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The COVID-19 pandemic, caused by SARS-CoV-2, had its first cases identified in late
2019 and was considered a clinical pandemic in March 2020. In March 2022, more than
500 million people were infected and 6,2 million died as a result of this disease,
increasingly associated with changes in human hemostasis, such as hypercoagulation.
Numerous factors contribute to the hypercoagulable state, and endothelial dysfunction is
the main one, since the activation of these cells can strongly activate platelets and the
coagulation system. In addition, there is a dysregulation of the renin-angiotensin system
due to the SARS-CoV-2 takeover of the angiotensin converting enzyme 2, resulting in a
strong immune response that could further damage the endothelium. Thrombus formation
in the pulmonary microvasculature structure in patients with COVID-19 is an important
factor to determine the severity of the clinical picture and the outcome of this disease. This
review describes the hemostatic changes that occur in SARS-CoV-2 infection, to further
improve our understanding of pathogenic mechanisms and the interaction between
endothelium dysfunction, kallikrein-kinins, renin angiotensin, and the Coagulation/
fibrinolysis systems as underlying COVID-19 effectors. This knowledge is crucial for the
development of new effective therapeutic approaches, attenuating the severity of SARS-
CoV-2’s infection and to reduce the deaths.
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INTRODUCTION

COVID-19 is a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), a virus of the Coronavidae family with an envelope and genome consisting of a single strand of
positive-stranded RNA. COVID-19 had the first cases identified in Wuhan – China at the end of
2019, and was considered a pandemic by the World Health Organization (WHO) in March of 2020.
To date, more than 500 million people have been infected, and over 6,2 million people have died
gy | www.frontiersin.org June 2022 | Volume 12 | Article 8969721
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worldwide as a result of this disease (Dong et al., 2020; WHO
Coronavirus (COVID-19) Dashboard, 2021).

It is known that some people infected with the new
coronavirus remain asymptomatic, but these people can still
carry and transmit the virus (Johansson et al., 2021). Normally,
COVID-19 is a mild illness associated with, fever, fatigue, cough,
muscle aches, sore throat, loss of smell or taste, and other
symptoms; However, some patients infected with SARS-CoV-2,
may suffer different clinical manifestations, as severe respiratory
syndrome and even death (Wiersinga et al., 2020). Turk et al.
described three critical clinicobiological phases of SARS-
associated coronavirus infections in humans: “asymptomatic/
pre-symptomatic phase”, “respiratory phase with mild/
moderate/severe symptoms” and “multi-systemic clinical
syndrome with impaired/disproportionate and/or defective
immunity” (Turk et al., 2020). Understanding the phases may
be useful for clinical management and development of vaccines
and/or specific drugs targeting the COVID-19 processes

The fatality rate of COVID-19 patients with diabetes was
7.3%, for patients with cardiovascular disease 10.5%, and for
patients without any comorbidities 0.9% (Yang et al., 2020).
Furthermore, when compared to according age groups, people
with age 45 or higher are more likely to die from COVID-19 than
the younger ones. Aging leads to structural and functional
modifications of the vasculature, which may lead to endothelial
dysfunction (Amraei and Rahimi, 2020). Endothelial cells play a
major role in the pathogenesis of this disease, furthermore SARS-
CoV-2 infection promotes changes in hemostasis; a recent study
found that nearly 72% of non-survivors had evidence of
hypercoagulability (Tang, 2020).

The major leading cause of mortality in patients with COVID-
19 is respiratory failure from acute respiratory distress syndrome
(ARDS) (Amraei and Rahimi, 2020). However, deaths resulting
from COVID-19 are significantly associated with vascular injuries
(Wu et al., 2021) and SARS-CoV-2 infection induces changes in
the coagulation and fibrinolytic system (Leentjens et al., 2021).
Such pathophysiological changes generate arterial and, mainly,
venous thrombosis, especially in patients with severe symptoms.
These thrombotic events occur more frequently in the lung, and
bothmacro andmicrothrombi have been reported, the latter being
usually not detectable by imaging, but only by post mortem
autopsy (Asakura and Ogawa, 2021).

