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ABSTRACT: A mechanistic approach to understand the course of
metabolism for synthetic 1,2,4-trioxanes, potent antimalarial
compounds, to evaluate their bioavailability for antimalarial action
has been studied in the present work. It is an important parameter
to study the course of metabolism of a drug candidate molecule
when administered via oral route during its journey from oral
intake to its target site. From the pharmacokinetics point of view, it determines the bioavailability of an active drug or a prodrug at
the target point. In this work, synthetic arylvinyl-1,2,4-trioxanes 1a−u have been evaluated under various acidic conditions to mimic
the milieu of the stomach (pH between 1.5 and 3.5) through which they have to pass when administered orally. The effect of acid on
trioxanes led to their degradation into corresponding ketones and glyoxal. Under such acidic conditions glyoxal polymerized to form
a nonisolable condensate product. The study indicates that the actual bioavailability of the drug is far less than the administered
dose.

■ INTRODUCTION

Malaria still remains an unbeatable disease due to the
development of resistance against commonly available
antimalarials and accounts for 241 million clinical cases
around the world mostly in low-income areas.1 Artemisinin,2−7

a sesquiterpene lactone endoperoxide isolated from Chinese
traditional medicinal herb Artemisia annua, and its semi-
synthetic derivatives (e.g., arteether and artemether) are
presently the drugs of choice for the treatment of multidrug
resistant malaria (Figure 1).
These compounds are fast acting and are currently the drugs

of choice for the treatment of cerebral malaria caused by
multidrug-resistant Plasmodium falciparum. While these drugs
show excellent activity by the parenteral route, the extra
acetal−lactone or acetal−acetal linkages are linked with their
poor hydrolytic stability under the acidic environment of the
stomach and therefore poor absorption by the oral route.8

The discovery of peroxide present in the form of 1,2,4-
trioxanes in artemisinin as an active pharmacophore for its
antimalarial activity has encouraged scientists to develop
simple, economical, and effective substitutes having a 1,2,4-
trioxane unit. Since then, numerous simple molecules
containing 1,2,4-trioxanes (Scheme 1) have been synthesized
and evaluated for antimalarial activity by different groups
including us.9−29

For a drug to be effective via oral or intramuscular
administration, it should reach the target site in the form of
an active species that can interact with pathogens in infected
cells. For trioxanes, the active species is 1,2,4-trioxane, which

interacts with the hemoglobin present in infected red blood
cells and creates peroxy free radicals resulting in an oxidative
atmosphere, which kills the malarial parasite present in
cells.30−37 During the course of its journey to the affected
cells, the drug has to survive both acidic and basic
environments in the body. If administered orally, it has to
survive the strongly acidic environment of the stomach (pH
1.5−3.5), then the basic environment of bile juices (pH 7.5−
8.5), and then in cells the basic environment of amino acids.
Singh and Malik reported earlier the effect of basic conditions
on 1,2,4-trioxanes (Scheme 2), which resulted in the
generation of the corresponding ketones.38,39 In continuation
of that study, herein, we report the effect of acidic conditions
on the stability of synthetic aryl vinyl-1,2,4-trioxanes thus
mimicking the conditions that can prevail in the body. In the
present study, the temperature has also been examined along
with acidic conditions as certain activation energy is required
to initiate the reaction, which is accomplished by various
enzymes in the body in actual conditions thus bringing down
the activation energy required to initiate the reaction.40
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■ CHEMISTRY
Naphthyloxy phenyl vinyl trioxane 1a was used as a model to
explore the scope of the reaction. Initially, we investigated the
effect of different acids on the stability of trioxane; among
them TMSOTf emerged as the most effective for the
generation of the corresponding ketones from the trioxane
(Table 1, entry 8). p-TSA and BF3·Et2O required a little longer
time, 2.5 h, for the transformation of trioxane 1a into ketone
2a (Table 1, entries 1 and 3).41−43 Amberlyst-15 took 3 h for
the transformation to ketone 2a (Table 1, entry 4).
Concentrated HCl showed slow conversion of trioxane 1a
into 2a, even after 16 h, only a trace of ketone 2a was observed
(Table 1, entry 2). Other acids, HClO4, TiCl4, and AlCl3,
showed decent conversion into ketones with longer duration of
reaction (Table 1, entries 5, 6, and 7). We have screened
different solvents for feasibility of the reaction with the
TMSOTf and found that THF is the most appropriate solvent
for catalysis, giving 52% of ketone 2a and 88% of ketone 3a
(Table 1, entry 8). Use of other common solvents such as
MeCN, DCM, EtOAc, toluene, and DMF allowed trans-
formation to the corresponding ketones with longer reaction
duration (Table 1, entries 9−13). Then, we optimized different
equivalents of TMSOTf for catalytic activity and found that 0.1
equiv of TMSOTf required 1 h for completion of reaction
while 0.01 equiv of TMSOTf required a longer reaction time
with comparatively low yield. The 0.2 equiv amount was found
to be the optimal conditions with excellent yield. We have
monitored the stability of trioxane at room temperature for 48
h under TMSOTf condition and found no remarkable changes
to the trioxane (Scheme 3). Moreover, the transformation of

trioxane 1a to ketones 2a and 3a did not take place in the
absence of acid, which showed that the presence of some acid
is essential to move the reaction in a forward direction (Table
1, entry 17).44

We have also explored the scope of reaction on different
trioxanes to gain insight on the effect of acid on transformation
to corresponding ketones. To our delight, we found that most
of the trioxanes in the presence of TMSOTf gave the
corresponding aromatic and aliphatic ketones in good to
excellent yield with shorter reaction time (Table 2, entries 1−
21). We have explored the effect of TMSOTf on different ether
derivatives of mono-1,2,4-trioxanes 1a−l, which resulted in the
corresponding ether ketones 2a−d and aliphatic ketones 3a−c
in good to excellent yield in shorter reaction time (Scheme 1,
Table 2, entries 1−12). We have also screened the outcome of
bis-trioxanes 1m−u in the presence of TMSOTf, which
resulted in the corresponding bis-ketones 2e−g and aliphatic
ketones 3a−c in good yield with a little longer duration (Table
2, entries 13−21).

■ RESULTS AND DISCUSSION
A general plausible mechanism for this acid-catalyzed
rearrangement of substituted arylvinyl-1,2,4-trioxanes is
shown in Scheme 4 taking arylvinyl-trioxane 1a as a
representative compound, which involves protonation of
peroxy oxygen followed by ring opening to furnish aliphatic
ketone 3a, coupled with migration of the phenylvinyl group to
electropositive oxygen with subsequent cyclization to furnish
an unstable epoxy product, which gets hydrolyzed to furnish
the corresponding ketone 2a.
This study suggests that during oral administration of an

active drug or prodrug, it has to first of all survive the strongly
acidic conditions of the stomach (pH 1.5−3.5), during its
journey to the target site. The mechanism shown suggests how
1,2,4-trioxanes behave under such acidic conditions.
By virtue of this study, we have tried to show the effect of

acidic conditions on the stability of synthetic arylvinyl-1,2,4-
trioxanes by mimicking the conditions that can prevail in the

Figure 1. Artemisinin and its semisynthetic derivatives.

