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Single-cell sequencing has gained popularity in recent years. Despite its numerous applications, single-
cell DNA sequencing data is highly error-prone due to technical biases arising from uneven sequencing
coverage, allelic dropout, and amplification error. With these artifacts, the identification of somatic geno-
mic variants becomes a challenging task, and over the years, several methods have been developed
explicitly for this type of data. Single-cell variant callers implement distinct strategies, make different
use of the data, and typically result in many discordant calls when applied to real data. Here, we review
current approaches for single-cell variant calling, emphasizing single nucleotide variants. We highlight
their potential benefits and shortcomings to help users choose a suitable tool for their data at hand.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, single-cell sequencing studies have gained
momentum due to their capacity to disentangle biological differ-
ences in apparently homogeneous tissues [1–6]. While the
single-cell field has logically focused on single-cell RNA sequencing
(scRNA-seq) [7], due to its ability to unveil functional variation
directly, single-cell DNA sequencing (scDNA-seq) [8] has also been
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Fig. 1. Single-cell whole-genome amplification biases. Technical biases arising during single-cell whole genome amplification can be detected from the sequencing reads, like
allele dropout (ADO) (1), allelic imbalance (AI) (2), locus dropout (LDO) (3), and amplification errors (4). Coverage breadth and depth are more heterogeneous for single-cell
compared to bulk sequencing.
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beneficial in understanding the role of somatic mutations in devel-
opment, aging, and disease, particularly in cancer [9–19]. Nowa-
days, single-cell omic sequencing goes beyond the study of
genomic variants or expression levels and includes the analysis
of methylation (e.g., scMethyl-seq [20]) and chromatin architec-
ture with techniques like scATAC-seq [21] and scHi-C [22]. These
single-cell sequencing technologies are used in research fields like
cancer, microbiology, neurology, development, or reproduction
biology [23–26]. This review will focus on the bioinformatic meth-
ods developed to identify genomic alterations from scDNA-seq
data, particularly single-nucleotide variants (SNVs). Excellent
reviews already exist for the detection of copy-number variants
(CNVs) from scDNA-seq [27] and also for the identification of SNVs
from scRNA-seq data [28], so we will not pursue these topics
further.
1.1. Errors in single-cell DNA sequencing data

A single cell typically contains a limited amount of DNA, around
6–7 pg in the case of human cells. Because of this, most single-cell
protocols require a whole-genome amplification step (scWGA) to
produce enough DNA for sequencing [8,29]. After scWGA, some
regions in the original genome become overrepresented, while
others are underrepresented or never amplified. When the
single-cell libraries are sequenced, the coverage along the genome
is very heterogeneous. Often, maternal or paternal alleles are dis-
proportionally represented (i.e., allelic imbalance or bias; AI) or
absent (i.e., allelic dropout; ADO) in the sequencing reads. Further-
more, errors in the DNA can occur during cell lysis, DNA extraction,
library preparation, or scWGA, leading to a number of spurious
nucleotide changes in the sequencing reads [8,30]. scDNA-seq data
are therefore very noisy. This technical noise can result in missing
2979
or wrong genotype calls during single-cell variant calling, both
false positives and false negatives (Fig. 1).
1.2. Modeling of single-cell DNA sequencing errors

To deal with single-cell noise, multiple variant callers have been
proposed specifically for scDNA-seq data (described below). These
tools can call a variety of genomic variants, including single-
nucleotide variants (SNVs), copy-number variants (CNVs), small
insertion or deletions (indels), and structural variants (SVs). Calling
genomic variants from scRNA-seq data is less common, but some
tools have been developed for this purpose [31]. Below we review
and discuss the technical properties and usability of different sc-
DNA-seq callers. As an excellent review is in place for scDNA-seq
CNV detection [27], we concentrate on scDNA-seq SNV calling.
But before exploring the different scDNA-seq variant callers avail-
able, we believe it is worth describing how these methods typically
deal with the technical errors resulting from the scWGA step. The
basic model for scDNA-seq error assumes only two states for the
genotypes, mutated (1) or not (0), and that false positive and false
negative scWGA errors occur at rates a and b, respectively.