Post-mortem histopathological analysis of lung tissue from 38
patients with SARS-CoV-2 demonstrated, in most cases, the
presence of fibrin- and platelet-rich thrombi in pulmonary
arterioles, congested capillaries, and bleeding alveoli, often
containing CD61+ megakaryocytes, and dense capillary foci,
presumably resulting from angiogenesis (Carsana et al., 2020).
In another post-mortem analysis in multiple tissues, there is a
description of congestion and small vessel endotheliitis with
accumulation of mononuclear/lymphocytic cells around the
capillary endothelium in the heart, small intestine, kidney, liver
and lung; in one case, caspase 3 immunostaining revealed the
presence of apoptotic bodies in the endothelial cells lining the
inner wall of inflamed blood vessels. As a consequence of this
vascular disorder, after inflammation, congestion, thrombosis,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
hemorrhage, and endothelial cell death, the surrounding hypoxic
tissues showed evidence of interstitial edema, destruction,
inflammation, fibrosis, and vascular regeneration (Carsana
et al., 2020; Varga et al., 2020). Deep vein thrombosis in the
extremities was accompanied by evidence of recent thrombosis
in the prostatic venous plexus in 6/7 cases by Wichmann and
colleagues (Wichmann et al., 2020).

There are numerous factors that could contribute to the
hypercoagulable state of COVID-19 patients, endothelial
dysfunction being the main factor since endothelial cell
activation can strongly activate platelets and the coagulation
system (Yau et al., 2015). In addition, there is a dysregulation of
the renin-angiotensin system due to SARS-CoV-2 takeover of the
angiotensin converting enzyme 2 (ACE-2) resulting in a strong
immune response that could further damage the endothelium
(Amraei and Rahimi, 2020).

The pathophysiology of endothelial dysfunction and injury
offers insights into COVID-19 associated mortality. Besides this,
a process made up of three main steps which happen
simultaneously in a fine orchestrated fashion – platelet
aggregation, blood clotting and fibrinolysis. The integrity of the
endothelium is also essential for the maintenance of hemostasis
and any disturbances between any of these features can lead to
hemorrhage or thrombosis (Maffei et al., 2015).
CHANGES ON THE ENDOTHELIUM

The infection and viral entry of SARS-CoV-2 into the cell is
mediated by angiotensin ACE-2, transmembrane serine protease
2 (TMPRSS2) and cathepsin L, which cleaves the spike protein
on the viral particle to allow engagement with ACE-2 (Jackson
et al., 2021).

As it is known, some endothelial cells, especially in the lungs,
highly express ACE-2 in its surface, making them a direct target for
coronavirus infection (Hamming et al., 2004). ACE-2 is a type I
transmembrane receptor with 3 domains, a single transmembrane
domain, a cytoplasmic carboxyl domain, and a catalytic
extracellular domain. The main physiological function of ACE-2
is in the regulation and metabolism of Renin-Angiotensin System
peptides opposing the effects of angiotensin II, serving as a counter-
regulatory mechanism to ACE. Usually, ACE-2 catalyzes
polypeptides with preference for hydrolysis between proline and
a hydrophobic aminoacid (Vickers et al., 2002).

ACE-2 generates Ang 1-9 peptide through cleavage of Ang I (1-
10), while ACE converts Ang I into Ang II (Ang 1-8). ACE-2 also
metabolizes Ang II (Ang 1-8) to generate Ang 1-7. The peptides
generated by ACE-2 bind and activate the G-protein coupled
receptor (GPCR). The receptor activation stimulates several major
signaling pathways, including phospholipase A, which will further
generate arachidonic acid (AA), phosphoinositide 3 kinase
(PI3K)/AKT axis, which activates endothelial nitric oxide
synthase (eNOS), and activation of phospholipase C, and an
increase in intracellular calcium levels. These pathways regulate
vasodilation, anti-fibrosis and anti-inflammatory responses in
endothelial cells (Keidar et al., 2007; Heurich et al., 2014).
June 2022 | Volume 12 | Article 896972
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The internalization and shedding of ACE-2 could be mediated
by the proteolytic activity of disintegrin and metalloprotease 17
(ADAM17) and transmembrane protease serine 2 (TMPRSS2)
(Hoffmann et al., 2020). This serine competes with ADAM17 for
ACE-2 processing and is found to promote SARS-CoV-2 entry by
twomechanisms:ACE-2 cleavage,whichpromotesviral uptakeand
spike protein cleavage, which activates it for membrane fusion
(Solinski et al., 2014).

