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Abstract

Smooth-shelled blue mussels, Mytilus spp., have a worldwide antitropical distribution and

are ecologically and economically important. Mussels of the Mytilus edulis species complex

have been the focus of numerous taxonomic and biogeographical studies, in particular in

the Northern hemisphere, but the taxonomic classification of mussels from South America

remains unclear. The present study analysed 348 mussels from 20 sites in Argentina, Chile,

Uruguay and the Falkland Islands on the Atlantic and Pacific coasts of South America. We

sequenced two mitochondrial locus, Cytochrome c Oxidase subunit I (625 bp) and 16S

rDNA (443 bp), and one nuclear gene, ribosomal 18S rDNA (1770 bp). Mitochondrial and

nuclear loci were analysed separately and in combination using maximum likelihood and

Bayesian inference methods to identify the combination of the most informative dataset and

model. Species delimitation using five different models (GMYC single, bGMYC, PTP, bPTP

and BPP) revealed that the Mytilus edulis complex in South America is represented by three

species: native M. chilensis, M. edulis, and introduced Northern Hemisphere M. galloprovin-

cialis. However, all models failed to delimit the putative species Mytilus platensis. In con-

trast, however, broad spatial scale genetic structure in South America using Geneland

software to analyse COI sequence variation revealed a group of native mussels (putatively

M. platensis) in central Argentina and the Falkland Islands. We discuss the scope of species

delimitation methods and the use of nuclear and mitochondrial genetic data to the recogni-

tion of species within the Mytilus edulis complex at regional and global scales.

Introduction

Species delimitation, i.e. the act of identifying boundaries at the species level [1,2], is necessary

for systematics, ecology and evolution, and fundamental to the accurate assessment of
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biodiversity as well as for implementing conservation policies. Often this act can be relatively

easy owing to allopatry or prezygotic barriers to reproduction, but in many cases species

delimitation is made difficult by the presence of cryptic variation and the limitations of many

species concepts to effectively recognise such entities [3,4]. In recent years, there has been an

increase in the number of methods for delimiting species [5–10], some of which attempt to

provide a robust theoretical and repeatable analytical framework for species identification.

Species delimitation methods usually examine molecular variation data (usually DNA

sequences) and utilise phylogenetic reconstructions to statistically identify a threshold that dis-

tinguishes species from populations. The accuracy of the method depends largely on the rate

of speciation, the population size and the genetic variation used (number of informative sites

or loci). These delimitation approaches remove the subjectivity associated with an individual

researcher’s view of what constitutes a species, and have been helpful in solving taxonomic

problems, particularly those of closely related species (e.g., Lemer et al. [11]), but are not yet

widely applied.

Marine bivalve mussels of the genus Mytilus are naturally distributed throughout all conti-

nents of the world excluding Antarctica [12], and as common members of the intertidal com-

munity they play important roles in energy transfer from the pelagic to the benthic realm

[13,14]. The smooth-shelled blue mussel Mytilus edulis species complex consists of three

widely recognised and closely related species: Mytilus edulis Linné, 1758, M. galloprovincialis
Lamarck, 1819 and M. trossulus Gould, 1850 [13]. However, there has been longstanding

debate about the existence of other smooth-shelled blue mussel species, dating back over 100

years (refer to [15–17] for reviews and to Hilbish et al. [14]; Gérard et al. [18] for more recent

molecular interpretations). This is true for all of the Southern hemisphere, but particularly so

for the Atlantic and Pacific coasts of South America, despite a large body of work addressing

the subject in regions such as Chile (e.g., [18–28] and references therein). To the best of our

knowledge, models of species delimitation have not been applied to the Mytilus edulis species

complex problem, although they may have the ability to resolve the global taxonomy of this

widespread and important group.

In South America, blue mussels occur naturally from Dichato, Chile (36˚320S; 72˚560 W) on

the Pacific coast, around Cape Horn (55˚580 S; 67˚170 W), and extend north along the Atlantic

coastline to a northern limit at Punta del Este, Uruguay (34˚580S; 54˚570W) [29]. The distribu-

tion of these animals also includes the Patagonian and Atlantic Ocean islands (e.g. Tierra del

Fuego and the Falkland Islands). These blue mussels are important members of the benthic

fauna of the South American coast [30], and are an important resource for aquaculture in the

region, in particular, in Chile [31]. The Atlantic coast blue mussel was originally described by

d’Orbigny [32], based on morphometric grounds, as M. platensis. Only eight years subse-

quently, again based on morphometric grounds, the Pacific coast blue mussel was described by

Hupé [33] as M. chilensis. Since the advent of genetic markers, a range of marker types (with

or without associated morphometric analyses) have been applied to native South American

mussels to address the question of their taxonomy. Variously, South American mussels have

been described as M. edulis-like [13], as M. edulis platensis [24], as M. platensis [26,34], as a

Southern hemisphere lineage of Mytilus galloprovincialis also found in other Pacific Ocean

regions such as New Zealand and Australia [22,23,35], as Mytilus edulis chilensis [36,37], and

as Mytilus chilensis [28,38–43]. Several authors have noted that different marker types and

analyses of different genomes (i.e., mitochondrial versus nuclear DNA) may provide different

answers, and that newer generations of marker types, increased genomic coverage, and also

wider geographic sampling may be required to definitively answer the question of which spe-

cies occur where (e.g., McDonald et al. [13], Oyarzún et al. [41], Larraı́n et al. [43]). In addi-

tion, specifically relating to the situation on the Pacific coast of South America, it was noted
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(e.g., Borsa et al. [24], Oyarzún et al. [27]) that at the time the name M. chilensis had no formal

standing, despite its widespread usage. This situation has changed recently, and WoRMS now

lists M. chilensis Hupé, 1854 as having “accepted” species status. For native mussels on the

Atlantic Ocean coast of South America, WoRMS continues to recognise the valid status of M.

platensis d’Orbigny, 1846. This fluidity of taxonomic status highlights the challenge of working

with a species complex, the advances in taxonomy that new molecular markers can provide,

and the difficulty of achieving a taxonomic outcome that is both biologically relevant and

accepted by workers in the field.

