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Juvenile dermatomyositis (JDM) is a rare autoimmune condition with insufficient
biomarkers and treatments, in part, due to incomplete knowledge of the cell types
mediating disease. We investigated immunophenotypes and cell-specific genes
associated with disease activity using multiplexed RNA and protein single-cell
sequencing applied to PBMCs from 4 treatment-naïve JDM (TN-JDM) subjects at
baseline, 2, 4, and 6 months post-treatment and 4 subjects with inactive disease on
treatment. Analysis of 55,564 cells revealed separate clustering of TN-JDM cells within
monocyte, NK, CD8+ effector T and naïve B populations. The proportion of CD16+

monocytes was reduced in TN-JDM, and naïve B cells and CD4+ Tregs were expanded.
Cell-type differential gene expression analysis and hierarchical clustering identified a pan-
cell-type IFN gene signature over-expressed in TN-JDM in all cell types and
correlated with disease activity most strongly in cytotoxic cell types. TN-JDM CD16+

monocytes expressed the highest IFN gene score and were highly skewed toward an
inflammatory and antigen-presenting phenotype at both the transcriptomic and proteomic
levels. A transitional B cell population with a distinct transcriptomic signature was
expanded in TN-JDM and characterized by higher CD24 and CD5 proteins and less
CD39, an immunoregulatory protein. This data provides new insights into JDM
immune dysregulation at cellular resolution and serves as a novel resource for
myositis investigators.
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INTRODUCTION

Juvenile dermatomyositis (JDM) is a complex immune-mediated
disease characterized by inflammatory myopathy of proximal
musculature and pathognomonic skin rashes. Immune
mechanisms are not fully understood, however, investigations
to date implicate a combination of genetic variants and
environmental influences (1). Though mortality rates have
greatly improved, more than 60% of children with JDM have
long-term damage and functional impairment due to poorly
controlled disease or corticosteroid toxicity (2). This is, in part,
due to the paucity of reliable, objective biomarkers to monitor
disease activity, predict flares, or guide treatment decisions and
an incomplete understanding of the cellular immunophenotypes
contributing to disease. To improve the outcomes of children
with JDM, a personalized approach to disease management, is
urgently needed.

A key step in developing a personalized treatment strategy in
JDM is a better understanding of the interferon (IFN) response,
including the specific cell types involved in IFN signaling in JDM
and the dynamic nature of the response during the course of
disease. Numerous studies investigating gene expression in adult
dermatomyositis (DM) and JDM have shown that the
transcriptional signature is dominated by type I IFN stimulated
genes (ISGs) (3–6). Some, but not all studies, have shown a
correlation with ISG expression and disease activity (3, 7, 8).
This discrepancy is likely due to the limitations of prior expression
profiling technology, which measure transcriptional changes
across aggregated cell types, as well as nuances of IFN signaling,
which have been shown to be both cell-type-specific and disease-
specific (9). Single-cell sequencing, using a multi-modal approach
measuring gene and protein expression, represents a unique
opportunity to characterize immune cell types and cell-specific
IFN responses in JDM, in an unbiased fashion.

In addition to characterizing the cell-type specific IFN response
in JDM, a better understanding of the cell types that contribute to
disease is imperative. Immune mechanisms in JDM are complex,
involving both innate and adaptive arms of the immune system, as
well as many cell types (1). A role for B cells has been supported by
the presence of myositis-specific antibodies that correlate with
distinct clinical phenotypes (10) and by a positive clinical
response to rituximab, a B-cell depleting agent (11). Likewise, two
independent studies have also demonstrated an expansion of naïve
B cells in JDM (12, 13). Several studies have demonstrated
infiltration of T cells in muscle and skin biopsies in DM/JDM
using immunohistochemistry (14–17), and flow cytometry studies
demonstrated a skewing of peripheral blood CXCR5+Th subsets
toward Th2 and Th17 phenotypes with increasing disease activity
(18). Additionally, peripheral blood NK cells are decreased in
number and dysfunctional, suggesting a role for innate immune
cells as well (13).

In this study, we sought to build upon this knowledge by
comprehensively interrogating the peripheral blood
compartment in JDM, including simultaneous measurements
of RNA and cell-surface proteins. Our goal was to provide an
unbiased characterization of peripheral blood immune cells as
well as insight into the dynamic nature of immune cell
Frontiers in Immunology | www.frontiersin.org 2
composition and cell-specific transcriptomic and proteomic
signatures over time. An improved understanding of the
immune cell types associated with JDM disease activity is
integral to future biomarker and drug target development as
we work to develop personalized medicine approaches to the
care of JDM.
METHODS

Patients
This study was approved by the University of California San
Francisco (UCSF) Institutional Review Board. Subjects meeting
Bohan and Peter criteria for JDM (19), modified to includeMRI as
a possible diagnostic modality reflective of current practice, were
recruited from the UCSF Pediatric Rheumatology Clinics in San
Francisco and Oakland. All subjects provided informed consent,
as well as informed assent, when age-appropriate. Patients could
be enrolled at any time in their disease course. At each study visit,
patient clinical data, which included items contained in the
IMACS core consensus data set (20), was collected in a secure
REDCap database. Patients enrolled at diagnosis also had follow
up study visits at approximately 2, 4 and 6 months into treatment.
For this study, inactive disease was defined using a modified
PRINTO criteria for inactive disease (21): creatinine kinase
<=150, manual muscle testing (MMT)-8<=78, and physician
global visual analog score (VAS) <=0.5 as well as clinical
judgement of inactive disease. We used a threshold of <=0.5
rather than 0.2 because our data collection forms included
checked boxes in increments of 0.5 for VAS scores, and we did
not collect CMAS measurements. Demographics, disease
characteristics, and median disease activity measures for each
patient group are summarized in Table 1. These measures are
displayed graphically in Supplementary Figure 1.