Scheme 1. Preparation of 6-Arylvinyl-1,2,4-trioxanes

Scheme 2. Stability of 1,2,4-Trioxanes under Basic Conditions
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alimentary canal. In this study, elevated temperature has also
been provided along with acidic conditions as a minimum
amount of activation energy is required to initiate the reaction,
which in actual in vivo conditions is affected by various
enzymes in the body, which catalyze the reaction, thus bringing
down the activation energy required to initiate the degradation
process.
Thus, the study indicates that the actual bioavailability of

active drug at the target site is far less than orally administered
dose.45

■ CONCLUSION
In the present study, we have reported the effect of acidic
conditions on the stability of arylvinyl-1,2,4-trioxanes, potent
antimalarial agents, by reacting them with various acids. The
main idea of this study was actually to mimic the acidic
conditions prevailing in the stomach (pH 1.5−3.5) by
artificially creating such conditions to evaluate the effect of
such conditions on orally administered arylvinyl-1,2,4-triox-
anes.We also analyzed the mechanistic behavior of these
trioxanes under such conditions, which resulted in the
generation of corresponding parent ketones from which the
trioxanes were synthesized. The study revealed that actual
bioavailability of the active drug, arylvinyl-1,2,4-trioxane, at the
target site is far less than the orally administered dose. This
study can pave the way to evaluate other synthetic peroxides
under acidic conditions. We believe the outcome from the

exploration of trioxanes under acidic conditions assists
scientists in finding a better oral bioavailability profile of
trioxane for malaria chemotherapy.

■ EXPERIMENTAL SECTION
All glass apparatus were oven-dried prior to use. Melting points
were taken in open capillaries on Complab melting point
apparatus and have been presented uncorrected. Infrared
spectra were recorded on a PerkinElmer FT-IR RXI
spectrophotometer. 1H NMR and 13C NMR spectra were
recorded using Bruker Supercon Magnet DPX-200, DRX-300,
or AVANCE-III-HD 400 spectrometers (operating at 200, 300,
and 400 MHz, respectively, for 1H; 50, 75, and 100 MHz,
respectively, for 13C) using CDCl3 as solvent. Tetramethylsi-
lane (δ 0.00 ppm) and CDCl3 (δ 77.0 ppm) served as an
internal standard in 1H NMR and 13C NMR, respectively.
Chemical shifts have been reported in parts per million.
Splitting patterns are described as singlet (s), doublet (d),
triplet (t), quintet (quin), multiplet (m), and broad (br).
Electrospray mass spectra (ES-MS) were recorded on a Micro
mass Quattro II triple quadruple mass spectrometer. High-
resolution electron impact mass spectra (ESI-HRMS) were
obtained on Bruker Compass and TOF MS. Elemental
analyses were performed on Vario EL-III C H N S analyzer
(Germany), and values were within range (0.4% of the
calculated values). Column chromatography was performed
over Merck silica gel (particle size 60−120 mesh) procured

Table 1. Screening of Different Reaction Conditions for the Exploration of Acid Effects on Arylvinyl-1,2,4-trioxanesa

product yieldb (%)

entry acid solvent time 2a 3a

1 p-TSA THF 2 h 32 69
2 concn HCl THF 16 h 4 7
3 BF3·Et2O THF 2.5 h 38 72
4 Amberlyst-15 THF 3 h 32 78
5 HClO4 THF 6 h 36 70
6 TiCl4 THF 4 h 40 77
7 AlCl3 THF 7 h 42 79
8f TMSOTf THF 15 min 52 88
9 TMSOTf MeCN 12 h 10 69
10 TMSOTf DCM 8 h 15 60
11 TMSOTf EtOAc 5 h 5 72
12 TMSOTf toluene 7 h 10 59
13 TMSOTf DMF 6 h 10 69
14c TMSOTf THF 1 h 49 77
15d TMSOTf THF 3 h 45 75
16e TMSOTf THF 48 h g g
17 THF 48 h g g

aReaction conditions: trioxane (1 equiv), solvent (1.0 mL), and TMSOTf (0.2 equiv) at 80 °C. bIsolated yield. c0.1 equiv of TMSOTf. d0.01 equiv
of TMSOTf. e0.2 equiv of TMSOTf at room temperature. fBold indicates the optimal reaction condition. gNo reaction.

Scheme 3. Stability of 1,2,4-Trioxanes under Acidic Conditions
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Table 2. Exploration of Different Arylvinyl-1,2,4-trioxanes with TMSOTf
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from Qualigens (India) or flash silica gel (particle size 230−
400 mesh). All chemicals and reagents were obtained from
Aldrich (Milwaukee, WI), Lancaster (England), or Spectro-

chem (India) and were used without further purification.
Nomenclature and log p values of the compounds were
assigned using ChemDraw Professional 15.1.

Table 2. continued

Scheme 4. Plausible Mechanism for Acid-Catalyzed Rearrangement of Substituted Arylvinyl-1,2,4-trioxanes
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General Procedure for Exploration of TMSOTf Effect
on Arylvinyl-1,2,4-trioxanes. TMSOTf (9 μL, 0.2 equiv)
was added to a stirred solution of trioxane 1a (100 mg, 0.257
mmol) in THF (2 mL). The reaction mixture was stirred at 80
°C, and progress of the reaction was monitored by TLC. After
completion of the reaction, it was cooled to room temperature;
reaction mixture was quenched with water (2 mL), extracted
with EtOAc, dried over anhydrous Na2SO4, and concentrated.
Column chromatography was done to obtain pure correspond-
ing ketone products.
All the 1,2,4-trioxanes, 1a−u, were prepared by the reported

procedure. The obtained analytical data for compounds 1a−i,
1k−u, and 2a−g are in agreement with the reported
literature.10,16

8-{1-[4-(Naphthalen-2-yloxy)-phenyl]-vinyl}-6,7,10-trioxa-
spiro[4.5]decane (1a). White solid was obtained in 27% yield;
mp 87−90 °C; IR (KBr, cm−1) 1591; 1H NMR (400 MHz,
CDCl3) δ1.68−1.96 (m, 7H), 2.51−2.57 (m, 1H), 3.86 (d,
2H, J = 5.8 Hz), 5.30−5.33 (m, 2H), 5.51 (s, 1H), 7.05 (d, 2H,
Ar, J = 8.8 Hz), 7.27−7.29 (m, 1H, Ar), 7.37−7.51 (m, 5H,
Ar), 7.75 (d, 1H, Ar, J = 8 Hz), 7.86 (t, 2H, Ar, J = 8.6 Hz);
13C NMR (100 MHz, CDCl3) δ 23.58 (CH2), 24.99 (CH2),
33.00 (CH2), 37.24 (CH2), 66.25 (CH2), 80.48 (CH), 114.81
(C), 116.12 (CH2), 118.99 (CH), 120.25 (CH), 125.08 (CH),
126.80 (CH), 127.37 (CH), 127.97 (CH), 128.11 (CH),
130.19 (CH), 130.51 (C), 133.79 (C), 134.49 (C), 142.66
(C), 154.75 (C), 157.58 (C); FAB-MS (m/z) 389 [M + H]+;
HRMS calcd for C25H24O4 388.1675, found 388.1674. Anal.
Calcd for C25H24O4: C, 77.30; H, 6.23%. Found: C, 77.35; H,
6.28.
8-{1-[4-(Naphthalen-1-yloxy)-phenyl]-vinyl}-6,7,10-trioxa-