The development of species-specific nuclear and mitochondrial DNA RFLP assays to blue

mussels from many parts of the world has substantially improved our understanding of the

phylogeography and specific status of members of the smooth-shelled blue mussel complex

[19,23,39,44–51]. However, the situation in the Southern hemisphere is still much less clear

than that in the Northern hemisphere, and in need of further attention for three reasons. First,

delimitation of species allows clarification of the taxonomy in a stable and consistent way. This

is of importance because the species is the fundamental unit in biology and is used for activities

such biodiversity classification, biosecurity monitoring and breeding programmes [52–55].

Second, clarification of the taxonomy and systematics permits a better understanding of the

conservation threats posed by invasive mussels and the consequences of hybridisation and

introgression on the genetic integrity of native mussels [27,34,43]. Third, species delimitation

may have important implications in other areas, such as food production (e.g. aquaculture),

where strict regulations exist to protect consumer rights and for reasons of traceability around

which species may be grown, moved within a country or between countries, sold on the local

market, or exported (i.e. European Normative, Regulation (CE) N˚ 104/2000 and N˚ 2065/

2001 –[39,43,56–58]. In this context, blue mussels form the basis of mussel aquaculture indus-

tries in many countries [59,60] so that accurate species determination is important, both in

terms of traceability and marketing [43,61,62].

The aim of the present research was to address the question of the taxonomic status of blue

mussels from the Atlantic and Pacific coasts of South America, and thereby to better under-

stand the phylogeography of the taxa identified. For context, such work needs to be carried out

with reference to other Mytilus species elsewhere. We use both nuclear and mitochondrial

DNA sequence variation to delimit putative native and introduced taxa in the full distribu-

tional range of Mytilus spp. in South America–Chile, Argentina, Uruguay and the Falkland

Islands. The uncertain taxonomy of the Mytilus spp. system is used to test speciation hypothe-

ses with different species delimitation methods, in an attempt to move beyond qualitative

assessments of population-specific or lineage/taxon-specific genetic differences. We view this

first application of species delimitation models to the South American blue mussels as a case

study which, if successful, may then be applied to the global situation using existing and/or

new genetic data sets.

Materials and methods

Ethics statement

This study was carried out in accordance with the principles of the Basel Declaration and rec-

ommendations of Universidad Austral de Chile committee. The protocol was approved by the

biosafety institution of the Universidad Austral de Chile (No 008/17). The samplings were car-

ried out according to the authorisation granted by the Subsecretaria de Pesca y Acuicultura

(SUBPESCA, Rex No. 2898/2015). The animals involved in this study were minor inverte-

brates (Mollusca: Bivalves: Mytilidae).

PLOS ONE Species delimitation in Mytilus complex

PLOS ONE | https://doi.org/10.1371/journal.pone.0256961 September 2, 2021 3 / 25

https://doi.org/10.1371/journal.pone.0256961


Mussel collection

Mussels were collected from the intertidal region by hand or from the shallow subtidal zone by

SCUBA divers. Samples (8 to 20 mussels per site, mean = 17.4) were collected between 2002

and 2016 at 20 sites in Chile, four in Argentina, one in Uruguay and one from the Falkland

Islands (Fig 1; Table 1). In total, 348 mussels were sampled within a size range of 27.3 to 65.9

mm shell length. In addition, reference samples (mantle tissue) from the Northern hemisphere

including Canada (Bras d’ Or lake), UK (Cornwall) and Spain (Moaña-Pontevedra) were used.

DNA extraction and visualisation

Each mussel was dissected and a small piece of mantle edge tissue was fixed in 95% ethanol

and stored at 4˚C. A subsample of ~ 30 mg of mantle edge tissue from each individual was

used for total genomic DNA extraction using a DNA kit according to the manufacturer’s

Fig 1. Map of the collection sites of smooth-shelled blue mussels (Mytilus spp.) in South America, including Chile, Argentina, the Falkland Islands and Uruguay.

https://doi.org/10.1371/journal.pone.0256961.g001
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instructions (Geneaid1). Sizes of amplified fragments were estimated from a 50 bp DNA lad-

der (InvitrogenTM) on gels stained with SYBR1 Safe DNA.

Molecular markers, amplification and alignment

Molecular markers consisted of one nuclear ribosomal gene, 18S rRNA, and two mitochon-

drial markers, 16S rRNA and cytochrome c oxidase subunit I (COI). Fragments of the COI,

16S and 18S genes were amplified using the universal primers LCO1490/HCO2198 [63],

16SAR/BR [64] and 1822F/F22 [65].

Standard PCR amplifications were carried out in 25 μL reaction mixtures containing 2 μL

DNA template, 0.2 mM total dNTP, 2mM MgCl2, 0.4 mM each primer, 1U of Taq (Invitro-

genTM), the manufacturer’s PCR buffer, and sterile distilled water. The PCR conditions

involved an initial denaturation at 94˚C for 5 min, followed by 30 cycles of 94˚C for 30 s,

annealing at 55˚C for 30s and elongation at 72˚C for 1 min, followed by further elongation at

72˚C for 5 min.

Mytilus F-type mtDNA COI and 16S haplotypes are known to possess a more informative

phylogenetic signal than M-type mtDNA haplotypes [18,47,66,67]. Because of this, only female

mitochondrial sequences were considered in the present study. Amplicons were purified and

sequenced by Macrogen (South Korea). Both sequence directions were determined, using the

individual primers from the original reaction. DNA sequence was edited using Geneious1

Table 1. Collection site information in Argentina, Chile, the Falkland Islands and Uruguay, including habitat (subtidal or intertidal), geographical coordinates,

number of mussels (Mytilus spp.) collected (N), and date of collection (DD.MM.YYYY).

