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MicroRNAs (miRNAs) are important regulators of gene expression. These small, non-
coding RNAs post-transcriptionally silence messenger RNAs (mRNAs) in a sequence-
specific manner. In this way, miRNAs control important regulatory functions, also in
the retina. If dysregulated, these molecules are involved in several retinal pathologies.
For example, several miRNAs have been linked to essential photoreceptor functions,
including light sensitivity, synaptic transmission, and modulation of inflammatory
responses. Mechanistic miRNA knockout and knockdown studies further linked their
functions to degenerative retinal diseases. Of note, the type and timing of genetic
manipulation before, during, or after retinal development, is important when studying
specific miRNA knockout effects. Within this review, we focus on miR-124 and the
miR-183/96/182 cluster, which have assigned functions in photoreceptors in health
and disease. As a single miRNA can regulate hundreds of mRNAs, we will also
discuss the experimental validation and manipulation approaches to study complex
miRNA/mRNA regulatory networks. Revealing these networks is essential to understand
retinal pathologies and to harness miRNAs as precise therapeutic and diagnostic tools
to stabilize the photoreceptors’ transcriptomes and, thereby, function.
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INTRODUCTION

MicroRNAs (miRNAs) are small, non-coding RNAs, acting as quantitative regulators of gene
expression, which are characterized by an average length of 22 nucleotides (nt) (Ghildiyal
and Zamore, 2009; Ha and Kim, 2014). MiRNAs were discovered in 1993 in the nematode
Caenorhabditis elegans (Lee et al., 1993). The biogenesis of miRNAs is divided into several steps
(Figure 1). DNA sequences encoding for miRNAs are transcribed into primary miRNAs (pri-
miRNAs) by RNA polymerases II/III (Lee et al., 2004; Borchert et al., 2006). Pri-miRNAs build
hairpin-like structures or stem-loops by self-annealing. These structures are cleaved 11 base pairs
from the hairpin stem by the miRNA-processing complex, consisting of Drosha ribonuclease and
the double-stranded RNA binding domain partner protein DiGeorge critical region 8 (DGCR8):
this forms the precursor miRNA (pre-miRNA), consisting of a 70-nt-long sequence and a 5′
phosphate and 2-nt overhang at the 3′ end (Lee et al., 2002; Ha and Kim, 2014). For the last
step of miRNA maturation, the pre-miRNA is exported into the cytoplasm by the exportin-5
(XPO5)/RanGTP complex (Yi et al., 2003; Lund et al., 2004). At this point, Dicer endoribonuclease
and its trans-activation response RNA-binding protein (TRBP) cleave the pre-miRNA and add a 5′

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 January 2021 | Volume 8 | Article 620249

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.620249
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.620249
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.620249&domain=pdf&date_stamp=2021-01-21
https://www.frontiersin.org/articles/10.3389/fcell.2020.620249/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-620249 January 15, 2021 Time: 20:6 # 2

Pawlick et al. Retinal miRNAs

FIGURE 1 | Continued
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FIGURE 1 | MiRNA biogenesis and experimental analysis of miRNA-mRNA interactions. DNA sequences encoding for miRNAs are transcribed into primary-miRNAs
(pri-miRNAs) by partially complementary RNA polymerase II/III. Pri-miRNAs are subsequently cleaved by the miRNA-processing complex consisting of Drosha
ribonuclease and the double-stranded RNA binding domain partner protein DGCR8 that form precursor-miRNAs (pre-miRNAs). The Drosha/DGCR8 complex and
Dicer endoribonuclease are used for conditional knockout studies (cKO) to identify the actions of particular miRNAs. Full knockout of miRNA-processing machinery
has proved lethal. The pre-miRNA is then transported into the cytoplasm by the exportin (XPO5)/RanGTP complex. In the cytoplasm, the Dicer/trans-activation
response RNA binding protein (TRBP) nuclease complex cleaves the pre-miRNA, thereby producing the miRNA duplex. Finally, the duplex is loaded onto the
Argonaute (AGO) protein as a part of the RNA-induced silencing complex (RISC) where one of the strands is removed. The remaining strand remains bound to the
AGO protein, which is now ready to target mRNA. Translational efficiency is thereby reduced, mainly as a consequence of mRNA cleavage or deadenylation.
Alternatively, miRNA biogenesis can proceed via splicing events where Drosha cleavage is replaced. MiRNA pathways can be modulated by miRNA mimics or
inhibitors. Analysis of miRNA-mRNA interactions is done by RNAse digestion of AGO proteins, combined with next-generation sequencing (NGS) techniques like
HITS-CLIP or PAR-CLIP, or novel techniques like RNA immunoprecipitation combined with NGS (RIP-Seq). shRNA, small hairpin RNA; TuD, Tough decoy. Figure was
created with BioRender.com.