SARS-CoV-2 spike protein can trigger downregulation of
ACE-2 expression in lung tissue and in cell culture, allowing
higher binding of Ang II to AT1 receptors and ultimately
vasoconstriction, enhanced inflammation and thrombosis
(Figure 1) (Verdecchia et al., 2020).

There is strong evidence for a complex association between viral
infections, inflammatory processes, and endothelial cells. The
endothelium is a monolayer of endothelial cells that internally
coat the blood vessels; its importance on hemostasis goes beyond
acting as a barrier against blood loss (Wu, 1992). In normal
conditions of hemostasis, the endothelium maintains a balance
between the procoagulant and fibrinolytic factors, producing
molecules that inhibit platelet aggregation, like nitric oxide (NO),
anti-clottingmolecules, like thrombomodulin, andother important
substances for the fibrinolytic system, such as tissue plasminogen
activator (tPA) (Wu and Thiagarajan, 1996).

When endothelial cells encounter pathogen associated
molecular patterns (PAMPs) such as lipopolysaccharide,
proinflammatory cytokines, interleukin 1 (IL-1), tumor necrosis
factor (TNF), (IL-6) or damage associated molecular patterns
(DAMPs) derived from dead or dying cells, they become
activated. Endothelial cells’ activation can also occur as a direct
cytopathic effect of viral infection (Libby and Lüscher, 2020).
Although SARS-CoV-2 has been reported to directly infect
vascular organoids (Monteil et al., 2020), and case studies
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
reported endotheliitis in COVID-19 patients (Amraei and
Rahimi, 2020), and endothelial infection in glomerular capillary
loops and skin lesions it is still not clear whether vascular damage
can be attributed to a systemic inflammatory response, or is a direct
consequence of the viral infection and replication.

Endothelial activation is a key event that contributes to platelet
activation, changes on hemostasis, and increase on vascular
permeability, with decreased concentrations of anti-clotting
molecules (Zhang et al., 2020). Once activated, the endothelium
cells can express and exert tissue factor activity, amplifying the
enzymatic activity of the coagulation cascade proteins and
triggering thrombin generation and clot formation. These cells
also release von Willebrand factor (vWF) from its Weibel-Palade
bodies, stimulating platelet adhesion and aggregation (Lyons and
Ginsburg, 1994). Associated with the prothrombotic effects of
endothelial cells activation, there is also antifibrinolytic activity,
mostly conformed by increased concentrations of plasminogen
activator inhibitor–1 (PAI-1) (Wu and Thiagarajan, 1996).

SARS-CoV-2 infection of endothelium also triggers the
secretion of the von Willebrand factor (vWF), PAI-1, soluble
thrombomodulin, angiopoietin-2, an increase in endothelium-
derived adhesion molecules (ICAM, VCAM-1 and P-selectin
among others) expression, a decrease of endothelial progenitor
cells circulation, as well as secretion of proinflammatory
interleukins (IL-1, IL6) (Zhang et al., 2020). IL-1 can induce
the production of more IL-1, IL-6 and other proinflammatory
cytokines, and this overproduction is named a “cytokine storm”.
IL-1 stimulation also reduces VE-Cadherin, which maintains the
integrity of the endothelium (Libby and Lüscher, 2020).