Site Habitat Coordinates N Date

ARGENTINA

Mar del Plata S 38˚00’32.0’’S; 57˚31’48.1’’W 10 02.08.2010

Punta Cuevas S 42˚46’47.0’’S; 65˚00’06.0’’W 10 15.07.2014

Caleta Cordova S 45˚45’64.0’’S; 67˚21’40.3’’W 20 22.07.2015

Punta Peña S 49˚14’45.0’’S; 67˚40’18.0’’W 20 05.09.2010

CHILE

Isla Quiriquinas I 36˚37’49.9’’S; 73˚03´09.2’’W 20 21.01.2016

Lota I 37˚04’27.1’’S; 73˚09´53.4’’W 20 26.01.2016

Tubul S 37˚13’37.3’’S; 73˚26’02.2’’W 20 05.12.2015

Llico S 37˚10’06.9’’S; 73˚33’41.5’’W 20 05.12.2015

Puerto Saavedra S 38˚46’44.7’’S; 73˚24´32.3’’W 20 15.12.2015

Chaihuı́n S 39˚56’40.4’’S; 73˚34´40.4’’W 20 22.11.2015

Maullı́n I 41˚37’25.3’’S; 73˚35´36.9’’W 20 27.11.2015

Quillaipe I 41˚32’59.5’’S; 72˚45´14.0’’W 20 16.12.2015

Huildad I 43˚03’02.8’’S; 73˚34´21.1’’W 20 28.11.2015

Puerto Cisne S 44˚44’11.4’’S; 72˚41´07.9’’W 20 22.02.2016

San Gregorio I 52˚34’01.8’’S; 70˚04’13.8’’W 10 22.10.2013

Caleta Pescadores I 53˚21’06.2’’S; 70˚57’27,8’’W 20 21.10.2013

Estero Fanny S 53˚05’04.6’’S; 72˚18’39.6’’W 20 17.10.2013

Isla London S 54˚40’57.6’’S; 71˚55’29.7’’W 10 15.09.2013

URUGUAY

Punta del Este I 34˚58’05.8’’S; 54˚56’48.4’’W 20 05.06.2014

FALKLAND ISLANDS

Bense Island S 51˚28’59.9’’S; 60˚30’00.1’’W 8 14.10.2002

Total number of mussels 348

https://doi.org/10.1371/journal.pone.0256961.t001
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11.0.4. (Biomatters Ltd). All new sequences have been deposited in GenBank under accession

numbers MZ313196-3204; MZ313212-21; MZ313464-68; MZ356925-7040 (Table 2). On the

other hand, mytilids sequences used in previous publications were downloaded from GenBank

(Table 2). All nucleotide sequences were aligned using MAFFT v.7 [68] under the iterative

method of global pairwise alignment [69], and default settings were chosen for all parameters.

Phylogenetic analyses

Phylogenetic trees were constructed using Maximum Likelihood (ML) and Bayesian inference

(BI): (i) with species of the family Mytilidae (S1 Fig) and (ii) with species of the genus Mytilus.
Evolutionary models and partitioning strategies were evaluated with PartitionFinder v2.1.1

[79], which identified the best partition using the Bayesian Information Criterion, BIC [80]. A

ML tree was inferred using GARLI v2.0 [81] with branch support being estimated by nonpara-

metric bootstrap (BS) (200 replicates). Bayesian analyses were performed using MrBayes v3.2

[82]. Each Markov chain was started from a random tree and run for 5.0x107 generations with

every 1000th generation sampled from the chain. Stationarity was checked as suggested in

Nylander et al. [83]. All sample points prior to reaching the plateau phase were discarded as

“burn-in”, and the remaining trees were combined to find the a posteriori probability of phy-

logeny. Analyses were repeated four times to confirm that they all converged on the same

results. Posterior probability (PP) values >0.90 were taken as statistical support for a clade

being present on the true tree [84]. The support values (PP and BS) were located in each node

(Figs 2 and 3).

Species delimitation within the Mytilus species complex

We employed five different methods for species delimitation, including four separate single

locus (COI) analyses and a combined multilocus (COI + 16S + 18S) approach. We recognise

that these sorts of models are only as good as the data that are used to test them, and for this

reason we are interested to determine if a single marker or a multilocus approach is most

powerful.

Firstly, we used the Generalized Mixed Yule Coalescent model (GMYC single), a method

specifically developed for only one mitochondrial locus [5], and for when the majority of phy-

logenetic signal is found in mtDNA. This algorithm estimates the number of ‘‘species” by clas-

sifying the branching rates of a phylogram as being the result of interspecific or intraspecific

lineage branching patterns (sensu Pons et al. [5]). After removing duplicate sequences (COI)

because they may cause problems with downstream GMYC analyses [85], the best-fitting sub-

stitution model was chosen with the help of PartitionFinder v2.1.1 [79]. Using unique haplo-

types, we built an ultrametric phylogenetic tree (Fig 2) in BEAST v1.8.1 [86]. We ran

phylogenetic analysis under a lognormal relaxed clock set to an evolutionary rate of 9.51 x 10−8

[70] considering a coalescent tree with constant population size, using a random starting tree,

and with 1 x 108 Markov Chain Monte Carlo (MCMC) generations sampled every 1,000th gen-

eration. We implemented two independent runs and combined results using LogCombiner

v1.8.1 [86], burning the first 25% of the samples and then using Tracer v1.5 [87] to check for

minimum adequate Effective Sample Size (ESS values > 200) and to visually inspect stationar-

ity and convergence by plotting likelihood values. A consensus was built with TreeAnnotator

1.8.1 [86] using the maximum clade credibility method. This tree was used as input to estimate

GMYC single in the package SPLITS (SPecies LImits by Threshold Statistics—[88]) using R

v3.0.1 [89].

Secondly, we used a Bayesian version of this model (bGMYC), which addresses the uncer-

tainty in the trees by sampling over a posterior distribution of sampled trees [90]. bGMYC
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Table 2. GenBank accession numbers and sample locations of sequences used for this study for COI, 16S and 18S DNA sequence variation (for Figs 2 and 3).