Sample Processing & Multi-Modal
Single-Cell Sequencing
Peripheral blood samples were collected at each study visit and
processed by the Pediatric Clinical Research Core Sample
Processing Lab. Peripheral blood mononuclear cells (PBMCs)
were collected in SepMate tubes (n=5) or CPT tubes (n=15),
isolated per each manufacturer’s guidelines, and cryopreserved
in liquid nitrogen. Our experimental protocol followed the
manufacturer’s user guide (10X 3’V3 Document CG000185
Rev B, 10X Genomics) with certain modifications to isolate
and amplify antibody-derived DNA tags (ADTs). Note these
experiments were carried out using early access kits from BD
Genomics before the implementation of commercially-available
single-cell protein/RNA assays (e.g. Feature Barcoding, 10x
Genomics; BD Abseq, BD Genomics, Supplementary Table 1),
and researchers are recommended to use those newer solutions
for any follow-up studies as the techniques and reagents have
been refined. For the experiment, PBMCs from 20 distinct
samples were gently thawed in a 37°C water bath and re-
suspended using a pipette set to 1 mL. Cell counts and viability
were determined using a Cellometer Vision (Nexcelcom) with
June 2022 | Volume 13 | Article 902232
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TABLE 1 | Patient Characteristics.

I-JDM TN-JDM

Baseline 2 months 4 months 6 months

Median age (yrs) at diagnosis 7 9.5 – – –

Median age (yrs) at study visit 9.5 9.5 - - -
Female sex 75% 50% – – –

TIF1-y (%) 50% 50% - - -
NXP-2 (%) 25% 25% – – –

MDA-5 (%) - 25% - - -
MSA-neg (%) 25% – – – –

Median disease duration (mos) 38.2 2.7 - - -
Physician VAS Global (median [IQR]) 0.4 [0.2, 0.5] 5.5 [4.6, 6.0] 2.3 [1.6, 2.9] 1.3 [0.8, 1.6] 1.0 [0.4, 1.5]
Physician VAS Cutaneous (median [IQR]) 0.3 [0.0, 0.5] 4.5 [3.1, 5.9] 2.3 [1.6, 2.6] 1.8 [1.3, 2.0] 1.3 [0.8, 1.6]
Physician VAS Muscle (median [IQR]) 0.2 [0.0, 0.5] 4.0 [3.3, 4.0] 0.8 [0.4, 1.0] 0.0 [0.0, 0.1] 0.0 [0.0, 0.1]
MMT-8 (median [IQR]) 79.0 [78.0, 80.0] 70.0 [69.5, 73.0] 80.0 [78.5, 80.0] 80.0 [79.0, 80.0] 80.0 [79.5, 80.0]
CHAQ Disability Index (median [IQR]) 0.00 [0.00, 0.09] 0.62 [0.62, 1.25] 0.31 [0.22, 0.69] 0.31 [0.09, 0.56] 0.06 [0.00, 0.19]
CDASI Activity Score (median [IQR]) 1.0 [0.0, 2.3] 21.5 [13.0, 29.0] 5.5 [3.3, 7.8] 4.5 [3.3, 5.0] 3.0 [1.8, 4.3]

I-JDM, inactive juvenile dermatomyositis; TN-JDM, treatment-naïve juvenile dermatomyositis; MSA-neg, myositis-specific antibody negative; VAS, visual analog scale; IQR, interquartile
range; MMT-8 manual muscle testing 8; CHAQ, childhood health assessment questionairre; CDASI cutaneous dermatomyositis disease area and severity index.
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AOPI staining (Nexcelcom cat. CS2-0106-5ML). Cells were
multiplexed into four pools with five samples each (2x105 cells/
sample) into separate 5 ml tubes (Falcon cat. 342235).
Longitudinal samples from the same individual were aliquoted
to distinct pools to enable genetic demultiplexing and
experimental time points were also mixed within each well to
avoid confounding time-related and batch effects. After pooling,
cells were resuspended in 90 ml of 1% BSA in PBS and Fc blocked
with 10 ml Human Trustain FcX (Biolegend cat. 422302) for 10
minutes on ice then stained on ice for 45 minutes with a pool of
50 antibodies in 100 ml, for a final staining volume of 200 ml.
Antibodies were pooled on ice with 2.2 ml per antibody per 1x106

cells (BD Genomics). Cells were quenched with 2 ml 1% BSA in
PBS and spun at 350xg for 5 minutes and further washed two
more times with 2 ml of 1% BSA in PBS. After the final wash,
cells were resuspended in 100 ul and strained through a 40 mM
filter (SP Bel-Art cat. H13680-0040). Each pool was loaded and
processed into a respective well (4 wells total, 4x104 cells/well) as
in the manufacturer’s protocol. The 10x instrument was run and
post-GEM RT and cleanup were done as according to
manufacturer’s protocol. Starting at cDNA amplification,
modifications to the protocol were made: 1 ml of 2 mM additive
primer (BD Genomics, beta kit) specific to the antibodies tags
was added to the amplification mixture. During the 0.6X
SPRIselect (Beckman Coulter, B23318) isolation of the post-
cDNA amplification reaction cleanup, the supernatant fraction
was retained for ADT library generation. Subsequent library
preparation of the cDNA SPRI-select pellet was done exactly
according to protocol, using unique SI PCR Primers (10x
Genomics). For the ADT supernatant fraction, a 1.8X SPRI
was done to isolate ADTs from other non-specifically
amplified sequences, followed by a sample index PCR. Sample
index PCR for the ADTs was done using the cycling conditions
as outlined in the standard protocol (15 cycles) but using
different unique SI-PCR Primers such that all libraries could be
mixed and sequenced together. Subsequent SPRI selection was
performed, and all libraries were quantified and analyzed via
Frontiers in Immunology | www.frontiersin.org 3
Qubit 2.0 (Fisher) and Bioanalyzer (Agilent), respectively, for
quality control. Libraries were mixed and sequenced on 1 lane of
a NovaSeq S4 using the recommended number of cycles.

Alignment, Demultiplexing, and
Doublet Removal
CellRanger (v3.1.0) was run to align reads to the GRCh38 genome
build and generate counts matrices and binary alignment files
(BAMs). Each BAM was inputted into freemuxlet for donor-of-
origin annotation and doublet removal. To assign cells to donors of
origin in ourmultiplexed design, we used the genetic demultiplexing
tool freemuxlet and a sample matching script, each being part of the
popscle suite of population genetics tools (https://github.com/
statgen/popscle) to assign cells to donors as previously described
(22). To create the external genotype reference, DNA was extracted
from whole blood samples for each patient and genotyped using the
OmniExpressExome array at the UC Berkeley Vincent J. Coates
Genomics Sequencing Laboratory. Freemuxlet and the sample
matching script were run, yielding a 1 to 1 mapping of droplet
barcode clusters to individuals. Heterotypic doublets detected by
demuxlet were removed, and additional homotypic doublets (i.e.
two cells from the same individual co-encapsulated) were removed
using doubletdetector (23).