Neutrophils have also been shown to contribute to
endothelial damage in COVID-19. Under the influence of the
proinflammatory state, neutrophils in contact with endothelial
cells can release enzymes such as myeloperoxidase (MPO),
FIGURE 1 | The SARS-CoV-2’s spike protein interacts with ACE-2 and allows SARS-CoV-2 infection. This infection causes activation of the endothelium and,
subsequently, increases prothrombotic factors. The infection also enhances inflammation, which further damages the endothelium. ACE-2, angiotensin converting
enzyme 2; KKS, Kallikrein-kinin system; RAS, renin-angiotensin system; BK, bradykinin; vWF, von Willebrand factor; PAI-1, plasminogen activator inhibitor–1; TF,
Tissue factor. Image created in: biorender.com.
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proteinase 3 (PR3), neutrophil elastase (NE) and cathepsin G
(CG) (Qi et al., 2017). Long-term exposure of the endothelium to
these enzymes can lead to disruption of the endothelial barrier
and cell apoptosis, exposing the subendothelium to platelets and
leukocytes (Caillon et al., 2021).

Autopsy studies have shown important endothelial damage of
the lung microvasculature, including loss of “tight junctions”,
separation of the endothelium from its basal membrane and
apoptosis of endothelial cells (O'Sullivan et al., 2020; Zhang et al.,
2020). These apoptotic cells express the ACE-2 receptor, and
analysis by electronic microscope found the presence of SARS-
CoV-2 virions in these cells (Carsana et al., 2020).
ALTERATIONS IN THE NUMBER
AND FUNCTION OF PLATELETS

Platelets are anucleate cell fragmentsderived fromthe bonemarrow
and lung megakaryocytes. When vascular lesion occurs, platelets
quickly adhere to the exposed subendothelium. In conditions of
high shear tension, which is present in arterial vessels, adhesion is
mainly due to the binding of the vWF to glycoprotein Ib (GPIb)
present on the platelet’s surface. On the other hand, in conditions of
low shear stress, which occur in the venous part of the circulatory
system, platelet adhesionmainlyhappens through the interactionof
collagen with the glycoprotein VI (GPVI) or the integrin alpha(2)
beta(1) (Ruggeri et al., 2006). As a consequence of this adhesion,
platelets become activated, there is a change in the organization of
their cytoskeleton which changes its shape, from discoidal to
irregular, with generation of filopodia. Besides, there is exocytosis
of granules,whichmainly contain agonists, likeADPand serotonin.
These molecules interact with specific receptors on the platelet
surface, and as a result activate more platelets. Platelet activation
favors the binding offibrinogenwith integrin alpha (IIb)beta(3) and
this binding is essential, as it allows a connection between adjacent
platelets and platelet aggregation (Peter et al., 1998; Jurk and
Kehrel, 2005).

Platelet’s morphological and biochemical changes are relevant
to COVID-19 pathophysiology. There is evidence that many
pathways of platelet activation are intensified after infection with
SARS-CoV-2, either by an indirect path through the action of
inflammatory cytokines and endothelial damage or directly
through viral infection. Moreover, it has been demonstrated
that SARS-CoV-2 is capable to infect and replicate in
megakaryocytes in the bone marrow and in the lung. Whether
these megakaryocytes produce platelets carrying virions is still
not known (Barrett et al., 2021). Overall, cytokine storm,
thrombin generation, endothelium dysfunction, activation of
(C3a) complement, increase in viscosity and hypoxia are
considered the main reasons for platelet activation and
aggregation caused by SARS-CoV-2.

Generally speaking, thrombocytopenia is frequent in severely
ill patients, being associated with bad clinical prognosis and, also,
death. Many COVID-19 patients, mainly those in intensive care,
display thrombocytopenia, associated with the worst clinical
outcomes. A meta-analysis of 31 studies with 7163 participants
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
observed thrombocytopenia on stern cases, and this was
associated with a 3-fold risk of developing severe COVID-19
(Jiang et al., 2020). Some mechanisms proposed as the main
pathways leading to thrombocytopenia in COVID-19 are:
impaired platelet production, immune depletion and trapping
within growing thrombus and peripheral embolization (Zhang
et al., 2020).