If for a given cell and locus, P (A | G), is the probability of the
amplified genotype (A) given the true genotype (G), then:

P 0 0jð Þ ¼ 1� a
P 0 1jð Þ ¼ b

P 1 0jð Þ ¼ a
P 1 1jð Þ ¼ 1� b

ð1Þ

While the probabilities above correspond to the genotypes, the
input data for all variant callers are the sequencing reads. Read
counts at a locus are typically modeled using a Beta-Binomial dis-
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tribution, as for bulk data [32]. Therefore, the probability of ampli-
fied genotype A given the observed number of reference (r) and
alternate read (a) counts at a given locus and cell is:

P r; a A ¼ 0jð Þ ¼ r þ a

a

� �
ea 1� eð Þr

P r; a A ¼ 1jð Þ ¼ r þ a

a

� �
la 1� lð Þr

ð2Þ

where e and l are Beta distributed variables for the probability of
drawing an alternate read. Note that e represents the sequencing
error. Finally, the joint probability of the observed read counts
and the amplified genotype given the true genotype can be com-
puted by multiplying the probabilities above:

P r; a;A ¼ 0 G ¼ 0jð Þ ¼ r þ a

a

� �
ea 1� eð Þr 1� að Þ

P r; a;A ¼ 0 G ¼ 1jð Þ ¼ r þ a

a

� �
ea 1� eð Þrb

P r; a;A ¼ 1 G ¼ 0jð Þ ¼ r þ a

a

� �
la 1� lð Þra

P r; a;A ¼ 1 G ¼ 1jð Þ ¼ r þ a

a

� �
la 1� lð Þr 1� bð Þ

ð3Þ

Then, for n cells and m loci, the likelihood function for the prob-
ability of the true genotype G given the read counts is:

L Gð Þ ¼
Yn
i¼1

Ym
j¼1

P rij; aij Gij

��� � ð4Þ

Statistical methods can then be applied to calculate the maxi-
mum likelihood genotypes or their posterior distribution given
the observed reads. Similar models have been described or
extended by different people [33–39].

2. Single-cell variant callers

2.1. SNV scDNA-seq callers

We identified ten tools specifically designed for calling SNVs
from scDNA-seq data. They adopt different methodological strate-
gies (Table 1), have distinct capabilities (Table 2), possess specific
technical features (Table 3), and are freely accessible from public
repositories (Table 4). These tools assume that data and errors at
different loci are independent and that the SNVs are biallelic and
located in diploid regions. The input data are then mapped
sequencing reads (BAM format) or the read counts with their base
quality scores (mpileup format). While the different tools specify a
minimum number of reads per site by default, these are not strict
requirements and can be changed.
Table 1
Methodological strategies and assumptions of scDNA-seq variant callers. Tools can use all c
Some callers use phylogenetic information or follow the infinite-sites assumption. The alleli
(global) or not (local). Some tools use linked hSNPs to identify errors.

Calling
strategy

Phylogeny Infinite sites assumption

Monovar joint no no
SCcaller marginal no no
SCIU joint yes yes
LiRA marginal no no
Conbase joint no no
SCAN-SNV joint no no
scVILP joint yes yes
ProSolo marginal no no
SCIUN joint yes no
Phylovar joint yes yes
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Monovar [38], the first single-cell variant caller, uses mapped
reads from multiple cells to compute the posterior probability of
a locus containing at least one alternate allele. In doing so, it calcu-
lates the likelihood of the heterozygote and homozygote geno-
types, accounting for false-positive errors and ADO, via a
dynamic programming algorithm. After assigning each cell the
genotype with the highest posterior probability, an optional con-
sensus filter retains only variants called in two or more cells.

SCcaller [40] computes the likelihood of being a heterozygous
or homozygous SNV, or an artifact, for a set of candidate variant
loci. Then it uses a likelihood-ratio test to distinguish real SNVs
from artifacts, whose null distribution accounts for AI, sequencing
depth, and quality. Here, the level of AI is estimated independently
for each candidate SNV using a kernel smoothing that considers the
degree of bias in the read distribution from neighboring heterozy-
gous germline single-nucleotide polymorphisms (hSNPs). SCcaller
only calls variants and does not distinguish missing data from an
unmutated state.