phosphate and a new 2-nt 3′ overhang by cutting the pre-miRNA
∼22-nt from the cleaving site of the miRNA processing complex.
This step gives rise to the miRNA duplex (Lee et al., 2003).
Finally, the Argonaute (AGO) protein, as a part of the RNA-
induced silencing complex (RISC), binds to the miRNA and
removes one of the strands. The remaining strand is bound to
the AGO protein and ready to bind partially-complementary
mRNA transcripts. MiRNA biogenesis can also occur through
alternative pathways, where Drosha cleavage is replaced and
the miRNAs are processed via splicing events when miRNAs
reside in the introns of protein-coding genes (Westholm and
Lai, 2011). The AGO proteins, as core components of the
RISC complex, have a coordinating function for localizing
mRNA transcripts, and are therefore essential for correct miRNA
function (Bartel, 2009; Ha and Kim, 2014). A single miRNA can
have thousands of in silico annotated target mRNAs, regulating
multiple genes which often participate in the same biochemical
pathway. This is due to similarities in the 3′ untranslated region
(3′ UTR) of specific mRNAs which are bound by miRNAs (Lewis
et al., 2005). However, experimental in vivo validations only
result in very few mRNA targets upon miRNA manipulation
(Rojo Arias and Busskamp, 2019). The RISC components are
the most obvious targets for regulation. Nevertheless, other
proteins that take over positive or negative control of miRNA
effects have also been identified. Most miRNAs are translational
repressors, or promote deadenylation and decay of mRNAs.
However, miRNAs can also act as activators of translation by
switching AGO2 from a repressor to an activator (Vasudevan
and Steitz, 2007; Vasudevan et al., 2007). In general, miRNAs
have strong regulatory properties in many biological systems,
including the eye, whilst regulating the transcription of genes in
cells to maintain their homeostasis and function (Sundermeier
and Palczewski, 2016). Hence, their dysregulation, especially
during development, can lead to diverse pathological conditions
like genetically-inherited disorders, neurodegenerative diseases,
and cancer, as well as autoimmune and cardiovascular diseases
(Ha, 2011; Dong et al., 2015; Chu-Tan et al., 2018). It is
thought that miRNA regulatory networks provide robustness
to biological systems whose faultless functioning is constantly
being endangered by external and internal interferences (Ebert
and Sharp, 2012). Approximately 25% of the human miRNA
genes are structured in clusters. Their expression is normally
tightly regulated, but altered in pathologies. Of note, epigenetic
modifications have been reported that change the expression

levels of proteins which are important for miRNA biogenesis
(Kabekkodu et al., 2018). In addition, it has been reported that
accelerated turnover of miRNAs depends on the activity of
photoreceptors, i.e., their exposure to light (Krol et al., 2010a).
Clusters are expressed as a polycistronic transcript, with a high
sequence homology between the members. In general, clusters
of miRNAs are formed by several miRNA genes that are located
next to each other on the chromosome. The genes are transcribed
as one long pri-miRNA, which is then processed into several
individual pre-miRNAs (Altuvia et al., 2005). Each of the miRNAs
has small differences in their seed sequence, leading to different
mRNA targets (Dambal et al., 2015). However, if the seed
sequences have diverged and their mRNA targets have diversified,
they cooperate by targeting different genes in common pathways,
which amplifies the downstream effects. The cooperative work
of multiple miRNAs to target multiple functionally-related genes
enables coordinated control of gene networks (Na and Kim,
2013). However, there are similarities in their binding properties
to target mRNAs and they can compensate for each other’s
function (Jin et al., 2009).

Photoreceptors are the cells in the body with the highest
metabolic activity, and are subject to high levels of external
stress (Sung and Chuang, 2010). In this context, miRNAs play an
important role in the functioning and survival of photoreceptors
(Sundermeier and Palczewski, 2016). The fact that not all retinal
diseases are linked to specific genes supports the idea that the
dysregulation of certain miRNAs can cause the progression
of retinal disorders. Experimental disruption of the miRNA
processing machinery can lead to the loss of cone outer segments
in humans, triggering their dysfunction, resulting in blindness
(Busskamp et al., 2014). Furthermore, introducing gene-trap
constructs downstream of a gene, expressing the miRNA cluster
miR-182/96/183 that is highly expressed in the retina, leads to
its inactivation and to progressive synaptic defects (Lumayag
et al., 2013). Moreover, it has been shown that miR-124, as the
most abundant miRNA in the brain, plays an important role in
the progression of neovascular and atrophic form of age-related
macular disease (AMD) (Chu-Tan et al., 2018). In this context,
mimics of miR-124 in the eye decreased the inflammatory
response in both forms of AMD, improving overall retinal
function. Therefore, revealing miRNA regulatory pathways in
retinal cell types is crucial to obtain a better understanding of
the molecular processes that lead to ocular diseases for which
there is currently no treatment. In addition, the investigation
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of retinal miRNAs provides a basis for developing therapies
to significantly improve the quality of life of affected patients.
Here, we will emphasize the role of the highly-abundant miR-
182/96/183 cluster and miR-124 within the retina. We will discuss
how sophisticated experimental studies have revealed miRNA
functions within different retinal cell types.