Some markers of platelet activity, such as the maturity and size
of the platelets are significantly associated with severe COVID-19
cases and its lethality (Lyons and Ginsburg, 1994). Besides this, it
has been shown that there is a difference in the transcriptome of
platelets isolated from COVID-19 patients in comparison to non-
infected platelets. The platelet phenotype is more immature, and
changes occur on metabolic paths, including oxidative
phosphorylation and glycolysis (Grove et al., 2009). Platelets do
not act alone, as they amplify extracellular vesicle emission and
tissue factor expression inmonocytes through the interaction of P-
selectin with P-selectin glycoprotein ligand-1 which is exposed on
the surface of monocytes and neutrophils (Zhang et al., 2020).
Communication with dysfunctional endothelium and neutrophils
are key points for neutrophil and platelet activation (Hottz et al.,
2020). In fact, it has been recently shown that alterations in
circulating neutrophils rather than in the endothelium, are
major contributors to the increased thrombotic diathesis in the
hearts of COVID-19 patients (Johnson et al., 2022).

Other important playmakers in this process include extracellular
vesicles (EV), released normally by activated leukocytes, platelets
and endothelium. They carry and signal several physiological
phenomena, such as inflammation, coagulation, and are related
to thrombosis in some cardiovascular diseases (Ridger et al., 2017).
They are important to coagulation, since they promote thrombin
formation by exposing tissue factor and negatively charged
phospholipids. Additionally, they promote thromboinflammation
indirectly, stimulating the release of pro-inflammatory endothelial
cytokines, inteleukin-8 (L-8), IL-6, and monocyte chemotactic
protein 1 (MCP-1), inducing endothelial activation, expression of
cyto-adhesins, and diapedesis. Some previous papers showed
increased circulating EV secreted by platelets and leukocytes in
patients with COVID-19 (Zaid et al., 2020; Krishnamachary et al.,
2021). This is a topic that has not been fully explored and needs
further studies to improve our scientific understanding.

Knowledge gathered until now has shown that some platelet
activation mechanisms contribute to the thrombotic effects of
COVID-19, hence platelet changes are relevant to the
development and symptoms of this illness.
ALTERATIONS IN COAGULATION

The coagulation cascade is made up of a series of reactions that
culminate in the formation of a fibrin clot, which contributes to
prevent bleeding in a vascular lesion. The formation of fibrin
depends on the action of thrombin, that cleaves fibrinogen,
releasing A and B fibrinopeptides, so as to form the fibrin
monomers that polymerize, forming an insoluble net of fibrin.
Besides this, thrombin activates FXIII, which then connects the
June 2022 | Volume 12 | Article 896972
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fibrin fibrils through lysine residues, contributing to a greater
stability of the clot (Siebenlist et al., 2001). Thrombin is
generated from its inactive precursor – prothrombin - through
the action of FXa.

It is possible to didactically divide the coagulation cascade
into two distinct pathways that lead to the activation of FX: the
extrinsic and intrinsic pathways. The extrinsic pathway starts
when the lesion of the blood vessel exposes the tissue factor,
which is made up of cells such as fibroblasts, and this contact
with the intravascular medium, together with the FVIIa, activates
FX. Through the intrinsic pathway, however, the contact of
blood with the negative surfaces leads to the activation of FXII
(contact activation) which starts a cascade that leads to the
activation of FX (Macfarlane, 1964).

Activation of FXII to FXIIa by contact with negatively
charged surfaces also starts the contact system. The contact
system is part of the innate immune system and inflammatory
response mechanism against pathogens. Factor XII, prekallikrein
(PK) and high-molecular weight kininogen (HK) participate in
the coagulation cascade as well as the contact system, having
pivotal roles in the latter. This system can be activated by DNA,
RNA, PAMPs, DAMPs, neutrophil extracellular traps and even
activated platelets (Ito, 2014). In addition, both eukaryotic and
prokaryotic RNA serve as activators of FXII and FXI, thus
leading to activation of the contact system and inducing
immunothrombosis (Kannemeier et al., 2007).