spiro[4.5]decane (1b). Compound 1b was obtained in 49%
yield as oil; IR (neat, cm−1) 1599; 1H NMR (400 MHz,
CDCl3) δ 1.67−1.93 (m, 7H), 2.48−2.55 (m, 1H), 3.86 (d,
2H, J = 5.8 Hz), 5.27−5.30 (m, 2H), 5.46 (s, 1H), 6.98−7.02
(m, 3H, Ar), 7.36−7.45 (m, 3H, Ar), 7.47−7.55 (m, 2H, Ar),
7.65 (d, 1H, Ar, J = 8.2 Hz), 7.88 (d, 1H, Ar, J = 7.4 Hz), 8.15
(d, 1H, Ar, J = 8.6 Hz); 13C NMR (100 MHz, CDCl3) δ 23.57
(CH2), 24.99 (CH2), 32.99 (CH2), 37.24 (CH2), 65.26
(CH2), 80.47 (CH), 114.31 (CH), 114.79 (C), 115.97 (CH2),
118.37 (CH), 122.22 (CH), 124.00 (CH), 126.00 (CH),
126.27 (CH), 126.86 (CH), 127.09 (C), 128.02 (CH), 128.08
(CH), 133.48 (C), 135.15 (C), 142.67 (C), 152.69 (C),
158.32 (C); FAB-MS (m/z) 389 [M + H]+; HRMS calcd for
C25H24O4 388.1674, found 388.1672. Anal. Calcd for
C25H24O4: C, 77.30; H, 6.23. Found: C, 77.36; H, 6.28.
8-{1-[4-(Biphenyl-4-yloxy)-phenyl]-vinyl}-6,7,10-trioxa-

spiro[4.5]decane (1c). Compound 1c was obtained in 29%
yield as oil; IR (KBr, cm−1) 1598; 1H NMR (400 MHz,
CDCl3) δ 1.67−1.95 (m, 7H), 2.51−2.58 (m, 1H), 3.88 (d,
2H, J = 6.1 Hz), 5.30−5.33 (m, 2H), 5.49 (s, 1H), 7.04 (d, 2H,
Ar, J = 8.6 Hz), 7.11 (d, 2H, Ar, J = 8.6 Hz), 7.33−7.47 (m,
5H, Ar), 7.57−7.61 (m, 4H, Ar); 13C NMR (100 MHz,
CDCl3) δ 23.56 (CH2), 24.97 (CH2), 32.97 (CH2), 37.21
(CH2), 65.21 (CH2), 80.43 (CH), 114.77 (C), 116.05 (CH2),
118.87 (CH), 119.51 (CH), 127.09 (CH), 127.28 (CH),
128.06 (CH), 128.67 (CH), 128.98 (CH), 133.70 (C), 136.80
(C), 140.60 (C), 142.62 (C), 156.50 (C), 157.50 (C); ESI
(m/z) 415 [M + H]+; HRMS calcd for C27H26O4 414.1831,
found 414.1834. Anal. Calcd for C27H26O4: C, 78.24; H, 6.32.
Found: C, 78.29; H, 6.37.
8-[1-(4-Phenoxy-phenyl)-vinyl]-6,7,10-trioxa-spiro[4.5]-

decane (1d). White solid was obtained in 27% yield; mp 51−

52 °C; IR (KBr, cm−1) 1590; 1H NMR (400 MHz, CDCl3) δ
1.66−1.93 (m, 7H), 2.48−2.55 (m, 1H), 3.85 (d, 2H, J = 6.0
Hz), 5.27−5.30 (m, 2H), 5.46 (s, 1H), 6.96 (d, 2H, Ar, J = 8.6
Hz), 7.02 (d, 2H, Ar, J = 7.6 Hz), 7.12 (t, 1H, Ar, J = 7.4 Hz),
7.33−7.38 (m, 4H, Ar); 13C NMR (100 MHz, CDCl3) δ 23.57
(CH2), 24.98 (CH2), 32.99 (CH2), 37.23 (CH2), 65.25
(CH2), 80.48 (CH), 114.80 (C), 116.00 (CH2), 118.75 (CH),
119.38 (CH), 123.80 (CH), 128.03 (CH), 130.02 (CH),
133.57 (C), 142.67 (C), 156.95 (C), 157.64 (C); FAB-MS
(m/z) 339 [M + H]+; HRMS calcd for C21H22O4 338.1518;
found 338.1529. Anal. Calcd for C21H22O4: C, 74.54; H, 6.55.
Found: C, 74.61; H, 6.58.

3-{1-[4-(Naphthalen-2-yloxy)-phenyl]-vinyl}-1,2,5-trioxa-
spiro[5.5]undecane (1e). White solid was obtained in 43%
yield; mp 108−110 °C; IR (KBr, cm−1) 1596; 1H NMR (400
MHz, CDCl3) δ 1.40−1.66 (m, 8H), 1.96−2.02 (m, 1H),
2.21−2.26 (m, 1H), 3.77 (dd, 1H, J = 11.9 and 2.9 Hz), 3.98
(dd, 1H, J = 11.8 and 10.6 Hz), 5.22 (dd, 1H, J = 10.3 and 2.7
Hz), 5.28 (s, 1H), 5.47 (s, 1H), 7.01 (d, 2H, Ar, J = 8.7 Hz),
7.22−7.25 (m, 1H, Ar), 7.32−7.46 (m, 5H, Ar), 7.70 (d, 1H,
Ar, J = 8 Hz), 7.81 (t, 2H, Ar, J = 8.7 Hz); 13C NMR (100
MHz, CDCl3) δ 22.49 (CH2), 22.54 (CH2), 25.73 (CH2),
29.20 (CH2), 34.85 (CH2), 62.86 (CH2), 80.46 (CH), 102.85
(C), 114.73 (CH), 116.03 (CH2), 119.03 (CH), 120.23
(CH),125.07 (CH), 126.80 (CH), 127.37 (CH), 127.97
(CH),128.10 (CH), 130.18 (CH), 130.50 (C), 133.92 (C),
134.49 (C), 142.88 (C), 154.79 (C), 157.54 (C); FAB-MS
(m/z) 403 [M + H]+; HRMS calcd for C26H26O4 402.1831;
found 402.1828. Anal. Calcd for C26H26O4: C, 77.59; H, 6.51.
Found: C, 77.65; H, 6.56.