Species Sample location GenBank Accession Number Reference

COI

Mytilus trossulus North Atlantic AF242027-29 [70]

M. trossulus North Atlantic AF242033-35 [70]

M. trossulus Damariscotta, Maine, USA AF242031 [70]

M. trossulus Mahome Bay, Canada AY130061-63 [71]

M. trossulus Penn Cove, USA AY130064/66/67 [71]

M. trossulus Bras d’Or lake, Canada MZ313466 This study

Mytilus edulis Tjárno, Sweden AY723898 [71]

M. edulis Tjárno, Sweden AY723900 [71]

M. edulis Tjárno, Sweden AY723912/13 [71]

M. edulis Hanko, Finland AY130046 [71]

M. edulis Beaufort, USA AF241937 [70]

M. edulis Antigonish, Canada AF241951 [70]

M. edulis Cornwall, UK MZ313468 This study

M. edulis Punta Cueva, Argentina MZ313464 This study

M. galloprovincialis Samos, Greece AY130054/60 [71]

M. galloprovincialis Chioggia, Italy AM905222 [18]

M. galloprovincialis N/A AF242015 [70]

M. galloprovincialis Dichato, Chile AM905177-79 [18]

M. galloprovincialis Nedlands, Australia AM905214 [18]

M. galloprovincialis Paternoster, South Africa AM905217 [18]

M. galloprovincialis Green Cape, Australia HQ864842 [67]

M. galloprovincialis Tura Head, Australia HQ864854 [67]

M. galloprovincialis Moaña-Pontevedra, Spain MZ313467 This study

Mytilus sp Dunedin, NZ AM905146-48 [18]

Mytilus sp Wellington, NZ AM905154 [18]

Mytilus sp Cloudy Bay, Tasmania AM905161/62 [18]

Mytilus sp Simpson’s Bay, Tasmania AM905166 [18]

Mytilus sp Hobart, Tasmania AM905170 [18]

Mytilus sp Kerguelen Island AM905201 [18]

Mytilus sp Snug, Tasmania HQ864836 [67]

Mytilus sp Tura Head, Australia HQ864848 [67]

Mytilus sp Green Cape, Australia HQ891001 [67]

Mytilus sp Auckland Islands, NZ MZ313465 This study

M. californianus Monterey Bay, USA MCU68776 [72]

M. coruscus Zhoushan, East China Sea KC139309-11 [73]

Choromytilus chorus Colún, Chile MT103131 This study

Choromytilus chorus Concepción, Chile JF301720-23 Unpublished

16S

M. trossulus Oregon, USA U22879 [47]

M. trossulus Bras d’Or lake, Canada MZ313216 This study

M. edulis Whitsand Bay, UK AF023582 [74]

M. edulis Delaware, USA AF023550 [74]

M. edulis Cornwall, UK MZ313217 This study

M. edulis Punta Cueva, Argentina MZ313215 This study

M. galloprovincialis Paternoster, South Africa AM904597 [18]

M. galloprovincialis Lota, Chile MZ313219 This study

(Continued)
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analyses were performed by running the eponymous R package on the 100 trees sampled dur-

ing the MCMC in BEAST v1.8.1 (we discarded the first 90% trees as ‘burn-in’). We ran each

tree for 50,000 generations, discarding the first 40,000 generations as burn-in and using thin-

ning intervals of 100 generations (as recommended by the authors). The threshold parameter

priors (t1 and t2) were set at 2 and 96, and the starting parameter value was set at 25. In the

case of bGMYC analyses, the convergence of the MCMC was assessed by checking the evolu-

tion graph of the posterior probability against the number of generations, as advised in the

bGMYC tutorial.

Thirdly, the Poisson Tree Processes (PTP) model [8] was employed to infer molecular

clades based on our inferred molecular phylogeny. The PTP method estimates the mean

expected number of substitutions per site between two branching events using the branch

length information of a phylogeny and then implements two independent classes of Poisson

processes (intra and inter-specific branching) before clustering the phylogenetic tree according

to the results (sensu Zhang et al. [8]).

Fourthly, we used bPTP, which is an updated version of the original maximum likelihood

PTP (maximum likelihood PTP search result is part of the bPTP results). It adds Bayesian sup-

port (BYS) values to delimited species on the input tree. A higher BYS value on a node indi-

cates all descendants from this node are more likely to be from one species. The two analyses

Table 2. (Continued)

Species Sample location GenBank Accession Number Reference

M. galloprovincialis Moaña-Pontevedra, Spain MZ313221 This study

M. chilensis Puerto Cisne, Chile MZ313213 This study

M. chilensis Quillaipe, Chile MZ313212 This study

M. chilensis Maullin, Chile MZ313218 This study

M. chilensis Punta del Este, Uruguay MZ313214 This study

Mytilus sp. Auckland Islands, NZ MZ313220 This study

M. californianus San Diego, California, USA AF023600 [74]

M. coruscus China AF317545 Unpublished

Choromytilus chorus Concepción, Chile EU636213 Unpublished

18S

M. trossulus Not registered L24490 [75]

M. trossulus Bras d’Or lake, Canada MZ313196 This study

M. edulis Helgoland, Gemany AY527062 [76]

M. edulis Cornwell, UK MZ313197 This study

M. galloprovincialis South Africa DQ640507 [51]

M. galloprovincialis Lota, Chile MZ313198 This study

M. galloprovincialis Moaña-Pontevedra, Spain MZ313203 This study

M. chilensis Puerto Cisne, Chile MZ313199 This study

M. chilensis Quillaipe, Chile MZ313201 This study

M. chilensis Maullin, Chile MZ313200 This study

M. chilensis Punta del Este, Uruguay MZ313202 This study

Mytilus sp. Auckland Islands, NZ MZ313204 This study

M. californianus Freshwater Bay, USA L33449 [77]

M. coruscus Fuding, China EF613242 [78]

Ch. chorus Chile DQ640540 [51]

N/A–site location of collection not provided.

https://doi.org/10.1371/journal.pone.0256961.t002
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Fig 2. To the left is the maximum clade credibility tree from the Bayesian analyses based on cytochrome oxidase subunit 1 (COI) sequences with results of

the single threshold GMYC model (blue vertical lines), bGMYC (red vertical lines), PTP (purple vertical lines) and bPTP (green vertical lines). Values

above tree branches are Bayesian posterior probabilities/maximum likelihood bootstrap values. To the right the heat-map represents a sequence-by-sequence

matrix where cells are coloured by the posterior probability that the corresponding sequences are conspecific, allowing for the visualisation of uncertainty in

species limits returned by the bGMYC method. The letters correspond to clades a = Mytilus californianus from USA (Monterrey Bay); b = Mytilus coruscus from