Quality Control and Processing
Gene and protein expression matrices (4 each) were
subsequently processed using Scanpy (v1.5.1) (24). To identify
and filter low quality cells, we visualized the log-normalized
distributions of mRNA counts, protein counts, and gene counts
for each of the four wells and filtered counts at the tails of these
distributions. The percent mitochondrial gene expression for
each well displayed a similar distribution, so we applied the same
cutoff of filtering cells with >15% mitochondrial gene expression
to all four wells. After filtering and doublet removal, we analyzed
55,564 cells. The average number of cells sequenced per sample
was 2,778. Subject N-4 had significantly few cells sequenced than
the three other newly diagnosed patients (n=2,663), compared to
June 2022 | Volume 13 | Article 902232
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N-1 (n=13,812), N-2 (n=11,985), N-3 (n=11,633)), particularly
for visits 2 and 3 where only 12 and 116 cells were recovered,
respectively. This was taken into account for all downstream
analyses. A similar number of cells, ~14,000 was recovered from
each of the four 10X wells.

The four mRNA matrices were then concatenated and log-
normalized. We then extracted a set of highly-variable genes using
the Scanpy function “highly_variable_genes” and then selecting a
set of genes with high mean expression and dispersion. The protein
matrices were also concatenated and log-normalized, and the both
RNA and protein matrices were merged for down-stream join
clustering. The Scanpy commands “regress_out”, to control for the
effect of mitochondria gene count and total mRNA count, and
“combat” (25), to control the batch effect of the four wells, were
used. Batch correction using ComBat was able to correct for
technical replicates except in CD14+ monocytes, where there
appears to be some residual sample-specific effects especially
related to cluster 18. These effects could be due to batch or other
covariates such as sex, which is consistent with previous literature
showing significant inter-individual variation in monocytes (26, 27)
(Supplementary Figure 2). We accounted for these effects by
analyzing these clusters collectively in down-stream analysese.
Clusters were otherwise independent of patient effect, however,
there was some patient-level heterogeneity: N-2 cells make up a
large majority of CD8+ effector T cells and N-1 and N-3, bothmales,
appear to cluster together within the CD14+ monocyte population
(Supplementary Figure 3). Principal component analysis was
applied to identify 30 PCs, and the “neighbors” command was
used to compute a neighborhood graph using the default size of 15.
We then embedded the neighborhood graph using Uniform
Manifold Approximation and Projection (UMAP) (28) for
subsequent visualization using the default settings.

Clustering and Cell Type Annotation
Clustering was then performed using the set of highly variable
genes and all proteins and applying the Leiden algorithm (29)
with a resolution of 1.5, which identified 24 cell clusters, 23 of
which were immune cell clusters (cluster 22 was platelets),
including all major immune cell populations (Supplementary
Figure 4; Figure 2A). Two clusters, 13 and 15, could not be
annotated and expressed both CD8 and mRNA transcripts for
the gamma and delta chains of the T cell receptor. These two
clusters were further subclustered at a low resolution using the
“restrict_to” parameter in the Leiden function in Scanpy to
identify distinct CD8+ memory T cell and gamma-delta T cell
populations. Cells were annotated using canonical RNA and cell
surface markers (Figure 2A; Supplementary Figure 5).

Cell Type Compositional Analysis
To determine cell types enriched in treatment-naïve disease, cell
type proportion was compared between the baseline and 6-
month visit using a paired t-test and significance threshold of
p<0.05. We also compared cell type proportion between TN-
JDM, baseline visit, and inactive JDM (I-JDM) using a t-test and
a significance threshold of p<0.05. For both analyses, percent
composition was calculated and visualized with dittoSeq’s
“dittoBarPlot” function (30).
Frontiers in Immunology | www.frontiersin.org 4
Differential Gene and Protein Expression
To calculate cell type differential gene and protein expression
between disease states, we used the DESeq2 package (v1.28.1) (31),
using the inputs recommended for single-cell data in the package
vignette (test = “LRT”, reduced = ~1, sfType = “poscounts”, useT =
TRUE, minmu = 1e-6, minReplicatesForReplace = Inf) and
included batch as a covariate in the design formula. We used a
log-fold change cutoff of >1 for differential gene expression or >0.5
for protein expression, and a false discovery rate <0.05. Only genes
and proteins expressed in at least 10% of cells for each cell
populations were assessed. Differential expression was not
calculated for plasmablasts, due to low cell numbers, or platelets.

Global Cell-Specific Transcriptional
Signature
To identify and visualize the global cell-specific transcriptional
signature, we collated the set of non Y-chromosome genes that
were differentially expressed in at least one cell type in both analyses
longitudinal and cross-sectional analyses. The pseudobulk mean
expression per sample group, defined as baseline, 2, 4, and 6months
and inactive, for each of the genes per cell type was calculated and
visualized using dittoSeq’s ‘dittoHeatmap’ (30). Columns were
ordered by cell type and group by increasing time from diagnosis,
which also correlated with decreasing disease activity levels.
Unsupervised hierarchical clustering by Euclidean distance was
then applied to cluster the genes into distinct modules using
k=10. Module scores were then calculated as the sum of mean
expression of all module genes for each pseudobulk calculation per
sample group. Correlations of module scores (minimum of 10 cells
per case) to X-metric was then calculated with using the Pearson
correlation and visualized as dot & scatter plots using ggplot2 (32).
Gene Ontology enrichment analysis was applied to each gene set
using clusterProfiler (33) over-representation analysis and Gene
Ontology Biological Processes reference and a significance cut-off of
p<0.05, Benjamini-Hochberg (B&H) adjusted.