3-{1-[4-(Naphthalen-1-yloxy)-phenyl]-vinyl}-1,2,5-trioxa-
spiro[5.5]undecane (1f). This was obtained in 50% yield as
oil; IR (Neat, cm−1) 1598; 1H NMR (400 MHz, CDCl3) δ
1.44−1.65 (m, 8H), 2.01−2.05 (m, 1H), 2.21−2.26 (m, 1H),
3.79 (dd, 1H, J = 11.8 and 2.9 Hz), 4.01 (dd, 1H, J = 11.8 and
10.6 Hz), 5.25 (dd, 1H, J = 10.3 and 2.8 Hz), 5.30 and 5.49 (2
× s, 2H), 7.01 (d, 3H, Ar, J = 8.6 Hz), 7.37−7.43 (m, 3H, Ar),
7.48−7.56 (m, 2H, Ar), 7.66 (d, 1H, Ar, J = 8.2 Hz), 7.90 (d,
1H, Ar, J = 7.4 Hz), 8.18 (d, 1H, Ar, J = 8 Hz); 13C NMR (100
MHz, CDCl3) δ 22.46 (CH2), 22.50 (CH2), 25.71 (CH2),
29.16 (CH2), 34.82 (CH2), 62.84 (CH2), 80.41 (CH), 102.79
(C), 114.22 (CH), 115.82 (CH2), 118.38 (CH), 122.19 (CH),
123.95 (CH), 125.97 (CH), 126.24 (CH), 126.83 (CH),
127.05 (C), 128.01 (CH), 128.03 (CH), 133.57 (C), 135.13
(C), 142.84 (C), 152.69 (C), 158.26 (C); FAB-MS (m/z) 403
[M + H]+; HRMS calcd for C26H26O4 402.1831; found
402.1830. Anal. Calcd for C26H26O4: C, 77.95; H, 6.51. Found:
C, 77.99; H, 6.55.

3-{1-[4-(Biphenyl-4-yloxy)-phenyl]-vinyl}-1,2,5-trioxa-
spiro[5.5]undecane (1g). White solid was obtained in 50%
yield; mp 54−56 °C; IR (KBr, cm−1) 1594; 1H NMR (400
MHz, CDCl3) δ 1.43−1.64 (m, 8H), 1.99−2.05 (m, 1H),
2.20−2.25 (m, 1H), 3.79 (dd, 1H, J = 11.8 and 2.8 Hz), 4.02
(t, 1H, J = 11.7 Hz), 5.24 (dd, 1H, J = 10.3 and 2.6 Hz), 5.30
(s, 1H), 5.49 (s, 1H), 7.02 (d, 2H, Ar, J = 8.6 Hz), 7.09 (d, 2H,
Ar, J = 8.6 Hz), 7.32−7.46 (m, 5H, Ar), 7.56−7.58 (m, 4H,
Ar); 13C NMR (100 MHz, CDCl3) δ 22.48 (CH2), 22.52
(CH2), 25.73 (CH2), 29.19 (CH2), 34.84 (CH2), 62.84
(CH2), 80.45 (CH), 102.83 (C), 115.98 (CH2), 118.92 (CH),
119.50 (CH), 127.12 (CH), 127.30 (CH), 128.07 (CH),
128.69 (CH), 128.99 (CH), 133.86 (C), 136.82 (C), 140.65
(C), 142.87 (C), 156.56 (C), 157.49 (C); ESI (m/z) 428 [M
+ H]+; HRMS calcd for C28H28O4 428.1988; found 428.1990.
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Anal. Calcd for C28H28O4: C, 78.48; H, 6.59; Found: C, 78.58;
H, 6.77.
3-[1-(4-Phenoxy-phenyl)-vinyl]-1,2,5-trioxa-spiro[5.5]-

undecane (1h). White solid was obtained in 46% yield; mp
54−55 °C; IR (KBr, cm−1) 1590; 1H NMR (400 MHz,
CDCl3) δ 1.40−1.67 (m, 8H), 1.97−2.05 (m, 1H), 2.19−2.24
(m, 1H), 3.76 (dd, 1H, J = 11.9 and 2.9 Hz), 3.98 (dd, 1H, J =
11.8 and 10.4 Hz), 5.22 (dd, 1H, J = 10.4 and 2.8 Hz), 5.28
and 5.47 (2 × s, 2H), 6.96 (d, 2H, Ar, J = 8.8 Hz), 7.02 (dd,
2H, Ar, J = 8.6 and 1.1 Hz), 7.10−7.15 (m, 1H, Ar), 7.32−7.38
(m, 4H, Ar); 13C NMR (100 MHz, CDCl3) δ 22.48 (CH2),
22.52 (CH2), 25.72 (CH2), 29.16 (CH2), 34.85 (CH2), 62.86
(CH2), 80.45 (CH), 102.83 (C), 115.92 (CH2), 118.78 (CH),
119.35 (CH), 123.78 (CH), 128.00 (CH), 130.03 (CH),
133.67 (CH), 142.84 (C), 156.95 (C), 157.60 (C); FAB-MS
(m/z) 353 [M + H]+; HRMS calcd for C22H24O4 352.1675;
found 352.1677. Anal. Calcd for C22H24O4: C, 74.98; H, 6.86.
Found: C, 74.99; H, 6.87.
(1R,3R,5R,7R)-6′-(1-(4-(Naphthalen-2-yloxy)phenyl)vinyl)-

spiro[adamantane-2,3′-[1,2,4]trioxane] (1i). White solid was
obtained in 57% yield; mp 103−105 °C; IR (KBr, cm−1) 1593;
1H NMR (400 MHz, CDCl3) δ1.62−2.08 (m, 13H), 2.97 (s,
1H), 3.77 (dd, 1H, J = 11.8 and 2.9 Hz), 3.98 (dd, 1H, J = 11.8
and 10.6 Hz), 5.26 (dd, 1H, J = 10.4 and 2.8 Hz), 5.29 (s, 1H),
5.49 (s, 1H), 7.02 (d, 2H, Ar, J = 8.7 Hz), 7.24−7.27 (m, 1H,
Ar), 7.34 (d, 1H, Ar, J = 2.8 Hz) 7.37−7.49 (m, 4H, Ar), 7.72
(d, 1H, Ar, J = 7.9 Hz), 7.83 (t, 2H, Ar, J = 8.7 Hz); 13C NMR
(100 MHz, CDCl3) δ 27.33 (2 × CH), 29.56 (CH), 33.19
(CH2), 33.43 (CH2), 33.66 (CH2), 33.77 (CH2), 36.42 (CH),
37.38 (CH2), 62.34 (CH2), 80.29 (CH), 104.91 (C), 114.71
(CH), 115.97 (CH2), 119.04 (CH), 120.23 (CH), 125.06
(CH), 126.80 (CH), 127.37 (CH), 127.97 (CH), 128.07
(CH), 130.18 (CH), 130.49 (C), 134.00 (C), 134.49 (C),
142.89 (C), 154.80 (C), 157.52 (C); FAB-MS (m/z) 455 [M
+ H]+; HRMS calcd for C30H30O4 454.2144; found 454.2156.
Anal. Calcd for C30H30O4: C, 79.27; H, 6.65. Found: C, 79.35;
H, 6.68.
(1R,3R,5R,7R)-6′-(1-(4-(Naphthalen-1-yloxy)phenyl)vinyl)-