China (Zhouhan); c = Mytilus trossulus from USA (Damariscotta and Penn Cove) and Canada (Mahome Bay and Bras d’Or Lake); d = Mytilus chilensis from

Chile (Maullı́n, Quillaipe Puerto Saavedra, Caleta Pescadores, Huildad, Estero Fanny, Isla London, Chaihuı́n, San Gregorio and Puerto Cisne), Argentina (Mar

del Plata and Punta Peña), Uruguay (Punta del Este) and Kerguelen island; e = Mytilus spp. from Australia (Tura Head and Green Cape) and Tasmania (Cloudy

Bay, Hobart, Simpson’s Bay and Snug); f = Mytilus spp. from New Zealand (Auckland Islands, Dunedin and Wellington), g = Mytilus spp from N/A and Finland

(Hanko); h = Mytilus galloprovincialis from Italy (Chioggia), Greece (Samos), Australia (Green Cape, Nedlands, Tura Head), South Africa (Paternoster), Chile

(Dichato, Lota); i = Mytilus edulis from Sweden (Tjárno), USA (Beaufort), Canada (Antigonish), Argentina (Punta Cueva) and the Falkland Islands (Bense

Island); j = outgroup Choromytilus chorus from Chile (Colún).

https://doi.org/10.1371/journal.pone.0256961.g002
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(PTP and bPTP) were conducted on the web server for PTP (available at http://species.h-its.

org/ptp/) using the MrBayes topology as advocated for this method [8,91].

Fifthly, we used the program BPP [10] to compare different models of species delimitation

and species phylogeny in a Bayesian framework, accounting for incomplete lineage sorting

due to ancestral polymorphism and gene tree versus species tree conflicts [6,92]. This program

conducts multilocus, coalescent-based analyses requiring a guide tree and specification of two

priors involving population size and divergence time. Thus, we used the A10 mode, which

delimits species using a species tree estimated in BEAST v2.4.8 [93,94]. The population size

parameters (θs) were assigned the gamma prior G (9, 100). The divergence time at the root of

the species tree (τ0) was assigned the gamma prior G (8, 1000), whilst the other divergence

time parameters were assigned the Dirichlet prior [6] (Eq 2). Each analysis was run at least

twice to confirm consistency between runs.

Fig 3. Bayesian tree using the concatenated matrix data set (COI+16S+18S). The numbers above branches represent the posterior probability/bootstrap support

values. Bar on the right of the tree indicate the species limits as proposed by BPP (multilocus analysis). M. edulis = (1) Canada, (2) Sweden, (3) Cornwall, UK, (4) Punta

Cueva, Argentina; M. galloprovincialis = (1) Moaña-Pontevedra, Spain, (2) Lota, Chile, (3) South Africa; Mytilus sp. clade = (1) Auckland Islands, New Zealand, (2–3)

Quillaipe, Chile, (4) Maullin, Chile, (5) Punta del Este, Uruguay, (6) Maullı́n, Chile, (7–8) Puerto Cisne, Chile; M. trossulus clade = (1) Penn Cove, USA, (2) Bras d’Or

lake, Canada. Sequence details are provided in Table 2.

https://doi.org/10.1371/journal.pone.0256961.g003

PLOS ONE Species delimitation in Mytilus complex

PLOS ONE | https://doi.org/10.1371/journal.pone.0256961 September 2, 2021 10 / 25

http://species.h-its.org/ptp/
http://species.h-its.org/ptp/
https://doi.org/10.1371/journal.pone.0256961.g003
https://doi.org/10.1371/journal.pone.0256961


The taxonomic index of congruence (Ctax) between pairs of species delimitation methods

was estimated, following Miralles and Vences [95]. To identify the most congruent species

delimitation approaches, the mean Ctax value for each method was also estimated (S1 Table).

Analysis of broad spatial scale genetic structure

To test the robustness of the species delimitation approach we employed an independent analyti-

cal approach to identify population clusters of blue mussels in South America. In principle, if the

DNA-based species delimitation approach is accurate, then when applied to the population

genetic structure of mussels this should be reflected by different spatially explicit clusters of mus-

sels in South America, for example on the Atlantic and Pacific coasts. This methodology also has

the benefit of being able to identify the occurrence and location of regions of interbreeding

between two (or more) different clusters of mussels. In addition, the presence of non-native spe-

cies, such as Northern hemisphere M. galloprovincialis, may be identified. The spatially explicit

Bayesian clustering program Geneland 3.2.4 [96] (an extension of program R 3.1.2. R Develop-

ment Core Team) was used to investigate spatial genetic structure using COI data (Table 1). We

converted variable base sites into bi-allelic (allele-like) data, so that the COI input file was a

binary file. We ran ten independent runs, where the parameters for possible populations were

K = 1–18, and the number of MCMC iterations was 4,000,000, saving every 100 steps (S2 Fig).

After comparing the results of the analyses, we selected the run with the highest posterior proba-

bility and post-processed it for graphical display. A burn-in of 10,000 generations (20%) was

trimmed from the posterior in the post-processing. A contour map of the posterior mode of pop-

ulation membership was drawn to visualise genetic substructure within South America.

Results

Phylogenetic relationships within the genus Mytilus
Two alignments were performed. First, we aligned the COI data for a total of 600 sites. Testing

for the best fit substitution model resulted in the selection of models GRT+I+G (1st, best fit),

TVM+G (2nd) and TIM+G (3rd) for COI codon position (Fig 2). Then we aligned the three

DNA markers for a total of 2638 sites: 441 were variable and 206 were phylogenetically infor-

mative. Two of three markers corresponded to mitochondrial dataset with a total of 1068

nucleotide sites, of which 339 were variable and 186 were phylogenetically informative. The

evolutionary models and the partitioning strategy obtained in Partitionfinder were SYM+I

(1st), F81 (2nd), HKY+I (3rd) (COI), HKY+G (16S) and K80+I (18S).