SCIU [39] was the first caller that jointly inferred the evolution-
ary relationships between cells and the cell genotypes. SCIU first
identifies candidate SNVs based on the posterior probability of
observing one or more mutated cells at each locus. For this, it mod-
els the read count distribution considering amplification errors and
ADO. The candidate SNVs are then used to estimate the underlying
cell phylogeny and model parameters using Markov Chain Monte
Carlo (MCMC), considering the zygosity. In a final step, mutations
are assigned to the individual cells sampling from the posterior
distribution approximated by the MCMC. SCIUN [41] relaxes the
infinite site assumption (see below) of SCIU, allowing for muta-
tional recurrence and loss.

LiRA [42] uses read-phasing information from physically-linked
hSNPs to distinguish real SNVs from scWGA artifacts. In the set of
‘‘spanning” reads that cover the positions of both an SNV and an
hSNP, true SNVs will appear together with either the alternate or
the reference hSNP allele. In contrast, false SNVs will appear both
with the alternate and the reference hSNP allele (Fig. 2). ADO will
be detected here when all reads carry either the alternative or the
reference hSNP allele. LiRA initially identifies candidate SNVs using
the Genome Analysis Toolkit (GATK) [43], jointly for every cell and
a matched healthy bulk, requiring no reads for the alternate allele
in the bulk sample and at least one read for the alternate allele in
the single cell. hSNPs are taken from dbSNP [44]. While this linked-
hSNP strategy reduces the number of SNVs that can be identified, it
should produce very precise calls. As SCcaller, LIRA only calls
mutated genotypes. To maintain the estimated FDR at a tolerable
level, LiRA estimates the minimum composite coverage threshold
by which FDR �10%.

As LiRA, Conbase [45] uses phasing information from hSNPs to
correct for errors and allelic dropout, but unlike it, looks for haplo-
ells simultaneously (joint calling) or do mutation calling cell by cell (marginal calling).
c imbalance and the amplification error are assumed to be constant across the genome

Allelic Imbalance/dropout Amplification error Linked hSNPs

global global no
local global no
global global no
local local yes
local local yes
local local no
global global no
local local no
global global no
global global no



Table 2
Capabilities of scDNA-seq variant callers. All callers identify somatic variants, whereas some also include germline variants and indels in their output. Some callers can also give
homozygous mutant genotypes and impute missing genotypes. Most callers can call singletons (mutations that appear just in one cell), and SCAN-SNV also detects doublets (pairs
of cells erroneously treated as a single cell).

Germline calls Somatic calls Indels Homozygous mutations Genotype imputation Call
singletons

Detects doublets

Monovar yes yes no yes no yes no
SCcaller no yes yes yes no yes no
SCIU no yes no no yes yes no
LiRA no yes no no no yes no
Conbase no yes no yes no no no
SCAN-SNV no yes no yes no yes yes
scVILP yes yes no no yes yes no
ProSolo yes yes no yes yes yes no
SCIUN no yes no no yes yes no
Phylovar yes yes no no no yes no

Table 3
Technical features of scDNA-seq variant callers. The input formats can be BAM (https://samtools.github.io/hts-specs/SAMv1.pdf) or mpileup (http://www.htslib.org/doc/
samtools-mpileup.html). All tools require a reference human genome, and some of them also need a set of candidate SNVs and SNPs, normal/tumor bulk samples, or a dbSNP file
(https://www.ncbi.nlm.nih.gov/snp). The output format is VCF (https://samtools.github.io/hts-specs/VCFv4.2.pdf), its binary counterpart BCF, TSV (tab-separated values), or RDA
(R data file).

Input format Other input files Bulk sample dbSNP Output Computer language

Monovar BAM Ref. genome no no VCF Python
SCcaller BAM Ref. genome normal yes VCF Python
SCIU Mpileup Ref. genome normal no VCF C++
LiRA BAM Ref. genome, candidate SNVs normal yes VCF Python, R
Conbase BAM Ref. genome, SNPs normal no TSV Python
SCAN-SNV BAM Ref. genome normal yes RDA Python, R
scVILP Mpileup Ref. genome no no VCF Python, C++
ProSolo BAM Ref. genome, candidate SNVs tumor no BCF Python
SCIUN Mpileup Ref. genome normal no VCF C++
Phylovar Mpileup Ref. genome no no VCF Python

Table 4
References and URLs for scDNA-seq variant callers.