The kallikrein-kinin system (KSS) is also entangled in the
mechanisms that maintain hemostasis. Although the contact
system and the kallikrein-kinin system overlap, the activation
of either has different implications. Activation of the KKS leads
to the liberation of bradykinin (BK), a vasoactive peptide that
plays a pivotal role in inflammation. After binding to bradykinin
receptor 2 (B2R), BK activates a signaling pathway resulting in
pain, fever, edema, hypotension, vasodilatation and increased
vascular permeability (Oehmcke-Hecht and Köhler, 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
It’s important to mention that BK also stimulates the production
of IL-1, TNF-alpha and reactive oxygen substances, which, in turn,
cause endothelial disruption (Tiffany and Burch, 1989).

SARS-CoV-2 infection induces alteration in coagulation and,
in severe cases, can trigger disseminated intravascular coagulation
(DIC) and thrombotic events, especially in the pulmonary
microvasculature, which contributes to the evolution of
dysfunction in this organ (Kannemeier et al., 2007). The
mechanisms that lead to this clinical manifestation are not fully
understood, but it is likely that the intense release of pro-
inflammatory cytokines contributes to trigger the activation of
the coagulation cascade. In this sense, there is a large release of IL-
1 and IL-6 and TNF-alpha during the cytokine storm induced by
SARS-CoV-2 infection (Han et al., 2020). IL-6 has an especially
well described role in helping to activate coagulation by promoting
the synthesis offibrinogen, FVIII and tissue factor (TF) (Stouthard
et al., 1996). Additionally, SARS-CoV-2 infection reduces the
amount of ACE-2, which results in increased levels of
angiotensin II. Elevated levels of angiotensin II favor the
activation of coagulation and inhibition of the fibrinolytic
system, which favors the prothrombotic state in COVID-19
(Figure 2) (Lazzaroni et al., 2021; Salabei et al., 2021).

It is observed that coagulation tests such as activated partial
thromboplastin time (aPTT) and prothrombin time (PT) tend to
be higher in symptomatic COVID-19 patients than in healthy
individuals (Zhu et al., 2021; Luo et al., 2021). Although several
studies indicate that aPTT, and especially PT, are also
considerably higher in patients who died than in people who
had less severe cases of COVID-19, a meta-analysis indicated
that the results described in the literature are very heterogeneous,
requiring caution and more data to establish a clear relationship
between the severity of COVID-19 and PT and aPTT values (Lin
et al., 2021).

In patients with COVID-19, especially those with greater
severity and who died, they presented increased levels of
FIGURE 2 | SARS-CoV-2 induces cytokine storm formation and increased levels of angiotensin II. Such alterations contribute to the activation of the coagulation
cascade and, consequently, to thrombus formation. Image created in: Biorender.com.
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fibrinogen concentration. This finding is quite different from
what is normally observed in cases of consumptive coagulopathy
associated with sepsis, in which a fall in fibrinogen levels is
associated with mortality (van Vught et al., 2021). Furthermore,
sepsis-induced coagulopathy usually has a much more marked
prolongation of global clotting times than in COVID-19 cases
(Lin et al., 2021). Thus, changes in the coagulation cascade
caused by COVID-19 seem to be quite distinct of this disease.

Another alteration typically observed in COVID-19 patients is
an increase in the activity and amount of vWF. The vWF is a
circulating adhesive glycoprotein that promotes platelet
aggregation, contributes to blood coagulation forming a complex
with factor VIII, regulates angiogenesis, and vascular permeability.
vWF levels are elevated in inflammation, aging, diabetes and other
diseases associated with endothelial dysfunction (Amraei and
Rahimi, 2020). Besides this, in patients with severe cases, there is
a downregulation in the activity of ADAMTS-13 through different
mechanisms, with a small reduction of these activities, and an
increase on the level of their inhibitors. The consumption of the
vWF high molecular weight multimers (HMWM—vWF) is
common in patients that require intensive therapy (Philippe et al.,
2021). In contrastwithother types of sepsis, an increase in the vWF/
ADAMTS-13 ratio was observed, and a significant inverse
correlation between vWF : Ag levels and ADAMTS-13 activity
(Ward et al., 2021). This unbalance between substrate and enzyme
in a tangential stress condition is probably even more noticeable in
the lung microvasculature, the site where endothelial damage
becomes more evident with greater formation of micro-
thrombus. Moreover, it is known that the plasmatic distribution
of the vWF multimers in these patients is similar to those found in
acute thrombotic thrombocytopenic purpura patients (Ward
et al., 2021).
ALTERATIONS IN THE FIBRINOLYTIC
SYSTEM AND ANTICOAGULATION