Identifying Cell Type Subclusters
To identify subclusters within selected cell populations, a second
round of clustering was applied using the “restrict_to” parameter
in the Leiden function in Scanpy and a low clustering resolution
of 0.2 for CD16+ monocytes and 0.3 for naïve B cells. The
proportion of cells from each sample per subcluster was
visualized using barplots. The proportion of cells from each
patient group was calculated and a chi-square test was applied to
determine if the composition of subclusters differed. Differential
gene expression and differential protein expression for each
subcluster compared to the canonical cell population was
calculated using DESeq2 in the same method as described above.
RESULTS

JDM Is Associated With Alterations in
Immune Cell Composition
A graphical depiction of our study design, multiplexing strategy,
and analysis pipeline is depicted in Figure 1. A total of 20
June 2022 | Volume 13 | Article 902232
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samples from 4 subjects with JDM with treatment-naïve disease
(TN-JDM) and 4 subjects with established, clinically inactive
disease (I-JDM) were included. Serial samples from TN-JDM
subjects were included at baseline and approximately, 2, 4, and 6
months into treatment. The median age of JDM diagnosis was
9.5 years in the TN-JDM group and 7 years in the I-JDM group,
and the median age at study enrollment in both groups was 9.5
years (Table 1). Two of four patients were female in the TN-JDM
group and 3 out of 4 were female in the I-JDM group. In both
groups, 2/4 patients were positive for TIF1-g. All patients
exhibited improvement in disease activity measures during the
first 6 months of disease (Table 1 and Supplementary Figure 1).

After filtering and doublet removal, we analyzed 55,564 cells
comprising all the major immune cell populations, which were
annotated using canonical cell markers (Figure 2A). Cells from
TN-JDM subjects clustered together and occupied distinct
regions of UMAP embeddings in CD14+ and CD16+

monocyte, naïve B cell, naïve and effector CD4+ and CD8+ T
cell and CD56dim NK cell populations (Figure 2B). Visualization
of UMAP embeddings by visit demonstrated a shift in
embeddings over time from tightly clustered regions in TN-
DM to a broader embedding across the cluster at subsequent
time points suggesting diversification of cell states as disease
activity declines with treatment (Figure 2B).

Cell type proportions were altered in TN-JDM compared to
treated JDM (Figure 2C). In a paired analysis of TN-JDM
comparing baseline samples to 6 month samples, there was a
significant expansion of naïve B cells (p=0.03) and CD4+ naïve T
cells (p=0.02) and a reduction of CD16+monocytes (p=0.01) in TN-
JDM. One patient did not have any B cells at the 6 months time
point due to treatment with a B-cell depleting agent, rituximab. In a
cross-sectional analyses comparing TN-JDM to I-JDM, there was
also a reduction of CD16+ monocytes (p=0.01) and trend toward
expansion of naïve B cells (p=0.07) in TN-JDM. There were also
Frontiers in Immunology | www.frontiersin.org 5
significant differences in several T cell populations with expansion
of CD4+ Tregs (p=0.04) and a reduction of CD8+ naïve T cells
(p=0.04), and gdT2 populations (p=0.01) in TN-JDM. The increase
in the CD8+memory T resting (p=0.01) population in inactive JDM
relative to TN-JDM suggests a memory T cell response that
develops over time in JDM. Expansion of naïve B cells, and
alterations in regulatory cell types, including CD16+ monocytes
and CD4+Tregs, may be associated with TN-JDM.

Global and Cell Type-Specific
Transcriptomic Signatures in JDM Are
Associated With Disease Activity
To develop a global understanding of the JDM transcriptional
signature and how it changes with treatment, we first performed
differential gene expression analysis between TN-JDM baseline and
6 months visits and between TN-JDM and I-JDM groups
(Supplementary Table 2). Monocytes, classical dendritic cells
(cDCs), and cytotoxic cell types, CD8+ effector T and CD56dim

NK cells, displayed the greatest number of differentially expressed
genes (DEGs) and many genes were differentially expressed in
multiple cell types (Supplementary Figures 6, 7). Unsupervised
clustering using cell-specific DEGs clustered patients according to
disease activity levels, as expected (Supplementary Figures 8–13).
We then calculated the pseudobulk expression profiles per disease
group (baseline, 2 mos, 4 mos, 6 mos, and inactive) for 368 genes
that were differentially expressed in at least one cell type in both
analyses (Figure 3A). Hierarchical clustering of this gene set
revealed 10 gene modules, which were visualized using a heatmap
with columns ordered by descending level of disease activity
(baseline, 2 mos, 4 mos, 6 mos, and inactive) and cell type. Gene
ontology enrichment analysis of each of the ten gene modules
identified associations with protein translation, cytokine regulation,
type I and II interferon signaling, NFkB signaling, antigen
presentation via the class I pathway, and the unfolded protein
FIGURE 1 | An overview of the experimental design, multiplexing strategy, and analysis pipeline. Timepoints refer to longitudinal samples obtained from the same
patients at BL=baseline, 2m=2 months, 4m=4 months, 6m=6 months; N refers to “New-JDM”. Rxn, reaction; DGE, differential gene expression; DPE, differential
protein expression.
June 2022 | Volume 13 | Article 902232
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response (Figure 3B and Supplementary Figure 14). Module 9 did
not have any significant enrichment terms, but these genes were
highly expressed in plasmacytoid dendritic cells (pDCs). Three
modules were enriched in IFN signaling, including type I and
type II IFN responses: modules 3, 5, and 8 (Figure 3B). Module 8
genes were highly expressed in the TN-JDM group in nearly every
Frontiers in Immunology | www.frontiersin.org 6
cell type, and expression sharply declined with treatment. This
“Pan-cell IFN” signature was most prominently expressed in CD16+

and CD14+ monocytes, CD56dim NK cells and CD8+ effector T cells
in TN-JDM subjects (Supplementary Figure 15). In contrast,
module 3 genes were more prominently expressed in myeloid cell
types and module 5 genes were more prominently expressed in T
A
B

C

FIGURE 2 | (A) A UMAP plot showing 19 manually annotated cell types from 24 immune cell populations identified by Leiden clustering. Manual annotations were
based on canonical markers shown in Supplementary Figure 5. (B) UMAP embeddings showing all cells colored by timepoint (for newly-diagnosed patients) and
inactive disease state showing distinct regions of embedding for cells from baseline (BL) TN (treatment-naïve) patients in most cell populations. (C) Boxplots for 18
cell types (platelets not included) showing differences in cell type proportion between BL TN samples and inactive samples and between BL, TN samples and 6m
samples. Comparison of proportions between BL and 6 months was a paired analysis and grey lines connect the observations from the same individuals. P values
were calculated using a T test (**<0.05, *<0.1).
June 2022 | Volume 13 | Article 902232
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A B