Known phylogenetic relationships of species within the genus Mytilus based on COI

sequence variation were generally well captured. Mytilus californianus Conrad, 1837 (Fig 2,

group a) and Mytilus coruscus Gould, 1861 (Fig 2, group b) formed a divergent clade from the

other species of Mytilus, but with relatively low support (BS = 51%, PP = 0.59). M. trossulus
(Fig 2, group c), M. edulis (Fig 2, group i) and M. galloprovincialis (Fig 2, group h) all formed

reasonably well-supported clades, with M. edulis as the sister species of M galloprovincialis.
Mussels from Chile (Fig 2, group d) formed a well-supported clade, different from the species

of the Northern hemisphere. The M. chilensis clade appeared to be monophyletic with respect

to native Mytilus spp. from Australia (Fig 2, group e) and New Zealand (Fig 2, group f),

although with low bootstrap support and posterior probability support (BS = 60%, PP = 0.88).

The placement of samples within the clades from our different geographic collecting sites

was generally consistent with expectations, based on published data. The M. chilensis clade

(presumptive native mussel diversity on the Pacific coast of South America) contained native

mussels from Chile, but also included mussels from the Atlantic coast of Argentina and Uru-

guay, as well as from the Indian Ocean location of the Kerguelen Islands. The M.
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galloprovincialis clade contained mussels from the two Mediterranean Sea sites (Italy and

Greece), but also contained mussels from Australia, South Africa and Chile. The M. edulis clade

contained mussels from Sweden and the Atlantic coasts of the USA and Canada, but also

included mussels from Argentina and the Falkland Islands (Fig 2). A final group, of mixed geo-

graphic origin, was also recognised, containing mussels from the Atlantic coast of the USA and

Finland (Baltic Sea) (Fig 2; AY130046 and AF242015, see detail in Table 2). This geographically

anomalous group was described as clade "g". However, this clade showed low support.

Species delimitation analyses

The most congruent result amongst single- and multi-locus analyses recognised eight mono-

phyletic lineages (including the outgroup) as different species (Fig 2 - PTP and bPTP; mean

Ctax = 0.89, see all Ctax values in S1 Table). The Mytilus chilensis and M. trossulus lineages

were recovered in phylogenetic analyses and were also supported in the Bayesian tree of

concatenated sequences (Figs 2 and 3; BS>90; PP>0.99).

The total GMYC analysis, including the outgroup, identified ten entities or putative species

(CI = 5–29). The bGMYC analysis identified ten species with a posterior probability >0.95

and nine species with posterior probability >0.90 where clades ’d’ and ’e’ were grouped

together (Fig 2), whereas the PTP (with a speciation rate = 31.830; coalescent rate = 261.281;

null logl = 308.567; max logl = 341.371; P-value< 0.001) and the bPTP analyses both identified

eight species (Fig 2).

In the bGMYC the distribution of ratios of the Coalescence to Yule rates was above 0, and

without negative values (S3 Fig), indicating that the model is a good approximation of the reality

of the data. Bayesian GMYC analyses detected Mytilus californianus, M. coruscus, M. trossulus,
M. galloprovincialis and M. edulis in the Northern hemisphere. Three species were detected in

the monophyletic clade (PP = 1; BS = 98%) of the native mussels of the Southern hemisphere

(d = Mytilus chilensis from Chile, Argentina, Uruguay and Kerguelen island; e = Mytilus sp.

from mainland Australia and Tasmania; and f = Mytilus sp. from NZ–Fig 2). The results from

the PTP, bPTP, GMYC and bGMYC analyses differ in their ability to differentiate between spe-

cies in Australia versus New Zealand. However, the difference in Ctax values between PTP and

bGMYC was marginal (PTP mean Ctax = 0.89 and bGMYC mean Ctax = 0.82, see S1 Table),

indicating that this clade would include three species (d, e and f—Fig 2).

Results of the BPP species delimitation analyses are shown in Fig 3. In this multilocus analy-

sis five putative Mytilus species were identified, with a speciation rate = 43.480; coalescent

rate = 869.620; null logl = 717.926; max logl = 807.662; and P-value < 0.001. As expected, both

M. coruscus and M. californianus were recognised as species. M. trossulus (from Canada and

USA) was also recognised as a distinct species. Although there was clear separation of M. edulis
(containing native mussels from Canada, Sweden, the UK and Argentina) from M. gallopro-
vincialis (containing native mussels from Spain plus introduced mussels from Chile and South

Africa) within the tree, the BPP did not recognise these two groups as separate species. The

fifth and final group recognised by the BPP was a mixed Southern hemisphere (putatively M.

chilensis) clade, containing native mussels from the Auckland Islands (New Zealand Southern

Ocean), Chile and Uruguay.

Analysis of broad spatial scale genetic structure. Based on COI sequence variation, the

software program Geneland, which takes into account spatial information, indicated that

K = 3 groups was the most likely structure in South America (Fig 4A). The three groups were

geographically clustered, with one group being centred around northern Chile (Northern

hemisphere M. galloprovincialis—highlighted in yellow Fig 4B), the second group being cen-

tred around the coast of Argentina and the Falkland Islands (native southern Atlantic Ocean
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mussels–Fig 4C), and the distribution of the third group spanning southern Chile, the Straits

of Magellan, and the southern part of Argentina (native M. chilensis–Fig 4D). This latter group

also included the mussels from Uruguay. The assignment probabilities of individuals to their

respective clusters were high, at� 0.90 (Fig 4).

Discussion

For the first time, species delimitation models have been applied to both single locus (COI)

and multilocus (COI+16S+18S) datasets to examine in a robust, repeatable and objective

Fig 4. Geneland results for K = 3 groups using the spatial model with correlated allele frequencies (based on COI). (A) Map of estimated posterior probability of

population membership (by posterior mode)–different colours represent distinct genetic groups; plots representing the assignment of pixels to: B) introduced Mytilus
galloprovincialis in Chile, (C) mussels from the Atlantic coast of South America, and (D) M. chilensis mussels from the Pacific and southern Atlantic coasts of South

America. The highest membership values are in white and light yellow and the contour lines indicate the spatial position of genetic discontinuities between populations.

https://doi.org/10.1371/journal.pone.0256961.g004
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manner the taxonomic relationships within the genus Mytilus. Our primary focus has been to

examine the diversity of the genus Mytilus from South America, including the Falkland

Islands. In this test case study, blue mussels collected from sites around South America have

been examined in the context of the global diversity of the genus. In addition, genetic sequence

variation (COI) that has been used in previous studies where they addressed the evolutionary

history of the Mytilus edulis complex (i.e. [18,67,70,71]) was analysed for the South American

mussels in a geospatial framework (Geneland).