Reference URL

Monovar Zafar et al., 2016 https://bitbucket.org/
hamimzafar/monovar/

SCcaller Dong et al., 2017 https://github.com/biosinodx/SCcaller
SCIU Singer et al., 2018 https://github.com/cbg-ethz/SCIPhI
LiRA Bohrson et al., 2019 https://github.com/parklab/LiRA
Conbase Hård et al., 2019 https://github.com/conbase/conbase
SCAN-

SNV
Luquette et al., 2019 https://github.com/parklab/scan-snv

scVILP Edrisi et al., 2019 https://github.com/mae6/scVILP
ProSolo Lähnemann et al.,

2021
https://github.com/ProSolo/prosolo

SCIUN Kuipers et al., 2022 https://github.com/cbg-ethz/SCIPhIN
Phylovar Edrisi et al., 2022 https://github.com/NakhlehLab/

Phylovar
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type concordance across all cells, distinguishes missing data from
unmutated genotypes, only calls SNVs present in at least two cells,
and considers SNPs other than dbSNP, augmenting the proportion
of phasable SNVs slightly. Conbase starts by identifying SNVs
linked to hSNPs where multiple cells show support for the same
alternative allele. Then it considers the different combinations
(‘‘tuple pairs”) of SNV and linked hSNP alleles in the reads across
all cells, using adjustable frequency thresholds for the tuple pairs
to call the single-cell genotypes.

SCAN-SNV [46] implements a genome-wide spatial model of AI
that leverages the variant allele frequency (VAF) at a large set of
phased hSNPs. SCAN-SNV first uses GATK HaplotypeCaller on
single-cell and bulk sequencing data to generate a list of candidate
variant sites. Then, hSNPs in the bulk data are phased with SHA-
PEIT [47] and used to train the AI model. SCAN-SNV identifies true
SNVs by requiring the VAF of candidate SNVs to match the esti-
mated (balanced or imbalanced) local VAF and be inconsistent
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with typical pre-amplification and early-amplification artifacts.
This method also includes a false discovery rate (FDR) tuning strat-
egy based on the stringency of the p-value thresholds for candidate
SNVs with low VAFs.

scVILP [33] implements the joint inference of single-cell SNVs
and the cell phylogeny as a combinatorial optimization problem.
Using statistical models for single-cell errors and sequencing cov-
erage, it tries to identify the set of single-cell genotypes that max-
imizes the probability of the observed read counts while enforcing
the infinite-sites assumption (i.e., SNVs occur once along a ‘‘per-
fect” cell phylogeny). scVILP can impute genotypes at loci with
missing data (i.e., without read counts). It requires quite a bit of
memory and is more suited for target sequencing data.

ProSolo [48] uses a probabilistic model that considers the speci-
fic biases of multiple-displacement amplified (MDA) [49] scWGA in
a site-specific manner, following a mechanistic model of amplifica-
tion bias trained on empirical data [see [50]] and assessing ampli-
fication errors upon a bulk sample from which the single cells are
supposed to stem. Furthermore, Prosolo can impute genotypes
using the bulk sample, calculate the posterior probability of ADO
at a particular site, and flexibly control the FDR.

