better defined using different tools (i.e., [18F]FMISO PET/CT) [10]
than 18F-FDG-PET, and this is a limitation of our study.

We are fully aware that this study has several limitations, including the miscellaneous
collection of treated tumors, the definition of different metabolic areas, and the arbitrary
positioning of vertices within the bulky disease. In spite of the latter, we observed similar
responses, which seemed to be independent from the personal considerations of each
treating radiation oncologist involved here in choosing the most convenient Vs placement.
This is the strength of the study. Another limitation of the study may be related to the
assessment of clinical response from the point of view of the observing physician; this may
represent a bias for the study. However, this kind of therapy for bulky tumors may move
radiation therapy from a palliative intent focusing on short-term improvements in patients’
quality of life towards an effort to achieve long-term tumor control.

These findings should stimulate a collaboration between clinicians and basic scientists,
as insight into a therapeutic application should be converted into studies in molecular
biology, cell biology, and biochemistry: a reverse process, “from bedside to bench”. In
fact, according to Bing Gan (a plastic surgeon): “A clinician may not be the best person to
answer a question, but may be the best person to ask a question.” [26].

5. Conclusions

“Metabolism-guided” lattice radiotherapy is feasible and well-tolerated, being able to
yield very impressive results both in terms of symptom relief and overall clinical response
rate in stage IV bulky disease patients. These preliminary results, obtained by combining
vertex irradiation with a dose capable of producing bystander, abscopal, and immunological
effects with the treatment of GTV using classical palliative doses, seem to indicate that this
kind of therapy could emerge as the best therapeutic option for this patient setting.
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