Species delimitation within the Mytilus edulis species complex

Our samples cover the distribution of Mytilus in South America, with the exception of Brazil

where the introduction of M. galloprovincialis has recently been reported [97]. Although the

most congruent species delimitation analysis (using COI) defined M. coroscus, M. california-
nus, M. galloprovincialis, M edulis, M. trossulus, and M. chilensis, it did not provide evidence

for the existence of the species Mytilus platensis d’Orbigny, 1846 on the Atlantic coast (Argen-

tina or Uruguay). At sites where M. platensis is expected, the species delimitation models

(SDMs) identified the Northern hemisphere species, Mytilus edulis, consistent with several ear-

lier interpretations of the affinity of M. platensis with Northern hemisphere M. edulis (e.g.,

McDonald et al [13], Borsa et al. [24]). On the other hand, our analyses corroborate the mono-

phyly of native mussels on the Pacific coast of South America (Mytilus chilensis Hupé, 1854).

In the Southern hemisphere, M. chilensis, along with two distinct evolutionary lineages from

New Zealand (putative M. aoteanus Powell, 1958) and Australia (putative M. planulatus
Lamarck, 1891) coexist with Mytilus galloprovincialis (the Mediterranean mussel), which has

been introduced to parts of Chile (Bahı́a de Concepción), Brazil, Australia and New Zealand

[18,20,22,35,41,67,97–100]. Although the most congruent unilocus analysis (PTP: mean

Ctax = 0.89) delimited in one species the blue mussels native to Argentina, Chile, Uruguay,

Kerguelen Islands, New Zealand, Australia and Tasmania (see Fig 2 - groups d, e, f), the recov-

ery of species from the General Mixed Yule Coalescent model (mean Ctax = 0.82) separated

this clade into three species (d = Chile, part of Argentina, Uruguay and Kerguelen Islands;

e = Australia; and f = New Zealand). Many previous studies have reported pronounced genetic

differentiation between mussels from Australia/Tasmania and New Zealand (e.g., Gérard et al.

[18], Sanjuan et al. [101], Pickett et al. [102]). Therefore, the SDM results support the taxon-

omy described by Lamy [103] and Powell [104] who separated the Southwest Pacific Ocean

mussels into two species: New Zealand animals were classified as Mytilus aoteanus Powell,

1958 (currently synonymous with M. galloprovincialis—WORMs), and those of Australia as

Mytilus planulatus Lamarck, 1819.

Overall, the GMYC model can be considered suitable for the data. The bGMYC provides

reliable results when the branching rate of the coalescent process is higher than the branching

rate under a Yule process. For our data the distribution of the ratio of the coalescence rate to

the Yule rate is between one and two, with no negative values (S3 Fig). Nevertheless, we recom-

mend studying mussels native to Australia and New Zealand to test the specific hypothesis

within the framework of species delimitation.

Generally, the analysis of broad spatial scale genetic structure based on the COI sequence

variation used in the spatially explicit Geneland analysis supported the species delimitation

models, and identified three main groups within South America. Invasive Northern hemi-

sphere M. galloprovincialis was observed in northern Chile, in the vicinity of Concepcion, con-

sistent with earlier reports of its occurrence here [20,35,105]. A second group of mussels was

identified on the Atlantic Ocean coastline of Argentina and also in the Falkland Islands, corre-

sponding to putative M. platensis (e.g., Zbawicka et al. [34]). However, according to the species
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delimitation analyses, these mussels correspond to clade i (Mytilus edulis—Fig 2). The third and

largest group in terms of area of distribution was recorded for the southern Pacific Ocean coast-

line of South America, south of Punta Lavapié (37˚20’), and included all of the Straits of Magel-

lan and extended north onto the Atlantic Ocean coast of Argentina. This putative species is

consistent with M. chilensis (e.g., Larraı́n et al. [43]). Interestingly, and perhaps somewhat sur-

prisingly, the Uruguay population of Punta del Este, which is near the northern limit of Mytilus
sp. on the Atlantic coast of South America, was also identified as belonging to this third group.

We do not know if this population is a genuine member of the group or if perhaps it represents

a localised introduction of putative M. chilensis into Uruguay. This clearly warrants further

examination, but is beyond the scope of this study. The recent report of introduced Northern

hemisphere M. galloprovincialis in southern Brazil [97] highlights how quickly the situation can

change as records of invasive species establishment change from year to year.

Advantages and limitations of the species delimitation approach

Species delimitation models have strengths and weaknesses and the outcome (interpretation

of species-specific differences) is only as good as the data set being used (single versus multiple

locus or marker; mitogenome versus nuclear genome; rapidly evolving versus conserved loci)

and also will very much depend on the analytical approach (the model and its assumptions)

employed.

The four different single locus (mtDNA) species delimitation tests identified nine (GMYC

and bGMYC) or seven (PTP and bPTP) species, whereas the one multilocus (mtDNA

+ nDNA) test (BPP) identified only five species within the genus Mytilus (excluding the out-

group). GMYC [5] uses as input an ultrametric tree estimated from a single locus. The method

models the transition point between cladogenesis and allele coalescence by assuming that the

former will occur at a rate far lower than the latter. This results in a shift in the rate of branch-

ing of the genealogy that reflects the transition between species-level processes and popula-

tion-level processes (taken from the review by Cartens et al. [2]). On the other hand, bGMYC

takes into account phylogenetic uncertainty gene tree estimates using a Bayesian approach

[90]. Both implementations of the GMYC are likely to delimit well-supported clades of haplo-

types as independent lineages and as such may be prone to over delimitation (sensu Cartens

et al. [2]). This probably explains the erroneous delimitation of clade g (see Fig 2).