spiro[adamantane-2,3′-[1,2,4]trioxane] (1j). See ref 16.
(1R,3R,5R,7R)-6′-(1-(4-([1,1′-Biphenyl]-4-yloxy)phenyl)-

vinyl)spiro[adamantane-2,3′-[1,2,4]trioxane] (1k). White
solid was obtained in 50% yield; mp 122−125 °C; IR (KBr,
cm−1) 1592; 1H NMR (400 MHz, CDCl3) δ 1.60−2.10 (m,
13H), 2.96 (s, 1H), 3.79 (dd, 1H, J = 11.8 and 2.8 Hz), 3.98 (t,
1H, J = 11.6 Hz), 5.25 (dd, 1H, J = 10.4 and 2.6 Hz), 5.29 (s,
1H), 5.48 (s, 1H), 7.02 (d, 2H, Ar, J = 8.6 Hz), 7.09 (d, 2H,
Ar, J = 8.6 Hz), 7.32−7.46 (m, 5H, Ar), 7.55−7.58 (m, 4H,
Ar); 13C NMR (100 MHz, CDCl3) δ 27.33 (2 × CH), 29.58
(CH), 33.19 (CH2), 33.43 (CH2), 33.67 (CH2), 33.77 (CH2),
36.43 (CH), 37.38 (CH2), 62.34 (CH2), 80.30 (CH), 104.89
(C), 115.93 (CH2), 118.93 (CH), 119.49 (CH), 127.13 (CH),
127.30 (CH), 128.05 (CH), 128.70 (CH), 129.01 (CH),
133.96 (C), 136.81 (C), 140.67 (C), 142.91 (C), 156.59 (C),
157.48 (C); FAB-MS (m/z) 481 [M + H]+; HRMS calcd for
C32H32O4 480.2301; found 480.2250. Anal. Calcd for
C32H32O4: C, 79.97; H, 6.71. Found: C, 79.99; H, 6.78.
(1R,3R,5R,7R)-6′-(1-(4-Phenoxyphenyl)vinyl)spiro-

[adamantane-2,3′-[1,2,4]trioxane] (1l). White solid was
obtained in 49% yield; mp 53−56 °C; IR (KBr, cm−1) 1591;
1H NMR (400 MHz, CDCl3) δ 1.58−2.07 (m, 13H), 2.95 (s,
1H), 3.77 (dd, 1H, J = 11.8 and 2.9 Hz), 3.96 (dd, 1H, J = 11.8
and 10.4 Hz), 5.24 (dd, 1H, J = 10.4 and 2.8 Hz), 5.27 (s, 1H),
5.47 (s, 1H), 6.96 (d, 2H, Ar), 7.02 (dd, 2H, Ar, J = 8.7 and

1.1 Hz), 7.10−7.15 (m, 1H, Ar), 7.33−7.38 (m, 4H, Ar); 13C
NMR (100 MHz, CDCl3) δ 27.31 (2 × CH), 29.53 (CH),
33.16 (CH2), 33.42 (CH2), 33.64 (CH2), 33.75 (CH2), 36.42
(CH), 37.36 (CH2), 62.34 (CH2), 80.28 (CH), 104.88 (C),
115.85 (CH2), 118.79 (CH), 119.33 (CH), 123.77 (CH),
127.97 (CH), 130.02 (CH), 133.75 (C), 142.86 (C), 156.98
(C), 157.58 (C); FAB-MS (m/z) 405 [M + H]+; HRMS calcd
for C26H28O4 404.1988, found 404.1967. Anal. Calcd for
C26H28O4: C, 77.20; H, 6.98. Found: C, 77.24; H, 6.99.

8,8′-((Oxybis(4,1-phenylene))bis(ethene-1,1-diyl))bis-
(6,7,10-trioxaspiro[4.5]decane) (1m). Compound 1m was
obtained in 43% yield as white solid; mp 78−80 °C; IR (KBr,
cm−1) 1596; 1H NMR (400 MHz, CDCl3) δ 1.64−1.91 (m,
14H, 7 × CH2), 2.46−2.52 (m, 2H), 3.84 (d, 4H, 2 × CH2, J =
6.2 Hz), 5.24−5.27 (m, 3H), 5.45 (s, 2H), 6.96 (d, 4H, Ar, J =
8.7 Hz), 7.35 (d, 4H, Ar, J = 8.7 Hz); 13C NMR (100 MHz,
CDCl3) δ 23.57 (2 × CH2), 24.99 (2 × CH2), 32.99 (2 ×
CH2), 37.23 (2 × CH2), 65.22 (2 × CH2), 80.45 (2 × CH),
114.81 (2 × C), 116.22 (2 × CH2), 119.06 (4 × CH), 128.10
(4 × CH), 133.95 (2 × C), 142.60 (2 × C), 157.14 (2 × C);
FAB-MS (m/z) 507 [M + H]+; HRMS calcd for C30H34O7
506.2305; found 506.2317. Anal. Calcd for C30H34O7: C,
71.13; H, 6.77. Found: C, 71.25; H, 6.82.

2,7-Bis(4-(1-(6,7,10-trioxaspiro[4.5]decan-8-yl)vinyl)-
phenoxy)naphthalene (1n). Compound 1n was obtained in
35% yield as oil; IR (neat, cm−1) 1600; 1H NMR (400 MHz,
CDCl3) δ 1.67−1.93 (m, 14H, 7 × CH2), 2.50−2.56 (m, 2H),
3.89 (d, 4H, 2 × CH2, J = 5.9 Hz), 5.28−5.32 (m, 4H), 5.51 (s,
2H), 7.02 (d, 4H, Ar, J = 8.7 Hz), 7.16−7.19 (m, 4H), 7.39 (d,
4H, Ar, J = 8.7 Hz), 7.81 (d, 2H, Ar, J = 9.5 Hz); 13C NMR
(100 MHz, CDCl3) δ 23.57 (2 × CH2), 24.98 (2 × CH2),
32.99 (2 × CH2), 37.22 (2 × CH2), 65.22 (2 × CH2), 80.42 (2
× CH), 113.72 (2 × CH), 114.80 (2 × C), 116.20 (2 × CH2),
118.96 (2 × CH), 119.26 (4 × CH), 127.16 (C), 128.11 (4 ×
CH), 130.02 (2 × CH), 133.99 (2 × C), 135.58 (C), 142.58
(2 × C), 155.72 (2 × C), 157.22 (2 × C); FAB-MS (m/z) 649
[M + H]+. Anal. Calcd for C40H40O8: C, 74.06; H, 6.22.
Found: C, 74.20; H, 6.35.