The fibrinolytic system is an important defense against
intravascular thrombosis, and there is substantial evidence that
the imbalance of this system is involved in the pathophysiology
of cardiovascular ischemic events and endothelial dysfunction.
The imbalance is driven, at least in part, by inappropriate activity
of the renin–angiotensin system, which interacts with the
fibrinolytic system at the level of the endothelium (Chapin and
Hajjar, 2015).

Although the formation of the fibrin network is essential to
prevent blood leakage, a system is needed to prevent its
unrestrained formation, which can obstruct the vessels. This
function is mainly performed by the fibrinolytic system, whose
main component is plasmin, a serine protease that degrades
fibrin, generating soluble fibrin degradation products (FDP).

Plasmin is generated from its inactive precursor, plasminogen,
which can be activated by tissue tPA or by urokinase plasminogen
activator (uPA). Once initiated, fibrinolysis is accelerated by a
positive feedback mechanism. These activators can be inhibited
by PAI-1, whereas plasmin can be directly inhibited by alpha2-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
antiplasmin (Mutch et al., 2007). Endothelial cells and vascular
smooth muscle cells are the main source of tPA and PAI-1,
controlling fibrinolysis locally.

The coagulation cascade can still be inhibited in order to
avoid its excessive activation. The most relevant coagulation
inhibitors are tissue factor protease inhibitor (TFPI), protein S,
thrombomodulin, protein C and antithrombin. The mechanisms
of action of these inhibitors are varied. For example,
antithrombin directly inhibits thrombin, which is facilitated by
the presence of heparin or heparan sulfate, whereas TFPI,
produced by endothelial cells, inhibits both the tissue factor/
FVIIa complex and FXa. Also, the C1 esterase inhibitor (C1-
INH), natural regulator of the complement, kallikrein-kinin,
contact and fibrinolytic system, is being investigated for
treatment of COVID-19, targeting multiple systems involved in
the disease (Adesanya et al., 2021).

In critically ill COVID-19 patients, studies have demonstrated
reduction of natural anticoagulant systems, with decreased
serum concentration of antithrombin and protein C, which can
contribute to the hypercoagulability state that characterizes
SARS-CoV-2 pathophysiology. It is known that plasma natural
coagulation is decreased in patients with sepsis or DIC, and is
also associated with disease severity (Zhang et al., 2020). A
hypofibrinolytic state, additionally, has been observed,
reflecting changes in the fibrinolytic system, with increased
TFPI concentration (Caciola et al., 2021). As a consequence,
the thrombi formation becomes easier, mainly inside the
pulmonary microvasculature. More studies are needed to
evaluate other parameters of natural coagulation, in order to
determine the importance of these changes on the whole picture
of COVID-19 disease.

In COVID-19 it is also observed, especially in more severe
cases, an increase in the concentration of D-dimers, molecules
produced due to fibrin degradation. Markedly increased D-dimers
were detected early on in patients with COVID-19 (Huang et al.,
2020). Elevation in D-dimer levels was associated with poor
disease prognosis, and its dosage was extensively performed
globally as a laboratory test in patients’ admission (Rostami and
Hassan, 2020; Yu et al., 2020). Different papers try to suggest D-
dimer cut-off levels as a prognostic indicator (Favaloro and
Thachil, 2020; Zhou et al., 2020). Despite this, there is still
controversy regarding the mechanism that causes the increase in
the levels of D-dimers, and it is possible that this effect is a result
only of the increase in the amount offibrin formed in SARS-CoV-
2 infection (Lazzaroni et al., 2021).
VASCULAR CHANGES IN THE LUNG