MiRNA REGULATION IN THE RETINA

Photoreceptor cells and retinal pigmented epithelium (RPE)
cells are characterized by high rates of metabolism and protein
synthesis. In addition, they are constantly exposed to toxic
by-products of phototransduction. Moreover, they have to
stay viable and functional under highly oxidizing conditions.
All these processes cause high levels of stress to the cells,
making them much more vulnerable to precocious death
(Sundermeier and Palczewski, 2016). Acting as fine tuners of
gene expression, miRNAs take over important functions with
respect to photoreceptor survival and function (Sundermeier
and Palczewski, 2016). On the other hand, in vivo and in vitro
studies have shown that there are several miRNAs that are
potentially associated with the cellular processes that lead to
AMD (Wang et al., 2014; Chu-Tan et al., 2018). Investigating
the miRNA transcriptome (miRNome) of retinal cells is the first
step toward revealing miRNA regulatory pathways in health and
disease. Studies have been conducted on the human and mouse
miRNomes to reveal differences and similarities in miRNA
regulatory pathways between human and mouse eye (Karali et al.,
2010, 2016). In particular, research has focused on the most
conserved miRNAs. This comparison is indispensable, because
these two organisms show essential differences in the structure
and function of the eye: however, mouse models are used more in
vision research. These studies have revealed that one third of the
retinal miRNAs expressed in human samples are also expressed
in the mouse retina (Karali et al., 2016). Hence, mouse models
are well-suited model systems for retinal miRNome studies for
miRNAs that have been found to be expressed in both species.
Almost a fifth of all known miRNAs are expressed in the retina,
and a limited set of these miRNAs has been identified as playing
an important role in the development and function of the retina
(Krol et al., 2010b; Lumayag et al., 2013). This set consists of
miR-182-5p, miR-183-5p, and miR-124-3p, as well as miR-96-5p
and miR-9-5p. Moreover, miRNA expression is tissue specific and
its regulation changes, depending on the developmental stage.
This demonstrates that miRNAs are involved in important retinal
maturation processes, and that their expression pattern is tightly
controlled (Lagos-Quintana et al., 2002). The misregulation of
miRNA expression is therefore a proximate cause of retinal
degeneration and disease (Damiani et al., 2008; Arora et al., 2010;
Georgi and Reh, 2010; Busskamp et al., 2014; Sundermeier et al.,
2014; Ohana et al., 2015).

The length and sequence of mature miRNAs is highly
heterogeneous: this is different from the canonical miRNA
sequence (Morin et al., 2008). As a result, one miRNA can
have several variants, called isomiRs, that are characterized
by addition or deletion of nucleotides at the 3′ and/or 5′

end of the miRNA and/or substitutions within the sequence
(Landgraf et al., 2007; Morin et al., 2008; Martí et al., 2010).
Most miRNA-mRNA interactions are based on the binding of
the miRNA seed sequence to its target mRNA (Helwak et al.,
2013). Nucleotide substitutions at the 5′ end of the miRNA
result in a modified seed sequence, resulting in a changed
target specificity and far-reaching effects on miRNA functionality
(Cammaerts et al., 2015). In the isomiR variant of miR-124-
3p, a single nucleotide substitution in the seed region resulted
in a change in its target specificity, when comparing with the
canonical miRNA specificity (Karali et al., 2016). This resulted
in an altered gene regulatory property and showed that gene
regulation within the retina is complex but also necessary to
ensure proper tissue function. The miR-124-3p and miR-183-
5p isomiRs accounted for a large part of the retinal miRNome
analysis (Karali et al., 2016). During miRNA biogenesis, either the
5′ or 3′ arm of the miRNA duplex is favorably cleaved by Drosha
and Dicer: this becomes the mature miRNA (Khvorova et al.,
2003; Schwarz et al., 2003). Still, next-generation sequencing
(NGS) data have revealed that both arms are cleaved and
detectable (Yang et al., 2011; Li et al., 2012; Neilsen et al., 2012;
Zhou et al., 2012; Kang et al., 2013). The mature miR-183, miR-
182, and miR-96 have almost identical seed sequences (Dambal
et al., 2015). A single base difference in the seed sequence
of miR-182 and miR-96 changes the binding property to the
mRNA target sequence (Jalvy-Delvaille et al., 2012; Li et al.,
2014). Nevertheless, their targets often lie in the same pathways,
facilitating that these miRNAs control several parts of a cellular
process (Dambal et al., 2015).