1,5-Bis(4-(1-(6,7,10-trioxaspiro[4.5]decan-8-yl)vinyl)-
phenoxy)naphthalene (1o). Compound 1o was obtained in
30% yield as white solid; mp 148−150 °C; IR (KBr, cm−1)
1596; 1H NMR (400 MHz, CDCl3) δ 1.67−1.93 (m, 14H, 7 ×
CH2), 2.48−2.54 (m, 2H), 3.86 (d, 4H, J = 6 Hz), 5.27−5.32
(m, 4H), 5.47 (s, 2H), 7.01−7.04 (m, 6H), 7.37−7.42 (m,
6H), 7.95 (d, 2H, Ar, J = 8.5 Hz); 13C NMR (100 MHz,
CDCl3) δ 23.58 (2 × CH2), 24.99 (2 × CH2), 33.01 (2 ×
CH2), 37.24 (2 × CH2), 65.25 (2 × CH), 80.50 (2 × C),
114.82 (2 × CH2), 114.88 (2 × CH), 116.09 (4 × CH),
118.01 (2 × CH), 118.58 (4 × CH), 126.21 (2 × C), 128.16
(2 × C), 128.68 (2 × C), 133.75 (2 × C), 142.69 (2 × C),
152.91 (2 × C) 158.09 (2 × C); FAB-MS (m/z) 649 [M +
H]+. Anal. Calcd for C40H40O8: C, 74.06; H, 6.22. Found: C,
74.17; H, 6.38.

3,3′-((Oxybis(4,1-phenylene))bis(ethene-1,1-diyl))bis-
(1,2,5-trioxaspiro[5.5]undecane) (1p). Compound 1p was
obtained in 51% yield as white solid; mp 98−100 °C; IR (KBr,
cm−1) 1596; 1H NMR (400 MHz, CDCl3) δ 1.40−1.60 (m,
16H, 8 × CH2), 1.95−2.01 (m, 2H), 2.16−2.21 (m, 2H), 3.37
(dd, 2H, J = 11.8 and 2.8 Hz), 3.96 (dd, 2H, J = 11.8 and 10.5
Hz), 5.20 (dd, 2H, J = 10.4 and 2.3 Hz), 5.27 (s, 2H), 5.46 (s,
2H), 6.96 (d, 4H, Ar, J = 8.7 Hz), 7.35 (d, 4H, Ar, J = 8.7 Hz);
13C NMR (100 MHz, CDCl3) δ 22.49 (2 × CH2), 22.53 (2 ×
CH2), 25.73 (2 × CH2), 29.18 (2 × CH2), 34.84 (2 × CH2),
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62.83 (2 × CH2), 80.45 (2 × CH), 102.85 (2 × C), 116.12 (2
× CH2), 119.07 (4 × CH), 128.09 (4 × CH), 134.06 (2 × C),
142.82 (2 × C), 157.14 (2 × C); FAB-MS(m/z) 535 [M +
H]+. Anal. Calcd for C32H38O7: C, 71.89; H,7.16. Found: C,
71.98; H, 7.22. HRMS calcd for C32H38O7 534.2618; found
534.2614.
2,7-Bis(4-(1-(1,2,5-trioxaspiro[5.5]undecan-3-yl)vinyl)-

phenoxy)naphthalene (1q). Compound 1q was obtained in
34% yield as oil; IR (neat, cm−1) 1603; 1H NMR (400 MHz,
CDCl3) δ 1.40−1.65 (m, 16H, 8 × CH2), 1.97−2.04 (m, 2H),
2.18−2.23 (m, 2H), 3.78 (dd, 2H, J = 11.8 and 2.8 Hz), 3.99
(dd, 2H, J = 11.9 and 10.5 Hz), 5.23 (dd, 2H, J = 10.5 and 2.2
Hz), 5.29 and 5.49 (2 × s, 4H), 7.02 (d, 4H, Ar, J = 8.8 Hz),
7.17−7.18 (m, 4H, Ar), 7.39 (d, 4H, Ar, J = 8.8 Hz), 7.81 (d,
2H, Ar, J = 9.5 Hz); 13C NMR (100 MHz, CDCl3) δ 22.48 (2
× CH2), 22.52 (2 × CH2), 25.72 (2 × CH2), 29.17 (2 × CH2),
34.83 (2 × CH2), 62.83 (2 × CH2), 80.41 (2 × CH2), 102.84
(2 × C), 113.67 (2 × CH), 116.11 (2 × CH), 118.94 (2 ×
CH), 119.29 (4 × CH), 127.14 (C), 128.10 (4 × CH), 130.01
(2 × C), 134.11 (2 × C), 135.58 (C), 142.79 (2 × C), 155.75
(2 × C), 157.19 (2 × C); FAB-MS (m/z) 677 [M + H]+. Anal.
Calcd for C42H44O8: C, 74.54; H, 6.55. Found: C, 74.66; H,
6.68.
1,5-Bis(4-(1-(1,2,5-trioxaspiro[5.5]undecan-3-yl)vinyl)-

phenoxy)naphthalene (1r). Compound 1r was obtained in
32% yield as white solid; mp 158−160 °C; IR (KBr, cm−1)
1596; 1H NMR (400 MHz, CDCl3) δ 1.30−1.63 (m, 16H, 8 ×
CH2), 1.96−2.02 (m, 2H), 2.17−2.21 (m, 2H), 3.76 (dd, 2H, J
= 11.9 and 2.9 Hz), 3.97 (dd, 2H, J = 11.9 and 10.4 Hz), 5.21
(dd, 2H, J = 10.3 and 2.7 Hz), 5.27 and 5.46 (2 × s, 4H),
6.99−7.01 (m, 6H, Ar), 7.34−7.40 (m, 6H, Ar), 7.93 (d, 2H,
Ar, J = 8.5 Hz); 13C NMR (100 MHz, CDCl3) δ 22.49 (2 ×
CH2), 22.53 (2 × CH2), 25.73 (2 × CH2), 29.20 (2 × CH2),
34.84 (2 × CH2), 62.86 (2 × CH2), 80.46 (2 × CH), 102.85
(2 × C), 114.84 (2 × CH), 115.99 (2 × CH2), 118.00 (2 ×
CH), 118.59 (4 × CH), 126.20 (2 × CH), 128.13 (4 × CH),
128.66 (2 × C), 133.84 (2 × C), 142.87 (2 × C), 152.91 (2 ×
C), 158.07 (2 × C); FAB-MS (m/z) 677 [M + H]+. Anal.
Calcd for C42H44O8: C, 74.54; H, 6.55. Found: C, 74.82; H,
6.78.
(1R,1″R,3R,3″R,5R,5″R,7R,7″R)-6′ ,6‴-((Oxybis(4,1-