Phylovar [51] is a likelihood-based method for joint variant call-
ing and phylogenetic inference, similar to SCIU and scVILP, but that
has been specifically designed to scale well with large data sets
with thousands of SNVs. Phylovar first identifies candidate SNVS
using SCIU’s LRT. Afterward, a hill-climbing search algorithm is
used to maximize the probability of the observed read counts given
the cell phylogeny, the placement of mutations, and the single-cell
error rates.
2.1.1. Calling strategies
2.1.1.1. Joint vs. marginal calling. Single-cell SNV callers could be
broadly classified into two groups depending on whether they per-
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Fig. 2. SNV assessment with linked hSNPs. Variant alleles at SNVs and linked hSNPs should appear consistently in the same reads if they occur in the same chromosome in the
original cell genome (cis configuration). On the contrary, they should appear consistently in different reads if they occur in different chromosomes in the original cell genome
(trans configuration). During cell lysis or scWGA in cis with the hSNP variant alleles, errors will appear exclusively on a fraction of the reads that carry the hSNP alternate
allele. In contrast, errors in trans with the hSNP variant alleles will appear exclusively on a fraction of the reads that do not carry the hSNP alternate allele. ADO becomes
evident when all or none of the linked reads carry the hSNP alternate allele.
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form joint or marginal variant calling. During joint calling, the
information from all cells is considered at once, while in marginal
calling, each cell is analyzed in turn. Monovar, Conbase, SCIU,
SCIUN, SCAN-SNV, scVILP, and Phylovar can perform joint variant
calling, while SCcaller, LiRA, and ProSolo carry out marginal calling.
2.1.1.2. Use of phylogenetic information. Most joint calling tools like
SCIU, SCIUN, scVILP, and Phylovar leverage the phylogenetic infor-
mation contained in single-cell genomes to call variants. The key
idea is that closely related cells are expected to share the same
genotype more often than cells distant in the phylogeny.
2.1.1.3. Infinite-sites assumption. Given the low mutation rate typi-
cally assumed for somatic cells, the callers that use phylogenetic
information (SCIU, scVILP, and Phylovar, but not SCIUN) follow
the so-called infinite-sites assumption (ISA), by which a mutation
is supposed to occur only once at a given genomic site. Methods
that do not use phylogenetic information do not constrain the
number of mutations at a given locus and therefore implicitly
allow for violations of the ISA. Recent studies suggest that, at least
in cancer, the ISA might not hold universally [52,53].
2.1.1.4. Allelic imbalance and allelic dropout. AI and ADO are funda-
mental biases introduced by the scWGA step that can severely con-
found variant calling from single cells. Different methods use
distinct approaches to deal with this. Monovar, SCIU, scVILP,
SCIUN, and PhyloVar assume or estimate a global ADO or false-
negative rates like the one described in Eq. (1) above, which applies
to all loci and cells.

SCcaller and SCAN-SNV estimate how AI varies across the gen-
ome using neighboring hSNPs. In the absence of allelic imbalance,
the VAF at hSNPs should be 0.5, becoming 0 or 1 in the case of ADO.
LiRA and Conbase also take advantage of hSNPs but focus on those
located in the same reads as the candidate SNVs. ADO is detected
when all reads, or none, contain the variant allele at the linked
hSNPs (Fig. 2). Read-backed phasing allows for more reliable iden-
tification of singletons –SNVs seen only in one cell– but restricts
the SNV call set to sites linked to an hSNP.

To model AI, ProSolo leverages a beta-binomial mixture model
from Lodato et al. [50], whose parameters can be learned from
empirical data. Calls are improved using an unamplified bulk sam-
ple from the same cell population as the single cells.
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2.1.1.5. Amplification error. As in the case of ADO, the different
methods deal distinctively with errors arising during cell isolation,
lysis, or scWGA. Monovar, SCcaller, SCIU, scVILP, SCIUN, and
Phylovar include a global error or false positive rate parameter
across loci and cells (see Eq. (1)).

LiRA and Conbase use linked hSNPs to identify potential false
positives at candidate SNVs. SCAN-SNV detects false positives as
candidate SNVs that do not match the estimated AI estimated for
that region or have a VAF consistent with pre-amplification or
early amplification artifacts. ProSolo assumes a locus-specific false
positive error rate.

2.1.1.6. Genotype imputation. Furthermore, due to the remarkable
coverage heterogeneity in scDNA-seq data, often, some genotypes
are not called. Some single-cell callers can impute the missing
genotypes, either using a matched bulk sample, like ProSolo, or
phylogenetic information, according to the genotypes assigned to
the internal nodes of the cell phylogeny, like SCIU and SCIUN.

2.1.1.7. Post-calling filters. Distinguishing errors from singletons
(i.e., mutations seen only in one cell) is not easy unless one relies
on specific strategies, like linked reads. Therefore, some tools
implement a consensus post-calling filter that keeps only those
mutations seen in at least two cells. Conbase and Monovar apply
a consensus filter during variant calling, which can be deactivated
in the case of Monovar. Indeed, researchers can write their own fil-
ters, and other tools exist to improve the quality of the single-cell
genotypes [54].

2.2. Performance comparison

2.2.1. Statistical performance
The statistical performance of the different single-cell somatic

variant callers has been benchmarked every time a new method
was introduced. These studies typically compare the callers in
terms of precision (the fraction of the called variants that are true),
false discovery rate (the fraction of the called variants that are
wrong), or recall (the fraction of true variants that are identified).