Disrupting miRNA regulatory pathways during development
can have severe effects, such as aberrant photoreceptor
layer architecture and progressive photoreceptor degeneration
(Georgi and Reh, 2010). MiRNAs have been found to control
transcription factors like Pax6, which is expressed in a
spatiotemporal pattern in different tissues, including the
developing retina, lens, cornea, and mature ocular cell types,
during development (van Heyningen and Williamson, 2002;
Kaspi et al., 2013). Analysis of the Pax6 3′ UTR has revealed that
cooperative miRNA regulation of Pax6 mediates developmental
control and fine tuning of Pax6 levels during development
(Ryan et al., 2018). Changes in miRNA expression have
also been investigated in a retinal degeneration model in
which retinal damage was induced by light (Saxena et al.,
2015). Transcriptomic analysis revealed that a large set of
miRNAs regulates the immune response connected to the light-
damage changes. This supported the theory that miRNAs play
an important role in retinal degenerative diseases that are
characterized by acute retinal damage (Veleri et al., 2015). In
AMDs, miRNAs are often associated with the regulation of
inflammatory processes which highlights the need for a better
understanding of miRNA regulatory networks (Rutar et al., 2010;
Chu-Tan et al., 2018).

Müller glia (MG) are the predominant glia in the retina: they
nurture and protect retinal neurons, maintain the homeostasis
of the retina, and support structural integrity (Bringmann
et al., 2006). Consequently, the loss of mature MG can lead
to impairment of the retinal structure (Byrne et al., 2013).
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Neuronal loss leads to retinal remodeling, a process in which
MG expand and fill the neuronal gaps. They form a glial
scar, which is a major limiting factor regarding transplantation
approaches to restore retinal function (Jones and Marc, 2005;
Reh, 2016). To study the role of miRNAs in MG function, Dicer1
was specifically deleted in MG (Wohl et al., 2017). Here, it is
of great importance that knockouts of the miRNA processing
machinery are conditional (cKO) because full deletion during
embryonic development in mouse models is lethal (Bernstein
et al., 2003; Fukuda et al., 2007; Morita et al., 2007; Wang et al.,
2007). The deletion of Dicer1 led to a significant decline in
those miRNAs, called mGliomiRs, that are highly expressed in
MG (Wohl and Reh, 2016b). The decline in MG miRNAs led
in early phases to an increased number of MG, and in MG
migration toward the outer nuclear layer. At later stages, glia
accumulations and the deformation of the retinal architecture
were found. A key player in this process was the miRNA miR-9
that targets the extracellular matrix molecule Brevican (encoded
by Bcan). All these results led to the conclusion that miRNAs
play an important role in MG function, which is required
for the maintenance of retinal structure and function (Wohl
et al., 2017). Moreover, overexpression of neuronal (Wohl and
Reh, 2016a) or retinal progenitor miRNAs, in combination with
inhibition of MG miRNAs (Wohl et al., 2019), can reprogram MG
into late retinal progenitor cells that differentiate into bipolar-
like neuronal cells. This suggests that miRNAs are involved
in MG-reprogramming tool for retinal regeneration. Another
Dicer conditional knockout mouse model was used to identify
which miRNAs are important for retinal development (La Torre
et al., 2013). Three different miRNAs, let-7, miR-125, and miR-
9 were found to act as regulators, by changing the competence
of retinal progenitor cells. In addition, the overexpression of
these miRNAs accelerated retinal development. Other studies
have investigated miRNA functions in cone photoreceptors,
which are indispensable for daylight and high-acuity vision. Cone
photoreceptor-specific miRNA-deficient mice showed a gradual
depletion of DGCR8 protein over time, leading to a progressive
loss of cone outer segments and low sensitivity to high
light levels (Busskamp et al., 2014). Besides neurodegenerative
retinal diseases, developmental genetic disorders such as
microphthalmia, anophthalmia, and coloboma (MAC) cause
structural eye malformations: a heterozygous mutation in the
seed region of miR-204 has been described in MAC patients
(Conte et al., 2015). Seed sequence modifications impact on the
mRNA targets, resulting in photoreceptor alterations, reduced
numbers of rod and cone photoreceptors, and increased levels
of apoptosis. These findings highlight the important function of
miR-204 during retinal development.