D

C

FIGURE 3 | (A) A heatmap displaying the mean expression of 368 genes differentially expressed in at least one cell type for each group per cell type ordered by
increasing time from diagnosis (BL, 2m, 4m, 6m, inactive). Rows are clustered using unsupervised hierarchical clustering with k=10, and modules are annotated by
enrichment terms on the left. A selection of genes from each module is annotated on the right. Color represents the normalized mean expression. (B) A dotplot
displaying the association between each gene module set and enrichment of GO Biologic Processes terms. Each column represents a module from panel (A).
Enrichment analysis was performed using over-representation analysis with the color representing the adjusted p-value using B&H and the size of the dot
representing the ratio of the number of genes relative to the number of genes in each term. (C) A dotplot displaying the strength of correlation between each module
gene score, calculated as the average expression of all genes within a module, and the physician global VAS score for all cells together (left column) and each cell
type individually. The correlations were calculated using a Pearson correlation. The size of each dot represents the strength of the association, the color represents
the direction of the association, and the outline of the circle indicates significance defined as P-value <0.05. (D) The Pearson correlation between the module gene
score and physician global VAS plotted for each sample in CD8+ effector T and CD56dim NK cells for modules 2 and 8. The blue line represents a linear model fit for
visualization purposes.
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and NK cell types, and gene expression within these cell types
displayed a more static expression pattern over time for the
respective IFN gene modules. CD16+ monocytes displayed the
highest gene scores in TN-JDM patients for both the myeloid IFN
module and the “Pan-cell IFN”module (Supplementary Figure 15).

We next wanted to directly determine the association between
these gene sets and disease activity measures to identify
biologically relevant sets of genes and putative disease activity
biomarkers. We calculated a gene score for each module by
averaging the expression of the gene set for each sample. The
Pearson correlations between the gene score per sample and
physician global visual analog score (VAS) score identified a
significant correlation in bulk cells for modules 2, 8 and 10
(Figure 3C). Evaluation of the correlations between cell-specific
gene scores and disease activity identified stronger correlations in
CD56dim NK and CD8 effector T cells for all three modules
(Figures 3C, D). These cell-specific gene scores were negatively
associated with disease activity for module 2 genes and positively
correlated with module 8 genes (Figure 3D), which may be
suggestive of opposing gene programs that become more
regulated with treatment. The magnitude of change in gene
scores was greatest within the module 8, “Pan-cell IFN” gene
set. Module 10 gene scores displayed very strong correlations in
memory and naïve B cells, though the overall magnitude of the
change was less. This gene set was also highly expressed in
plasmablasts (Figure 3A). These results help to identify ISG’s
expressed more dynamically in JDM from those that are more
intrinsically expressed in in certain cell types and suggests that
the pan-cell IFN gene signature might serve as a disease
biomarker in JDM in cytotoxic cell types and in bulk cells.
Monocytes in TN-JDM Display
Inflammatory and Antigen-Presenting
Properties
We next turned our attention to the monocyte populations
because of the strong IFN signature, sizeable number of DEGs,
and compositional changes observed between disease groups.
Differential gene expression results were concordant comparing
TN-JDM baseline samples to 6 months samples and TN-JDM to
I-JDM in both cell types. TN-JDM subjects displayed up-
regulation of IFN-stimulated genes and inflammatory genes,
including NFKBIZ, NFKBIA, IL1B, TNF, CCL3, and CCL4 in
both monocyte populations (Supplementary Table 2). Despite a
reduction in CD16+ monocytes in TN-JDM, this population had
the most differentially expressed genes both comparing TN-JDM
baseline to 6 mos (n=229) and TN-JDM baseline to I-JDM
(n=359) (Supplementary Figures 6, 7). In addition to ISG’s
and inflammatory cytokines, TN-JDM subjects also displayed
up-regulation of genes related to antigen presentation (CD40,
HLA.DRB5, HLA.DRB1, and TAPBL), TLR signaling (TLR1 and
TLR2), inflammasome signaling (NLRP3 and AIM2), IL-6
signaling (IL6ST) and complement genes (C2, C1QA),
indicating a population with inflammatory and antigen-
presenting capabilities. Within the CD14+ monocyte
population, TN-JDM subjects also displayed less expression of
Frontiers in Immunology | www.frontiersin.org 8
CD163 and IL-18 compared to treated JDM suggesting reduced
phagocytic function of the CD14+ monocyte population in active
disease. In both monocyte populations, we observed co-
expression of genes related to IL-1 signaling and IFN signaling
(Figure 4A) that corresponded to the region of embedding of
TN-JDM cells (Figure 4A). Differential protein analysis within
CD14+ monocytes revealed up-regulation of HLA.A-B-C, a
marker for MHC class I, in TN-JDM and down-regulation of
CD56 and CD11b (Figure 4B). In CD16+ monocytes, there was
up-regulation of HLA.A-B-C and CD86, a costimulatory
molecule, supporting the antigen-presenting capabilities of
these cells at the protein level (Figure 4B). Notably, we
observed down-regulation of the surface CD16 in TN-JDM
cells (Figure 4B).