phenylene))bis(ethene-1,1-diyl))dispiro[adamantane-2,3′-
[1,2,4]trioxane (1s). Compound 1s was obtained in 19% yield
as white solid; mp 60−63 °C; IR (KBr, cm−1) 1596; 1H NMR
(300 MHz, CDCl3) δ 1.60−2.11 (m, 26H), 2.96 (s, 2H), 3.79
(dd, 2H, J = 11.8 and 2.9 Hz), 3.99 (dd, 2H, J = 11.7 and 10.5
Hz), 5.25 (dd, 2H, J = 10.3 and 2.7 Hz), 5.31 and 5.49 (2 × s,
4H), 6.99 (d, 4H, Ar, J = 8.6 Hz), 7.4 (d, 4H, Ar, J = 8.6 Hz);
13C NMR (75 MHz, CDCl3) δ 27.38 (4 × CH), 29.64 (2 ×
CH), 33.22 (2 × CH2), 33.46 (2 × CH2), 33.69 (2 × CH2),
33.79 (2 × CH2), 36.44 (2 × CH), 37.42 (2 × CH2), 62.33 (2
× CH2), 80.33 (2 × CH), 104.89 (2 × C), 116.02 (2 × CH2),
119.07 (4 × CH), 128.09 (4 × CH), 134.20 (2 × C), 142.97
(2 × C), 157.18 (2 × C); FAB-MS (m/z) 639 [M + H]+. Anal.
Calcd for C40H46O7: C, 75.21; H, 7.26. Found: C, 75.10; H,
7.30.
2,7-Bis(4-(1-(spiro[adamantane-2,3′-[1,2,4]trioxan]-6′-yl)-

vinyl)phenoxy)naphthalene (1t). Compound 1t was obtained
in 33% yield as oil; IR (neat, cm−1) 1598; 1H NMR (400 MHz,
CDCl3) δ 1.55−2.05 (m, 26 H), 2.92 (s, 2H), 3.76 (dd, 2H, J
= 11.8 and 2.8 Hz), 3.95 (t, 2H, J = 11.7 Hz), 5.22 (dd, 2H, J =
10.5 and 2.3 Hz), 5.26 (s, 2H), 5.47 (s, 2H), 7.01 (d, 4H, Ar, J
= 8.6 Hz), 7.15−7.17 (m, 4H, Ar), 7.37 (d, 4H, Ar, J = 8.6

Hz), 7.79 (d, 2H, Ar, J = 9.5 Hz); 13C NMR (100 MHz,
CDCl3) δ 27.34 (4 × CH), 29.58 (2 × CH), 33.19 (2 × CH2),
33.43 (2 × CH2), 33.66 (2 × CH2), 33.77 (2 × CH2), 36.42 (2
× CH), 37.38 (2 × CH2), 62.32 (2 × CH2), 80.27 (2 × CH),
104.89 (2 × C), 113.68 (2 × CH), 116.04 (2 × CH2), 118.94
(2 × CH), 119.31 (4 × CH), 127.16 (C), 128.09 (4 × CH),
130.01 (2 × CH), 134.22 (2 × CH), 135.61 (C), 142.87 (2 ×
C), 155.79 (2 × C), 157.19 (2 × C); FAB-MS (m/z) 781 [M
+ H]+. Anal. Calcd for C50H52O8: C, 76.90; H, 6.71. Found: C,
76.97; H, 6.98.

1,5-Bis(4-(1-(spiro[adamantane-2,3′-[1,2,4]trioxan]-6′-yl)-
vinyl)phenoxy)naphthalene (1u). Compound 1u was ob-
tained in 29% yield as white solid; mp 155−157 °C; IR (KBr,
cm−1) 1598; 1H NMR (400 MHz, CDCl3) δ 1.56−2.03 (m,
26H), 2.92 (s, 2H), 3.76 (dd, 2H, 2 × CH, J = 11.8 and 2.9
Hz), 3.96 (dd, 2H, J = 11.8 and 10.9 Hz), 5.22 (dd, 2H, J =
10.9 and 2.9 Hz), 5.26 (s, 2H), 5.46 (s, 2H), 6.99−7.01 (m,
6H, Ar), 7.36−7.40 (6H, Ar), 7.93 (d, 2H, Ar, J = 8.5 Hz); 13C
NMR (75 MHz, CDCl3) δ 27.40 (4 × CH), 29.67 (2 × CH),
33.24 (2 × CH2), 33.48 (2 × CH2), 33.71 (2 × CH2), 38.81 (2
× CH2), 36.46 (2 × CH), 37.44 (2 × CH2), 62.37 (2 × CH2),
80.34 (2 × CH), 104.90 (2 × C), 114.84 (2 × CH), 115.89 (2
× CH2), 118.03 (2 × CH), 118.62 (4 × CH), 126.20 (2 ×
CH), 128.14 (4 × CH), 128.72 (2 × C), 134 (2 × C), 143.01
(2 × C), 152.99 (2 × C), 158.10 (2 × C); FAB-MS (m/z) 781
[M + H]+. Anal. Calcd for C50H52O8: C, 76.90; H, 6.71.
Found: C, 76.87; H, 6.95.

1-[4-(Naphthalen-2-yloxy)-phenyl]-ethanone (2a). White
solid was obtained in 52% yield; mp 75−85 °C; 1H NMR (400
MHz, CDCl3) δ 2.58 (s, CH3), 7.06 (d, 2H, Ar, J = 8.8 Hz),
7.25 (dd, 1H, Ar, J = 8.8 and 2.4 Hz), 7.44−7.52 (m, 3H, Ar),
7.76 (d, 1H, Ar, J = 8.5 Hz), 7.87 (t, 2H, Ar, J = 9.1 Hz), 7.96
(d, 2H, Ar, J = 8.8 Hz); 13C NMR (100 MHz, CDCl3) δ 26.67
(CH3), 116.40 (CH), 117.73 (CH), 120.53 (CH), 125.56
(CH), 126.97 (CH), 127.50 (CH), 128.03 (CH), 130.45
(CH), 130.83 (CH), 130.98 (C), 132.27 (C), 134.45 (C),
153.40 (C), 162.13 (C), 196.93 (C); FAB-MS (m/z) 263 [M
+ H]+; HRMS calcd for C18H14O2 262.0994, found 262.0991.
Anal. Calcd for C18H14O2: C, 82.42; H, 5.38. Found: C, 82.48;
H, 5.41.

1-[4-(Naphthalen-1-yloxy)-phenyl]-ethanone (2b). White
solid was obtained in 45% yield; mp 52−55 °C; 1H NMR (400
MHz, CDCl3) δ 2.56 (s, CH3), 7.01 (d, 2H, Ar,), 7.01 (d, 2H,
Ar, J = 8.9 Hz), 7.12 (dd, 1H, Ar, J = 7.5 and 0.9 Hz), 7.90−
7.56 (m, 3H, Ar), 7.73 (d, 1H, Ar, J = 8.2 Hz), 7.90−7.96 (m,
3H, Ar), 8.02 (d, 1H, Ar, J = 8.7 Hz); 13C NMR (100 MHz,
CDCl3) δ 26.65 (CH3), 116.10 (CH), 117.03 (CH), 122.04
(CH), 125.17 (CH), 126.03 (CH), 126.59 (CH), 126.98
(CH), 127.23 (CH), 128.21 (CH), 130.90 (CH), 132.02 (C),
135.30 (C), 151.32 (C), 162.87 (C), 196.96 (C); FAB-MS
(m/z) 263 [M + H]+; HRMS calcd for C18H14O2 262.3080,
found 262.3081. Anal. Calcd for C18H14O2: C, 82.42; H, 5.38.
Found: C, 82.48; H, 5.41.