THE MiRNA CLUSTER 182/96/183 IN
PHOTORECEPTORS

MiR-182/96/183 is a sensory-neuron enriched miRNA cluster. It
is highly and prevalently expressed in mature photoreceptors and
in the inner nuclear layer (INL) of the retina (Xu et al., 2007).
In particular, miR-182 and miR-183, and also miR-96, play an

important role in the maintenance and function of cone outer
segments (Busskamp et al., 2014). MiR-96 also plays a major
role in the cells of inner ear hairs (Lewis et al., 2009; Mencía
et al., 2009). MiR-182, miR-96, and miR-183 are co-expressed on
a single primary transcript and share high sequence homology,
suggesting overlapping, but unique functions (Xu et al., 2007;
Figure 2). As mentioned before, clusters can compensate for each
other’s function, which has been shown by targeted deletion of
the miR-182 (Jin et al., 2009). Here, no changes in phenotype
were observed, indicating that miR-183 or miR-96 had very likely
a compensatory effect. In general, the cluster is responsible for
global regulation of many downstream genes that are involved in
several pathways such as synaptogenesis, synaptic transmission,
and photoreceptor functions (Lumayag et al., 2013; Busskamp
et al., 2014) and it has a protective effect on neurons by targeting
Caspase-2 (Casp-2) (Zhu et al., 2011).

The expression of mature cluster miRNAs is low early in
development, but increases after birth and is most abundant
in the adult retina (Xu et al., 2007). The pri-miR-183/96/182
is highly expressed early in development but, due to reduced
enzymatic processing, the expression of the mature miRNA
cluster is delayed and dependent on the developmental stage.
An interplay between a long, non-coding RNA [lncRNA Rncr4
(retinal non-coding RNA 4)] and the miRNA cluster has been
described: this is crucial for postnatal retinal development
(Krol et al., 2015). An enforced expression of mature miR-
182/96/183 early in development can have negative effects
on the morphology of the retinal layers. The regulation of
miRNA cluster expression is indispensable for the correct
development and function of the retina. Moreover, the miRNA
cluster plays an important role in the formation of tight
conjunctions between MG cells and photoreceptors (Krol
et al., 2015). The cluster was found to have a dynamic
diurnal expression pattern suggesting that its regulation is
coupled to the circadian rhythm (Xu et al., 2007). Later,
it was shown, that the miRNA cluster is reversibly up-
and downregulated in the retina in vivo during light-dark
adaption, independent of the circadian rhythm (Krol et al.,
2010a). Additionally, re-expression of miR-182 and miR-183
prevented cone photoreceptor function loss in vivo, even after
the miRNA processing machinery was disrupted. In vitro, the
administration of the two miRNAs led to the formation of
inner segments, connecting cilia, and short outer segments
in stem-cell-derived 3D retinal organoids. In this way, the
photoreceptors became light sensitive (Busskamp et al., 2014).
Another study demonstrated that the cluster is an important
regulator of PAX6 and that it is important for retinal tissue
morphogenesis (Peskova et al., 2020). To inhibit the cluster
in organoid forming human pluripotent stem cells (hPSCs),
a tough decoy approach was used. Also, abnormalities were
observed in retinal organoid morphology, together with an
upregulation of neuron- and retina-specific genes. A single
knockout of miR-182 in mouse models did not lead to any
significant changes in retinal architecture. However, deletion of
both miR-183 and miR-96 caused defects in cone maturation
(Xiang et al., 2017) linked to their target Slc6a6, a taurine
transporter, which is needed for the maturation and maintenance
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FIGURE 2 | MiR-182/96/183 cluster target interactions. (A) Venn Diagram displaying miRTarBase entries for miR-182/96/183 cluster targets (Chou et al., 2018). All
three miRNAs share 25 validated common targets. (B) Predicted miR-182/96/183 targets based on TargetScan (release 7.2) (Agarwal et al., 2015). The analysis is
based on analyzing the presence of target sites that match the seed region of each miRNA. All three miRNAs share 86 predicted biological targets.

of photoreceptors. The formation of correct synaptic connections
between photoreceptors and postsynaptic retinal cells was also
shown to be miRNA-dependent. A knockout mouse model
generated from an embryonic stem cell clone (ESC), where
a gene trap was inserted downstream of the first exon of
the miR-182/96/183 gene, resulted in progressive synaptic
defects in photoreceptors, and progressive retinal degeneration
(Lumayag et al., 2013). MiR-182 has also been reported to
impact axonal growth of retinal ganglion cells in Xenopus laevis
(Bellon et al., 2017).