The BPP method implements a reversible jump Markov chain Monte Carlo search of

parameter space, which includes population divergence and estimated distributions of gene

trees from multiple loci [6]. The method uses sequence data, and the user is asked to define the

topology of the species tree [10]. Then, the posterior probability of the proposed nodes of the

species tree is calculated. Whilst inaccurately specified guide trees can lead to false-positive

delimitations, the accuracy of BPP is not dependent on its ability to estimate gene trees (sensu
Cartens et al. [2]). Cartens et al. [2] indicated that the validation approaches (such as BPP) are

often given more weight by empirical investigations because they explicitly model the process

of lineage diversification. However, the results should always be interpreted with caution as

the methods are not perfect. In our case, the validation of M. chilensis as the predominant spe-

cies on the Pacific Ocean coast of South America is robust, whereas the validation of M. platen-
sis on the Atlantic Ocean coast is not robust.

Use of sequence data for the identification of species within the genus

Mytilus
Many mitochondrial protein coding genes have been used to study phylogenetic relationships

amongst species [106] due to the high rate of substitution occurring in the third codon
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position. However, the nuclear rDNA (e.g. 18S) is one of the most highly conserved DNA

regions and has been used to reconstruct phylogenies from phyla to orders [107,108]. Whilst

the joint use of nuclear and mitochondrial genetic data has been very useful for recovering a

phylogeny in the Mytilidae [109], the 18S gene has a better phylogenetic signal in analysis

between genders (e.g., Distel [65], Owada [110], Liu et al. [111]), whereas mitochondrial genes

may have more utility in studies of species complexes (e.g. [112–115]). Because of this concate-

nation of DNA sequences from different genes (indeed, different genomes with very different

properties including size, evolutionary rate, and mode of inheritance) with different strengths

or depths of evolutionary signal, it is likely that the multilocus analysis (BPP) failed to recover

the species of the Northern hemisphere (M. edulis and M. galloprovincialis), although they

were evident in the unilocus analyses (PTP, bPTP and bGMYC). However, in both analyses of

species delimitation the specific status of Mytilus chilensis is confirmed for animals that inhabit

southern Chile, part of Argentina, Uruguay and the Kerguelen Islands.

Comparison of species delimitation results with recent SNPs analyses

The species delimitation tests were performed on DNA sequence data, some of which has been

used for decades to assess phylogenetic and phylogeographic variation (e.g. Wares and Cun-

ningham [70], Riginos et al. [71]). The most recent analyses of Southern hemisphere Mytilus
population genetic variation have employed highly variable nuclear DNA markers such as sin-

gle nucleotide polymorphisms (SNPs). These markers have produced new insights into the

taxonomy and phylogeography of native and introduced mussels from New Zealand [116],

Chile [43], Argentina [34], Brazil [97] and Australia [100] and offshore islands [117]. Generally

speaking the interpretation of the phylogeography, and therefore indirectly the taxonomy, of

blue mussels from these Southern hemisphere regions has tended to be based on analyses such

as STRUCTURE [118,119], AWclust [120], CA [121,122] and DAPC plots [123] that identify

distinct genetic clusters, and by inference some degree of genetic isolation and therefore puta-

tive taxonomic identity. SNPs data sets usually provide the greatest level of detail (definition)

of all genetic data sets used to date, but are not designed to work in a phylogenetics setting

because their high mutation rates are generally not suited to such an approach. This is why tax-

onomic problems are usually approached from the phylogenetic and coalescence perspective.

For the Southern hemisphere mussels, greatest congruence was observed between the GMYC

single analysis of the COI data set and the SNPs-based phylogeographic and taxonomic inter-

pretations [34,43,100,116,117]. Overall, the SNPs analyses indicate that in the Southern hemi-

sphere there are clear genetic clusters, that is, distinct genetic entities, in the different major

geographic areas surveyed: Chile (putative M. chilensis), Argentina and Uruguay (putative M.

platensis), New Zealand (putative M. aoteanus), Australia (putative M. planulatus), plus indi-

viduals of mixed ancestry in offshore regions, such as the Falkland Islands (southern Atlantic

Ocean), the Kerguelen Islands (southern Indian Ocean), and the Auckland/Campbell Islands

of New Zealand (southern Pacific Ocean). The broad-scale phylogeography of Southern hemi-

sphere blue mussels has recently been reviewed by Gardner et at. [124]: our SDM and Gene-

land results are consistent with interpretations presented by many authors that are described

in this review. The congruence between the SNP and GMYC results is probably due to the fact

that the precision of the GMYC model increases when a marker with a small effective popula-

tion size and a high mutational rate is used [125]. Clearly, an important next step will be to test

the species delimitation models on the SNPs data sets [34,43,116,117] to compare the objective

results from the models against the subjective, and at times controversial, interpretation of the

researchers in question in describing the taxonomy of Southern hemisphere blue mussels.
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Conclusions

One of the longstanding debates about the taxonomy of the M. edulis species complex, in par-

ticular in the Southern hemisphere, has revolved around some of the subtle differences that

exist (for example, between native mussels from the Pacific Ocean coast of Chile versus the

Atlantic Ocean coast of Argentina, or between South America and Australasia, or on remote

offshore islands such as the Falkland Islands and the Kerguelen Islands), and whether these are

minor differences that reflect an affinity to Northern hemisphere species (i.e., sub-species sta-

tus), or larger evolutionary differences that may reflect distinct species. Ultimately, this inter-

pretation may depend on the definition that is applied of what constitutes a biological species

[4,126] or to what has been called individual researcher ‘ . . . taxonomic preconception.’

(Gérard et al. [18], p. 84). Regardless, the importance of reaching a standardised and univer-

sally agreed taxonomy is apparent, in particular in terms of food labelling, biosecurity and con-

servation [27,43,59]. The unusual basis of mtDNA inheritance in blue mussels, the close

evolutionary relationships amongst the taxa, and the potential for hybridisation between any

pair of co-occurring taxa makes the taxonomic classification and phylogenetic reconstruction

for this group extremely challenging, using either morphological or molecular data [13–

18,127]. It is these same challenges that make this group of mussels ideally suited for testing

using species delimitation models, in particular with new markers such as SNPs. Whilst the

application of five different species delimitation models in this case study focussed on South

American mussels has not identified the full range of putative species identities, the approach

nonetheless shows great promise if applied to more informative markers such as SNPs as well

as to a larger data set with greater geographic coverage.
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