Because of the high number of DEGs and because TN-JDM
cells occupied a distinct region within monocytes in the UMAP,
we next evaluated the role of monocyte subsets. A second round
of clustering was applied to the CD16+ monocyte population and
identified a cluster consisting of 98% TN-JDM CD16+ cells
(Figure 4C). The composition of this subcluster was
significantly different with a high proportion of cells from TN-
JDM (Figure 4D; Supplementary Figure 16). Likewise, the
majority of TN-JDM cells in the CD14+ monocyte population
resided within original Leiden clusters “10” and “18”, which we
termed CD14+ inflammatory monocytes (Figure 4D ;
Supplementary Figure 16). Both of these subclusters expressed
high levels of inflammatory genes like CCL3, CCL4, TNF and
ISG’s but also retained features of the original CD16+ and CD14+

monocytes, supporting inflammatory cell states of CD16+ and
CD14+ monocytes in TN-JDM (Figures 4E, F). At the gene level
CD16+ inflammatory monocytes displayed higher expression of
CCR5 (not recapitulated at the protein level), IL4IL, and ATP1B
than other monocyte subclusters (Figure 4E) and differential
expression of many HLA class II genes and CD14+ inflammatory
monocytes displayed more S100 protein genes, including
S100A8, S100A9, and S100A12 (Supplementary Table 3). At
the protein level, CD16+ inflammatory monocytes displayed less
CD16+ expression and distinguished from CD14+ monocytes by
increased expression of, CD49d, CD16, CD11c and reduced
CD11b and CD56 (Figure 4F). While this population
displayed less CD16+, CD14 transcripts were not significantly
different between the two CD16+ clusters, and additional
canonical markers of intermediate monocytes were not present
supporting the classification of this cell type as a CD16+

monocyte population exhibiting an altered inflammatory
cell state.

The transcriptomic and proteomic features exhibited by these
monocyte populations is suggestive of early macrophage
differentiation. Interestingly, both CD16+ and CD14+

inflammatory monocytes display features resembling pro-
inflammatory M1 macrophages; CD14+ monocytes also display
some features resembling anti-inflammatory M2 macrophages,
like VEGFA and IL1R2 (decoy receptor) (Supplementary
Table 3). These results support a role for the peripheral blood
monocyte compartment in JDM, potentially as precursors to
monocyte-derived macrophages in target tissues.
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FIGURE 4 | (A) UMAP plots of the monocyte population colored by select features where color represents the log-normalized expression. The fourth panel is
colored by disease group. (B) The normalized expression of differentially expressed protein markers in baseline (BL) samples compared to inactive (inact.) samples as
well as to 6 month (6m) samples. Significance is indicated by a log-fold change >0.5 and FDR<0.05 indicated by *. (C) UMAP of monocyte populations colored by
monocyte cell states following a second round of clustering of CD16+ nCM. (D) The proportion of cells making up the monocyte subclusters per sample ordered by
time and disease group. (E) A heatmap displaying differentially expressed transcripts between monocyte populations using a log-fold change >3 and adjusted p-
value <0.05. All genes differentially expressed meeting significance thresholds are displayed in Supplementary Table 3. (F) Violin plots displaying expression values
of differentially expressed proteins between monocyte subsets using a log-fold change >0.5 and adjusted p-value <0.05 indicated by *.
Frontiers in Immunology | www.frontiersin.org June 2022 | Volume 13 | Article 9022329

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Neely et al. JDM Immunophenotyping
A

D

B

E

C

FIGURE 5 | (A) A UMAP of B cell populations after a second round of naïve B cell clustering colored by naïve B cell subcluster. (B) The proportion of cells making
up the naïve B cell subclusters per sample ordered by time and disease group. (C) Violin plots displaying expression values of differentially expressed proteins
between naïve B cell subsets using a log-fold change >0.5 and adjusted p-value <0.05 indicated by *. (D) UMAPs of B cell populations displaying log-normalized
expression of phenotypic markers IgD (protein), CD27 (protein), CD38 (RNA) and CD9 (RNA). (E) A heatmap displaying differentially expressed transcripts comparing
transitional B cells to all other B cells and IFN-high naïve B cells to all other B cells. Genes displayed are those with a log-fold change>1.3 and adjusted p-value
<0.05. All genes differentially expressed meeting log-fold change >1 are displayed in Supplementary Table 4.
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A Transitional B Cell Population Is
Expanded in TN-JDM
Two populations of B cells (CD19+, CD20+) were identified:
naïve (IgD+) and memory B cells (CD27+), as well as a small
cluster of plasmablasts (CD27+, CD38+). Naïve B cells were
consistently expanded in TN-JDM both longitudinally
comparing the baseline visit to 6 month visit and compared to
I-JDM. Differential gene expression analysis revealed increased
ISG expression in TN-JDM both longitudinally and compared to
I-JDM (Supplementary Table 2). Differential protein expression
identified down-regulation of CD39 in TN-JDM in both naïve B
cells and memory B cells (Supplementary Table 2).

Within the naïve-B cell population, cells from TN-JDM
subjects occupied a distinct region (Figure 2B). To better
characterize the cell types in this region, a second round of
clustering was applied to the naïve B cell population, which
identified two additional B cell subclusters (Figure 5A). These
subclusters (SCs) displayed altered composition compared to the
naïve B cell cluster with a high proportion of cells from TN-JDM
subjects: 64% of SC1 and 87% of SC2 were from TN-JDM
subjects (Figure 5B). Differential protein expression analysis
comparing each cluster identified higher CD24 and CD5
expression and down-regulation of CD39 in SC1 (Figure 5C).
SC2 was differentiated from naïve B cells only by down-
regulation of CD39 (Figure 5C). SC1 also expressed surface
IgD but not CD27 supporting the classification of this cell type as
a transitional B cell population (34, 35) (Figure 5D).

Differential gene expression analysis comparing SC1 to all other
B cells revealed a distinctive transcriptomic signature, including
CD38 and CD9, supporting classification as a transitional B cell
population (Figure 5D), as well as many other genes not typically
expressed at high levels in naïve B cells, including TNFRSF18 (aka
GITR), PLD4, NEIL1, and ITM2C (Figure 5E; Supplementary
Table 4). SC1 displayed intermediate levels of ISG expression and
notable down-regulation of several regulatory genes, including
ENTPD1(Figure 5E), recapitulating differential protein results of
CD39 down-regulation, FCRL3 and IL10RA (Supplementary
Table 4). SC2 was embedded between the transitional B cells and
naïve B cells and was characterized by high ISG expression and
intermediate levels of CD38, suggesting this population could also
be a transitional populationor anaïveB cell population in an altered
IFN state, which we termed “IFN-hi naïve B” (Figure 5E).
Transcriptomic expression of ENTPD1 was not significantly
different between IFN-hi naïve B and naïve B suggesting surface
level expression of CD39may be regulated post-transcriptionally in
these naïve B cell populations. Together, the expansion of naïve B
cells in the treatment-naïve state and the distinctive transcriptomic
and proteomic properties of these naïve B cell subclusters, suggest a
role for the B cell compartment in JDM.
DISCUSSION