So far, only a handful of the thousands of annotated cluster
miRNA targets have been experimentally validated in retinal
cell types. As important biological processes fall under their
regulation, further research in the coming years will provide
deeper insights revealing their functions in health and disease.
In summary, the miR-182/96/183 cluster is indispensable for
proper retinal development and function, such as maintaining
photoreceptor outer segments, synaptogenesis, and axonal
growth. Therefore, it might be possible to use these miRNAs as
therapies to cure neurodegenerative retinal diseases.

miR-124 AND ITS ROLE IN
NEURODEGENERATION AND
NEURONAL DIFFERENTIATION

miR-124 is one of the most abundant miRNAs in the brain,
accounting for 25% of all brain miRNAs (Lagos-Quintana
et al., 2002). It is also highly expressed in the retina, where
it supports the maturation of photoreceptors. In addition, the
partial loss of miR-124 during development leads to reduced
opsin expression and cone photoreceptor death (Sanuki et al.,
2011; Karali et al., 2016). This miRNA has three paralogs with
six genomic copies. A complete miR-124 knockout has been
generated in human induced pluripotent stem cells (hiPSC) that
were subsequently differentiated to neurons and analyzed: loss
of miR-124 led to morphological and functional alterations, as

well as different neurotransmitter profiles and decreased long-
term viability. However, the initiation of neuronal differentiation
was independent of miR-124 (Kutsche et al., 2018). This
finding was a bit surprising, as the overexpression of miR-
124 in cell lines and embryonic stem cells mediates neuronal
differentiation (Krichevsky et al., 2006; Makeyev et al., 2007);
overexpression of miR-9 and miR-124 in human fibroblasts
causes them to differentiate into neurons (Yoo et al., 2011).
Additionally, in HeLa cells, delivery of miR-124 duplexes caused
acquisition of neuronal gene profile (Lim et al., 2005). Because
of its important role in central nervous system including
retinal neurons, miR-124 dysregulation is connected to certain
diseases, including Alzheimer’s (AD), Parkinson’s, and AMD
(Smith et al., 2011; Wang et al., 2014; Sun et al., 2015). In
the degenerating retina, miR-124 expression and its cellular
location are altered in human and rodent tissues (Chu-
Tan et al., 2018). It has been shown that miR-124 targets
mRNAs which code for chemokines that are upregulated in
neovascular and atrophic forms of AMD when physiological
miR-124 levels are decreased. Intravitreal delivery of miR-
124 reduced the chemokine expression levels, highlighting its
anti-inflammatory properties. Photoreceptor death could be
reduced, and overall retinal function was improved (Newman
et al., 2012; Chu-Tan et al., 2018). The activation of the
innate immune system is connected to the pathogenesis of
certain retinal degenerative diseases, for example AMD or
diabetic retinopathy (DR) (Edwards et al., 2005; Hageman
et al., 2005; Hou et al., 2015). In the case of DR, elevated
levels of monocyte chemotactic protein-1 (MCP-1) can be
detected in tear fluid (Liu et al., 2010) and vitreous fluid
(Wakabayashi et al., 2011; Chernykh et al., 2015). The same
work showed that miR-124 takes over an anti-inflammatory
role by targeting the 3′ UTR of the MCP-1 gene, therefore
decreasing MCP-1 expression and inflammation (Dong et al.,
2015). Altogether, anti-inflammatory properties of miR-124 have
an impact as a therapeutic for treating retinal degenerative
diseases (Chu-Tan et al., 2018).
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OTHER KEY PHOTORECEPTOR MiRNAs

Other miRNAs, like the miR-181a and miR-181b have also
been shown to control the expression of genes that are
involved in mitochondrial biogenesis and function in the retina
(Indrieri et al., 2019). In this regard, downregulation of these
miRNAs increased mitochondrial turnover, thereby protecting
photoreceptors from degeneration. Additionally, miR-181a and
miR-181b are highly expressed in the retina, notably in retinal
ganglion cells (RGCs), inner cell layers and in brain areas that
are related to visual function (Ryan et al., 2006; Kapsimali
et al., 2007; Karali et al., 2007). Furthermore, these two miRNA
species represent about 17% of the cone photoreceptor miRNome
(Busskamp et al., 2014). Gain- and loss-of-function approaches
on these two miRNAs revealed that they impact on axonal
growth and specification of retinal cells by fine tuning of the
MAPK/ERK pathways (Carrella et al., 2015). Their expression
is crucial for the formation of neural connections in the retina
(Carrella et al., 2015). Also, miR-204 has been found to be
expressed in photoreceptors and plays an important role in
retinal development (Conte et al., 2015). In this connection,
a single heterozygous point mutation was analyzed in miR-
204, which is the only known miRNA mutation that causes
inherited retinal dystrophy in humans (Conte et al., 2015). This
mutation is within the miR-204 seed region and leads to an
autosomal dominant phenotype. This mutation may impact as a
loss of function, resulting in non-recognizable wild type target
genes or as a gain of function via new unconventional targets
of miR-204. The therapeutic potential of miR-204 has been
investigated by subretinal delivery of AAVs carrying the miR-
204 pre-miRNA (Karali et al., 2020). The administration led to a
decrease in apoptosis of photoreceptors and microglia activation
in mouse models displaying inherited retinal diseases. Due to this
neuroprotective function, the use of miR-204 as a therapeutic
agent represents a promising mutation-independent approach
for curing forms of blindness.