In general, these comparisons consider subsets of the available
methods, and in most cases, the method introduced by the authors
performs better than the competitors, throwing inconsistent
results among different studies. According to these benchmarks,
single-cell variant callers have higher precision than recall, which



Fig. 3. Runtime for single-cell SNV callers. Plot showing run times for scDNA-seq variant callers on a dataset with 24 single-cell whole-genomes. Colors highlight distinct
callers. The X-axis represents four different job-splitting strategies (note that different tools have different capabilities in this regard). The Y-axis is in log-scale and represents
the maximum number of hours required by a given tool.
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the exception being Monovar, which typically results in a lot of
calls, with a good recall at the cost of lower precision
[39,40,42,45,46,48]. SCcaller is more precise than Monovar, and
their relative recall depends on the specific study [40,45,46,48].
On the other hand, SCIU has, in general, a good recall (further
improved in SCIUN) and performs similarly to scVILP and Phylovar
[39,48,51]. LiRA and Conbase are very precise and can have a good
recall when referring to SNVs linked to hSNP [42,45]. However,
they cannot identify unlinked SNVs, so their genome-wide recall
is very low. SCAN-SNV also shows high precision but at the price
of a lower recall rate [46]. ProSolo is the most recent single-cell
variant caller. According to its developers, ProSolo has better recall
and precision than Monovar, SCIU, SCcaller, and SCAN_SNV [48].
2.2.2. Speed benchmark
We tested the relative speed of the different callers (Fig. 3). For

this, we computed the time necessary to call SNVs from a scDNA-
seq (WGS 6X) dataset produced in our lab, consisting of 24 single-
cell whole-genomes from a colorectal cancer patient (CRC24 in
[37]). We excluded scVILP from this benchmark as it can only work
with targeted data. Different callers use distinct parallelization
strategies. Phylogeny-based callers like SCIU, SCIUN, and Phylovar
can only be run as a single job analyzing all cells simultaneously. In
contrast, joint callers like Monovar and Conbase can be run
chromosome-wise, reducing the runtime by 10-fold. Under these
two computational strategies (single job and chromosome-wise),
Conbase was the fastest tool, implying approximately 50 and 3 h,
respectively. SCcaller and ProSolo can be parallelized at two differ-
ent levels, cell-wise and per cell per chromosome. The latter
reduced the runtime dramatically, so these two tools finished their
analysis in less than one hour, which was the minimum runtime
for this dataset. SCAN-SNV as a single job implied thousands of
hours, but when the tasks were split by chromosome per cell, the
runtime was reduced to approximately 8 h. LiRA cannot work
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chromosome-wise, as it leverages genome-wide somatic mutation
rates, but it can work one cell at a time. Still, under both strategies
it was the slowest method.
3. Conclusions

Accurate single-cell variant calling is critical for recognizing
somatic genomic heterogeneity at the ultimate level of resolution,
identifying variants in rare cell populations, and for downstream
analyses related to cell biology, development, and somatic evolu-
tion. The analysis of scDNA-seq implies numerous challenges
derived from technical biases occurring during cell processing
and scWGA. Protocols that bypass the scWGA step exist [55,56],
but they are typically custom-made and not very portable.

Most single-cell variant callers are very precise, and their recall
varies across different scenarios and simulation studies. All the
benchmarks have been exclusively carried out when presenting a
new single-cell variant caller. Therefore, they are prone to a self-
assessment trap [55], with the authors’ method being the best
under the different scenarios simulated. Comprehensive, third-
party benchmarking studies like those carried out for bulk variant
calling [57,58] are still lacking for single-cell variant callers. The
computational speed of the different tools depends heavily on
the possibility of simultaneously running multiple jobs (per cell
and per chromosome). SCcaller and Prosolo, or Conbase if only a
single job is possible, were the fastest tools for the exemplar data-
set we selected for benchmarking.

Choosing the appropriate single-cell variant caller is not easy
and depends on the particular question at hand. If the interest is
in detecting very reliable but not necessarily many mutations,
linked-read strategies should offer a reasonable precision rate.
However, if the interest is in describing diversity or in performing
genome-wide level analyses, other strategies should offer a better
recall. One might want to use results from the intersection of mul-
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tiple callers [50]. Still, using different algorithms and distinct
underlying assumptions will most likely reduce the number of
variants finally called.
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