This is thefirst comprehensive evaluation of the immunophenotypes
associated with disease activity in the peripheral blood compartment
in JDM using multi-modal single-cell sequencing. We identified
Frontiers in Immunology | www.frontiersin.org 11
changes in cellular composition, characterized cell-specific IFN
responses, and identified unique cell immunophenotypes associated
with treatment-naïve disease.We also show that these changes occur
both within individuals and between individuals with JDM by
including longitudinal samples. Furthermore, by measuring both
gene expression and surface protein expression, we were able to
identify multi-modal features associated with TN-JDM. Cell surface
proteins are not only important for cell phenotyping but also for
carrying out key cellular functions providing greater insight into
cellular behavior. By including oligonucleotide-barcoded antibodies
for50cell surfaceproteins,we identifiedsurfacemarkers, suchasCD5
and CD39 in B cells, not typically associated with these immune cell
types that displayed differential expression associated with disease
activity in JDM. These results suggest that the peripheral blood
compartment holds promise to help provide insights into disease
mechanisms and to identify candidate biomarkers and
therapeutic targets.

In accordance with the striking transcriptomic IFN signature
previously described in JDM blood and target tissues (3–6), as
expected, we also identified a strong IFN signature in our study.
However, we did not anticipate that nearly every immune cell
type would over-express a subset of IFN genes in the treatment-
naïve state in our patient cohort. This pan-cell IFN rewiring
strongly suggests that IFN signaling, either due to overactivation
or lack of regulation, is a hallmark of JDM pathophysiology.
CD16+ monocytes displayed the highest IFN expression, and
other myeloid cell types (CD14+ monocytes and cDCs) and
cytotoxic cell types (CD8+ T effector and CD56dim NK) also
displayed higher IFN gene scores than other cell types suggesting
these are the primary peripheral blood mediators of the IFN
response observed in JDM. Using single-cell sequencing, we were
able to tease apart IFN-related genes expressed across bulk cells
from genes expressed in a cell-type specific manner overcoming
limitations of prior bulk sequencing experiments where
expression is confounded by cell composition. The
combination of the pan-cell and cell-specific IFN responses we
observed in JDM may explain why studies correlating IFN gene
signatures and disease activity have been mixed (3, 7). The pan-
cell IFN signature we identified was correlated with individual
disease activity measures in our small study in bulk cells and
more strongly in CD8+ effector T and CD56dim NK cells. Larger
studies will be needed to determine the utility of this signature as
a disease activity biomarker. This data, as well as prior literature
(36, 37) would support the hypothesis that a carefully curated
IFN gene signature correlates with disease activity in JDM.

Our data have identified the peripheral blood monocyte
compartment to be highly dysregulated in JDM. In addition to
exhibiting the strongest IFN response in TN subjects of all immune
cell types and thegreatest numberofDEGs,CD16+monocyteswere
quantitatively reduced in TN-JDM subject PBMCs and there was a
trend toward reduction of CD14+ monocytes. We hypothesize this
is due to tissue homing based on previous work from our group
which identified strong enrichment ofmyeloid-derived cell types in
muscle and skin microarray datasets (6) and recent cutting-edge
work using mass cytometry imaging, which identified myeloid-
derived cell types as the most abundant cell types in DM skin
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lesions (38). The role of CD16+ nonclassical monocytes in health
anddisease hasbeenboth controversial and context-dependent, but
this cell type has traditionally been thought to be immune-
regulatory (39). Prior work suggests CD16+ monocytes are
predisposed to become migratory dendritic cells (40) or M2 anti-
inflammatory macrophages (41). However, we identified a cluster
of cells from TN-JDM subjects that were skewed toward an
inflammatory and antigen-presenting phenotype more suggestive
of pro-inflammatory M1macrophages. This CD16+ inflammatory
population also displayed down-regulation of CD16, the Fc
receptor FcgRIIIA. This receptor is internalized upon the binding
of immune complexes (42) leading us to hypothesize that active
signaling through this receptor may be the mechanism of CD16
downregulation. Thismodel would provide a possible link between
autoreactive B cells, myositis-specific antibodies, and activation of
CD16+ inflammatory monocytes, which subsequently migrate to
tissues and differentiate into pro-inflammatory macrophages
sustaining local inflammation. This model is also supported by
evidence that suggests IVIG, an effective therapy in JDM,maywork
through blockade of activating Fc receptors (42). Alternatively,
these cell types may be highly plastic and recruited to tissues to
support tissue repair, or they may be detected in peripheral blood
because they lack the appropriate tissue homing receptors. Further
work todetermine the trajectoryof these cell types in target tissues is
needed to determine the utility of targeting this cell
type therapeutically.

There is also growing evidence to support a role for myeloid
cell types, especially CD16+ monocytes, in other autoimmune
diseases, including in systemic lupus erythematosus (SLE) (43),
another IFN-mediated disease closely related to JDM. In TN-
JDM, we observed a skewing of both CD16+ and CD14+

monocytes toward an inflammatory and antigen-presenting
state, co-expressing IFN and IL-1 axis genes, consistent with a
finding recently described in childhood lupus (44). This study
also identified a correlation with the lupus IFN signature in
CD16+ monocytes. A similar inflammatory CD16+ non-classical
monocyte population has also been identified in adult SLE
peripheral blood (43). These findings also extend into tissue
where single cell sequencing of infiltrating immune cells in the
kidneys of lupus nephritis patients also identified a continuum of
CD16+ macrophage cell types, including inflammatory CD16+

macrophages without a CD14 counterpart (45). In adult
dermatomyositis, peripheral blood monocytes display increased
expression of TLR’s (46).

Different patterns of integrin and adhesion molecule surface
expression distinguish monocyte populations in our study. CD11b
and CD11c are well known markers distinguishing monocyte
subsets, but we additionally observed CD49d as an integrin
distinguishing CD16+ inflammatory monocytes from CD14+

inflammatory monocytes. There also appears to be a qualitative
increase inCD49d inCD16+ inflammatorymonocytes compared to
non-inflammatory CD16+ monocytes, but we may have lacked
power to detect a statistically significant difference for this marker
between these twopopulations.CD49d is the alpha chainof the very
late antigen4 (VLA-4) integrin that binds to ligandsfibronectin and
VCAM-1 expressed on endothelium, the latter which was found to
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be up-regulated on muscle vessels in DM but not JDM (47). In
Duchenne muscular dystrophy, a genetic myopathy with an
inflammatory component, CD49d-expressing T cells displayed
greater migratory responses and adhesion to myotubules, and
inhibition of CD49d is being studied as a novel therapeutic
option (48).