SOPHISTICATED APPROACHES TO
STUDY MiRNA REGULATORY
PATHWAYS

Studying the miRNome of tissues that consist of different cell
types, like the retina, can be challenging. For technical reasons
regarding the detection of these small RNA molecules, only
highly abundant miRNAs have been studied so far. In vivo,
a high heterogeneity of neuronal cell types and progenitors
may falsify the results of studying specific miRNA expression
in defined cell types, due to the differences in coding and
non-coding transcriptomes (Yaworsky and Kappen, 1999). This
can lead to an insufficient view, and misinformation about the
miRNome of specific cell types. Pooling neuronal samples to
obtain sufficient material for transcriptomic studies masks cell-
type-specific miRNomes and their target mRNAs. Moreover,
miRNA regulatory networks can be complex, as they have a
large number of targets including non-canonical binding events
(Chi et al., 2012; Moore et al., 2015). The ongoing technological

development and refining of assays facilitate more precise studies,
providing consistent and reliable results. Labeling cells with cell-
type-specific markers allows the isolation and a more narrowed
miRNome analysis on a homogenous cell population. This has
been achieved by using transgenic approaches, where green
fluorescent protein (GFP) was exclusively expressed in mouse
cone photoreceptors (Fei, 2003). Moreover, it is important
to consider the developmental stage, especially when using
animal models, because of changes in the expression of specific
miRNAs as mentioned before (Xu et al., 2007; Krol et al.,
2015). To investigate the effects of missing post-transcriptional
gene regulation by miRNAs, in vivo and in vitro knockdown
studies of the miRNA machinery and of certain miRNAs has
been performed (Sanuki et al., 2011; Busskamp et al., 2014).
In this context, the time point of manipulation is important
in order to interpret the obtained results. It was shown
that DGCR8 deletion had a time-delayed effect (Busskamp
et al., 2014) due to the high stability of the DGCR8 protein,
likely because of its phosphorylation and interactions with
other proteins (Han et al., 2009; Herbert et al., 2013; Cheng
et al., 2014). Hence, the effects of missing miRNAs could
only be seen after postnatal day 30, with a fully developed
retina, leading to an incomplete view of the impact of the
missing miRNA processing machinery during development
(Busskamp et al., 2014). Recent developments in genomic
engineering have also facilitated the generation of complete
miRNA knockouts, such as deleting all six miR-124 alleles
by clustered regularly interspaced short palindromic repeats
(CRISPR/Cas9). Thereby, it became obvious that also other
miRNAs took over the regulatory space in absence of miR-
124. The knockout of a highly abundant miRNA species is not
leading to a vacuum of miRNA regulation and a sophisticated
interpretation of the phenotype requires also to study effects
of de novo upregulated miRNAs in the cells of interest.
Hence, in comparison to genes, studying miRNA knockout
effects is more complex and requires sophisticated system
level analysis (Kutsche et al., 2018). Chemically-engineered
oligonucleotides termed “AntagomiRs” are used for silencing
endogenous miRNAs (Krützfeldt et al., 2005). This approach
has been used for down-regulation studies of endogenous
miR-124 (Cao et al., 2007; Visvanathan et al., 2007; Cheng
et al., 2009; Åkerblom et al., 2012). Here, the results turned
out to be controversial, suggesting that antisense nucleotides
trigger only transient inhibition, and that the knockdown
is not sufficient. This was seen especially in progenitor
cells, as their high proliferation rate affected their efficacy.
Moreover, so-called miRNA sponges were used to analyze
effects of miRNA silencing on cellular processes. These miRNA
sponges, holding multiple tandem binding sites to a miRNA
of interest, are expressed from strong promoters and bind
specifically to miRNA seed families. Nevertheless, their silencing
efficacy is comparable to approaches using antisense nucleotides
(Ebert et al., 2007). Interestingly, sponge cassettes have been
delivered to specific retinal cell types by adeno-associated
viruses (AAVs) to analyze miRNA actions in neuronal cells
(Krol et al., 2010a) as well as in transgenic mouse models
(Zhu et al., 2011).
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Another approach to study miRNA functions focused on
the robust and simultaneous suppression of different pairs
or groups of miRNAs that are not related to each other
(Hollensen et al., 2013). So-called “Tough Decoy” (TuD)
inhibitors were designed that are characterized by hairpin
structures carrying two or more miRNA recognition sites. TuD
allows to suppress several miRNAs via one DNA-encoded RNA