The pulmonary vasculature is responsible for the perfusion of
these organs and is essential for proper hemostasis (Lammers
et al., 2021). Histopathological studies demonstrating the
structural and vascular changes in the lungs caused by
COVID-19 are still limited. However, it has been reported that
patients who died from COVID-19 often present hemorrhage,
deposition of fibrin and, most importantly, formation of
microthrombi in the pulmonary vasculature. In this sense, the
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formation of microthrombi in pulmonary capillaries occurs with
greater intensity in COVID-19 than in influenza and is a factor
that reduces respiratory efficiency by contributing to increase the
dead space in ventilation (Pannone et al., 2021).

Post-mortem analysis also suggests that severe SARS-CoV-2
infection increases angiogenesis in the lung more intensely than
seen with other respiratory infections such as influenza. This effect
can be explained, at least in part, by the infiltration of pro-
inflammatory cells, mainly macrophages, which are also capable
of releasingpro-angiogenic compounds.The excessive proliferation
of blood vessels in severe cases of COVID-19 abnormally increases
perfusion, and is thus a factor that reduces the ratio of ventilation to
perfusion in the lungs, contributing to hypoxaemia (Osuchowski
et al., 2021). The formation of pulmonary edema is also associated
with severe COVID-19, which occurs as a result of increased
permeability of alveolar blood vessels in response to the
interaction between kinins and their receptors on endothelial cells
(Pérez-Mies et al., 2021).

COVID-19, especially in severe cases, was still associated with
bleeding higher risk of hemorrhage, deep vein thrombosis and,
especially, pulmonary embolism than individuals without this
disease. These effects of COVID-19 remained significant even
when adjusting for correlations for comorbidities and other risk
factors, such as the advanced age of patients. Furthermore, it was
observed that these effects did not appear to be minimized in
individuals undergoing chronic anticoagulant therapy
(Katsoularis et al., 2022).
CONCLUSIONS

The clinicalmanifestations ofCOVID-19, especially in severe cases,
are intrinsically related to hemostatic disorders caused directly or
indirectly by SARS-CoV-2 infection. In general, COVID-19
promotes the occurrence of a prothrombotic state in the patient,
which contributes to the obstruction of blood vessels. Thrombus
formation in COVID-19 is mainly favored by the establishment of
an inflammatory state that leads to endothelial activation, which, in
turn, contributes to the excessive platelet aggregate formation,
activation of the coagulation cascade and inhibition of the
fibrinolytic system. In addition, the acquisition of ACE-2
influences the renin-angiotensin and kallikrein-kinin systems
toward a prothrombotic state. The hemostatic changes resulting
from COVID-19 are mainly manifested in the pulmonary
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
microvasculature, being an important factor for the impairment
of respiratory function observed in patients, especially those with
more severe conditions.
FUTURE DIRECTIONS

The detailed investigation of the mechanisms related to these
alterations can contribute not only to a better understanding of
COVID-19 pathophysiological mechanisms but can also indicate
new directions for possible treatments in the infection by SARS-
CoV-2 and better monitoring of hospitalized patients. Therefore,
this review aims to further improve the understanding of the
pathophysiology of COVID-19 by providing a detailed
description of the molecular mechanisms involved in human
hemostasis alterations after SARS-CoV-2 infection. We believe
that better understanding of the CS, KKS, RAS and/or the
Coagulation/Fibrinolysis systems, as well as how the
interactions occur between them, and their consequences in
the hemostasis, can contribute to a better understanding of the
thrombotic state, observed in COVID-19. The knowledge of
these mechanisms is crucial for the better disease understanding
and could lead to therapies that modulate the human hemostasis,
attenuating or inhibiting vessel obstruction, especially of the
pulmonary microvasculature, due to the formation of thrombi.
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