We identified expansion of a transitional B cell population with
increased CD24 and CD5 expression as well as CD39 down-
regulation and differential expression of several immunoregulatory
genes, including up-regulation of TNFRSF18 (GITR), PLD4, and
down-regulation of ENTPD1, IL10RA, and FCRL3. It is unclear
whether this transitional population is a precursor to naïve B cells
or an altered naïve B cell state in response to ISG stimulation. In this
case, the ISG-hinaïveBcell populationmay represent a continuumof
naïve B cell activation. Alternatively, these may represent two
separate populations: one IFN-stimulated naïve B cell population
and one transitional B cell population with distinct functional
properties. Prior literature also identified an expansion of CD19
+CD24hi, CD38hi transitional B cells in JDMand a correlation of the
proportionof these cellswith the type I IFNsignature inBcells (12). It
seems plausible that the transitional B cell population identified in
this study is analogous providing further support that this cell type
may be relevant to the disease process.We identify several additional
features of this immunophenotype, including key genes and surface
proteins, like CD5 expression.

The role of CD5 in naïve B cell populations has been
controversial, described by some as an activation marker and
by others as a distinct phenotypic B cell subset marker (49). In
SLE, a CD5+ pre-naïve B cell population has been described that
displayed functional properties of plasma cell differentiation and
antigen-presentation, which the authors postulated to represent
a mechanism of autoreactive B cell escape (50). We hypothesize
that B cell development is altered due to the overactive IFN
response in JDM, which may result in activation and
proliferation of these transitional B cell populations, some of
which may escape tolerance checkpoints. Furthermore, we
observed, in both naïve and memory B cells, down-regulation
of CD39 in TN-JDM and increased expression during the first 6
months of treatment during which all patients demonstrated a
decrease in disease activity. The down-regulation of CD39 in
these naïve B cell populations in TN patients may also contribute
to such potential escape of autoreactive B cells from regulatory
mechanisms like CD39-mediated immune regulation, a
phenomenon also described in rheumatoid arthritis (51), or IL-
10 production (12). CD39, or ENTPD1, contributes to adenosine
production which has several anti-inflammatory effects. The role
of this receptor is most well characterized in Tregs in human
autoimmune disease, including SLE and RA, and is also of
interest as a therapeutic target (52).

The expression of TNFRSF18 (GITR), a co-stimulatory
molecule, in JDM transitional B cells is of interest. It may
simply represent a marker of transitional B cells with no
functional consequences on B cell maturation, as suggested in
murine studies (53), or represent an important signaling
pathway by which these cells become dysregulated or influence
lymphocytes. Expression of GITR ligand by B cells has been
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found to play an important role in the maintenance of Treg
populations in mouse autoimmune models, but there is little to
no data studying the role of GITR in transitional B cells in
human disease states. Given the success of many immunotherapy
agents, there is great interest in this receptor as a therapeutic
target for both cancers and autoimmune diseases. Likewise,
PLD4 is also of interests as it is an exonuclease with regulatory
role in breaking down nucleic acids, and genome-wide genetic
variants have been associated with SLE, systemic sclerosis and
RA (52). PLD4-deficient mice develop a severe inflammatory
phenotype emphasizing the importance of this gene in immune
regulation (54). Functional studies of JDM B cell populations and
identified gene pathways in a disease-specific context as well as
assessment of the clonality and antigen specificity of B-cell
receptors will be important next steps in determining the role
of transitional B cells in JDM and relationship to the myositis-
specific autoantibodies observed in JDM.

There are important limitations to consider when
interpreting the results of this study. While this study is
strengthened by the inclusion of JDM treatment-naïve samples
with longitudinal time points, we did not have healthy controls
samples to be able to determine the specificity of the cell-specific
signatures and cell types we identified to JDM. Rather, we are
only able to relate our findings to JDM disease activity.
Furthermore, due to the rarity of this disease, our sample size
was limited, and this did influence our ability to test the
association between cell type composition and disease activity
with adequate power. One patient, was also treated with B cell
depletion, which could skew the composition of cells present.
Larger studies to test the association between the number of
circulating naïve B cells and CD16+ monocytes, or, perhaps, the
ratio of these cell types with disease activity, will be important to
test in larger cohorts, and additional alterations in immune cell
type composition may emerge. Our analysis was also limited to
the measurement of 50 pre-specified cell epitopes, which does
not fully reflect the compendiumofcell surfaceantibodies, though is
the largest number of cell epitopesmeasured simultaneously to date
in JDM. Lastly, JDM is a heterogeneous disease, so it is also possible
that certain clinical phenotypes are associated with distinct cell
immunophenotypes or subtle signaling pathways not detectable in
small studies. Certainly, larger single cell studies consideringdisease
heterogeneity, such asMSA subtype, will be needed in the future to
understand if there is an immunologic correlate to explain the
disparate clinical phenotypes observed in JDM.

Our study demonstrates the strengths of these experimental
and analytic methods to provide biological insights into the
immunology of autoimmune diseases as well as evidence and
data to inform future immunologic studies. This work is the first
comprehensive multi-modal single-cell analysis of the peripheral
blood compartment in JDM, and the data will be made available
for other myositis researchers to investigate genes and proteins of
interest in a cell-specific manner. We hope these findings and
accompanying data will lead to many rich insights and
hypothesis generation for future JDM research and ultimately
help to inform precision medicine approaches to disease
management to improve patient outcomes.
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8. Król P, Krysťůfková O, Polanská M, Mann H, Klein M, Beran O, et al. Serum
Levels of Interferon a Do Not Correlate With Disease Activity in Patients
With Dermatomyositis/Polymyositis. Ann Rheumatol Dis (2011) 70:879–80.
doi: 10.1136/ard.2010.141051

9. Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K, Raj T, et al.
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