1-[4-(Biphenyl-4-yloxy)-phenyl]-ethanone (2c). White
solid was obtained in 48% yield; mp 113−118 °C; 1H NMR
(400 MHz, CDCl3) δ 2.58 (s, CH3), 7.05 (d, 2H, Ar, J = 8.9
Hz), 7.13 (d, 2H, Ar, J = 8.7 Hz), 7.33−7.38 (m, 1H, Ar),
7.43−7.48 (m, 2H, Ar), 7.57−7.64 (m, 4H, Ar), 7.95−7.98 (m,
2H, Ar); 13C NMR (100 MHz, CDCl3) δ 26.71 (CH3),
117.60 (CH), 120.58 (CH), 127.19 (CH), 127.53 (CH),
128.94 (CH), 129.07 (CH), 130.85 (CH), 132.19 (CH),
137.91 (C), 140.46 (C), 155.18 (C), 162.11 (C), 197.02 (C);
FAB-MS (m/z) 289 [M + H]+; HRMS calcd for C20HO4
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288.1150, found 288.1155. Anal. Calcd for C20H16O2: C,
83.31; H, 5.59. Found: C, 83.36; H, 5.62.
1-(4-Phenoxy-phenyl)-ethanone (2d). White crystalline

solid was obtained in 49% yield; mp 47−49 °C; 1H NMR
(400 MHz, CDCl3) δ 2.57 (s, CH3), 6.99 (d, 2H, Ar, J = 8.9
Hz), 7.07 (dd, 2H, Ar, J = 8.7 and 1.1 Hz), 7.18−7.22 (m, 1H,
Ar), 7.37−7.41 (m, 2H, Ar), 7.93 (d, 2H, Ar, J = 8.9 Hz); 13C
NMR (100 MHz, CDCl3) δ 26.69 (CH3), 117.48 (CH),
120.39 (CH), 124.84 (CH), 130.27 (CH), 130.81 (CH),
132.07 (CH), 155.67 (CH), 162.20 (CH), 197.01 (C); FAB-
MS (m/z) 213 [M + H]+; HRMS calcd for C14H12O2
212.0837, found 212.0857. Anal. Calcd for C14H12O2: C,
79.23; H, 5.70. Found: C, 79.28; H, 5.75.
1-[4-(4-Acetyl-phenoxy)-phenyl]-ethanone (2e). Com-

pound 2e was obtained in 42% yield as white solid; mp 98−
100 °C; IR (KBr, cm−1) 1678; 1H NMR (400 MHz, CDCl3) δ
2.58 (s, 6H, 2 × CH3), 7.06 (d, 4H, Ar, J = 8.8 Hz), 7.97 (d,
4H, Ar, J = 8.8 Hz); 13C NMR (100 MHz, CDCl3) δ 26.76 (2
× CH3), 118.96 (4 × CH), 130.94 (4 × CH), 133.24 (2 × C),
160.39 (2 × C), 196.92 (2 × C); FAB-MS (m/z) 255 [M +
H]+.
1-{4-[7-(4-Acetyl-phenoxy)-naphthalen-2-yloxy]-phenyl}-

ethanone (2f). Compound 2f was obtained in 38% yield as
reddish brown solid; mp 135−137 °C; IR (KBr, cm−1) 1673;
1H NMR (400 MHz, CDCl3) δ 2.56 (s, 6H, 2 × CH3), 7.04
(d, 4H, Ar, J = 8.8 Hz), 7.19 (dd, 2H, J = 8.9 and 2.3 Hz), 7.29
(d, 2H, Ar, J = 2.3 Hz), 7.86 (d, 2H, Ar, J = 8.9 Hz), 7.94 (dd,
4H, Ar, J = 8.9 and 2.0 Hz); 13C NMR (100 MHz, CDCl3) δ
26.71 (2 × CH3), 115.44 (2 × CH), 118.03 (4 × CH), 119.75
(2 × CH), 128.07 (C), 130.36 (2 × CH), 130.86 (4 × CH),
132.45 (C), 135.52 (2 × C), 154.48 (2 × C), 161.70 (2 × C),
197.02 (2 × C); FAB-MS (m/z) 397 [M + H]+.
1-{4-[5-(4-Acetyl-phenoxy)-naphthalen-1-yloxy]-phenyl}-

ethanone (2g). Compound 2g was obtained in 40% yield as
gray solid; mp 180−183 °C; IR (KBr, cm−1) 1680; 1H NMR
(400 MHz, CDCl3) δ 2.58 (s, 6H, 2 × CH3), 7.05 (d, 4H, Ar, J
= 8.6 Hz), 7.15 (d, 2H, Ar, J = 7.4 Hz), 7.44 (t, 2H, J = 7.6
Hz), 7.91 (d, 2H, Ar, J = 8.5 Hz), 7.96 (d, 4H, Ar, J = 8.8 Hz);
13C NMR (100 MHz, CDCl3) δ 26.65 (2 × CH3), 116.60 (2 ×
CH), 117.39 (2 × CH), 118.94 (2 × CH), 126.55 (4 × CH),
128.95 (2 × C), 130.94 (4 × CH), 132.29 (2 × C), 151.78 (2
× C), 162.47 (2 × C), 196.83 (2 × C); FAB-MS (m/z) 397
[M + H]+.
Cyclopentanone (3a). Compound 3a was obtained in 88%

yield as oil; 1H NMR (400 MHz, CDCl3) δ 1.87−1−91(m,
4H), 2.09 (t, 4H, J = 3.7 Hz); 13C NMR (100 MHz, CDCl3) δ
23.32 (2 × CH2), 38.45(2 × CH2), 220.90 (C).
Cyclohexanone (3b). Compound 3b was obtained in 70%

yield as oil; 1H NMR (400 MHz, CDCl3) δ 1.61−1.66 (m,
2H), 1.74−1.81 (m, 4H), 2.25 (t, 4H, J = 6.6 Hz); 13C NMR
(100 MHz, CDCl3) δ 25.03 (CH2), 27.09 (2 × CH2), 42.03(2
× CH2), 212.45 (C).
2-Adamantanone (3c). Compound 3c was obtained in 81%

yield as a white powder; mp 256−258 °C; 1H NMR (400
MHz, CDCl3) δ 1.89−2.06 (m, 12H), 2.51 (s, 2H); 13C NMR
(100 MHz, CDCl3) δ 27.61 (2 × CH), 36.46 (CH2), 39.43 (4
× CH2), 47.14 (2 × CH), 218.81 (C).
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have behaved well, but the usual precautions for handling of peroxides
are recommended.
(45) The SAR analysis of reported trioxanes revealed that
compounds 1a,b and 1m showed 100% antimalarial efficacy at a
dose of 48 mg/kg for 4 days, while compound 1m also showed
activity at 24 mg/kg dose with 80% protection against multidrug-
resistant Plasmodium yoelii in Swiss mice by oral route.
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