inhibitor, making them a valid approach for suppression studies
of miRNA clusters or families. Yet, TuD design by predicting
target mRNAs is challenging because miRNAs bind to their
messenger RNAs by base pairing with 6–8 nucleotides only
(Chi et al., 2009). In this respect, the biochemical isolation
of AGO proteins with RNAse digestion, combined with next-
generation sequencing (NGS) techniques such as HITS-CLIP
and PAR-CLIP, have been developed to analyze miRNA-mRNA
pairs (Chi et al., 2009; Tan et al., 2013). Novel techniques
that do not rely on crosslinking for isolating miRNAs and
mRNAs, such as RNA immunoprecipitation combined with
NGS (RIP-Seq), have also helped to increase our understanding
of the miRNA targetome in neurons (Malmevik et al., 2015).
Thereby, the RIP-seq technique brings the advantage that the
AGO protein is in direct contact with miRNAs and mRNAs
within the RISC complex, providing the opportunity to take
a snapshot of the ongoing gene-regulatory processes in a
cell to analyze biologically active miRNAs and their targets.
However, when analyzing miRNA/mRNA targets with low- or
high throughput molecular assays, it should be noted that
although the binding of the miRNA to the mRNA actually
takes place, it does not result in a change of the macroscopic
phenotype, thus having no biological effect (Pinzón et al.,
2017). In this context, genome editing tools have helped to
probe and validate miRNA/mRNA interactions in the last years,
that evoke a change in the phenotype (Bassett et al., 2014).
Further experimental validations such as luciferase reporter
assays are indispensable and vitally important to analyze in silico
predicted miRNA/mRNA interactions (Ko et al., 2009; Jin
et al., 2013). Luciferase reporter assays are used in order
to analyze, if miRNAs bind to the 3′ UTR of their target
genes (Ko et al., 2009). Ultimately, the impact of miRNA
regulation must also be studied at the protein level using highly
sensitive quantitative techniques. Commonly used miRNA target
prediction programs rely on the molecular rules of RISC/target
binding (Mockly and Seitz, 2019). Computational algorithms
have shown to be the driving force of predicting miRNA targets
(Bentwich, 2005; Rajewsky, 2006; Doran and Strauss, 2007;
Mazière and Enright, 2007). It is based on the programming
alignment to identify the 3′ UTR and the complementary
miRNA seed sequence to predict miRNA-mRNA interaction.
Still, evidence suggests that these predicted interactions do
not necessarily have a functional role (Didiano and Hobert,
2006). For instance, there is a clear discrepancy between
predicted and validated miR-182/96/182 targets (Figure 2).
Although the predictions of the targetome and genetic networks
regulated by individual miRNAs are becoming more and
more reliable, the interaction of different miRNAs must be
taken into account to draw meaningful conclusions about
biological effects of miRNAs on mRNA and protein levels

(Rojo Arias and Busskamp, 2019). Therefore, it is indispensable
to also validate physiologically relevant targets of miRNAs
experimentally (Kuhn et al., 2008).

CONCLUSION

miRNAs impact on retinal development and function, especially
on the survival and maintenance of photoreceptors. Therefore,
it is not surprising that their misregulation is linked to
various retinal degenerative diseases, as well as developmental
genetic disorders. Increasing our knowledge of miRNAs is
of great importance: to date, however, studies on miRNA
regulatory networks are rare due to the complexity of
the experimental procedures for small RNAs. Furthermore,
these experiments require large amount of tissue samples,
are expensive, and are limited in their application. The
manipulations of miRNA regulatory networks are not trivial:
the timing of the manipulation plays a crucial role as well. In
addition, the knockout of highly abundant miRNAs results in
other miRNAs taking over the regulatory space, which impedes a
proper interpretation of the results for the manipulated miRNAs.
This is especially important given the high annotated number
of mRNA targets for any given miRNA species, because most
studies to date have only experimentally validated a handful
of targets. Aligning phenotypic characterizations with system
level analysis will further provide deep mechanistic insights
in order to understand complex miRNA regulatory pathways.
Overall, although technological advances over the coming
years will facilitate new discoveries of how non-coding RNAs
impact on cellular functions, studying miRNA functions remains
challenging, especially in the context of retinal degenerative
diseases. Still, non-coding RNAs are key to understand
comprehensively retinal functions in health and disease.
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