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Purpose: Capillary transit time heterogeneity, measured as CTH, may set the upper limit for extraction of substances in
brain tissue, e.g., oxygen. The purpose of this study was to investigate the feasibility of dynamic contrast-enhanced T1

weighted MRI (DCE-MRI) at 3 Tesla (T), in estimating CTH based on a gamma-variate model of the capillary transit time
distribution. In addition, we wanted to investigate if a subtle increase of the blood–brain barrier permeability can be
incorporated into the model, still allowing estimation of CTH.
Materials and Methods: Twenty-three healthy subjects were scanned at 3.0T MRI system applying DCE-MRI and using
a gamma-variate model to estimate CTH as well as cerebral blood flow (CBF), cerebral blood volume (CBV), and perme-
ability of the blood–brain barrier, measured as the influx constant Ki. For proof of principle we also investigated three
patients with recent thromboembolic events and a patient with a high grade brain tumor.
Results: In the healthy subjects, we found a narrow symmetric delta-like capillary transit time distribution in basal ganglia gray
matter with median CTH of 0.93 s and interquartile range of 1.33 s. The corresponding residue impulse response function was
compatible with the adiabatic tissue homogeneity model. In two patients with complete occlusion of the internal carotid artery
and in the patient with a brain tumor CTH was increased with values up to 6 s in the affected brain tissue, with an exponential
like residue impulse response function.
Conclusion: Our results open the possibility of characterizing brain perfusion by the capillary transit time distribution
using DCE-MRI, theoretically a determinant of efficient blood to brain transport of important substances.
Level of Evidence: 2
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Dynamic contrast-enhanced T1-weighted MRI (DCE-MRI)

enables measurement of the blood–brain barrier (BBB) per-

meability, i.e., the permeability surface area (PS) product, cerebral

blood flow (CBF), and the cerebral blood volume (CBV).1–3

The advantage of DCE-MRI compared with dynamic suscepti-

bility contrast T�2 weighted MRI, is a robust relationship between

the MR signal and the contrast agent (CA) concentration, allow-

ing conversion of tissue MR signal as well as arterial and venous

MR signal to CA concentration by the relevant MR signal

equation. In addition, if the BBB permeability is abnormally

high, it is still possible to estimate both the CBVand the total dis-

tribution volume (Vd), which include the CA accessible extravas-

cular interstitial space.2,3 Also, DCE is able to provide

quantitative measures of both perfusion and permeability param-

eters, while maintaining a high spatial resolution and low sensi-

tivity to susceptibility artifacts.

The disadvantage of DCE-MRI is low tissue MR sig-

nal during bolus passage, related to the fact that the CA is
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normally confined to the vascular space in situations with

intact BBB resulting in a low contrast-to-noise ratio (CNR).

In addition, full coverage of the brain is not compatible

with the high temporal resolution of 1–2 s required to esti-

mate perfusion from the bolus passage and, therefore, only

four to eight slices can be obtained with such a high time

resolution. Higher scanner field strengths and faster sequen-

ces, e.g., multiband sequences, optimized 3D sequences may

ameliorate these problems. Furthermore, integration of

DCE in clinical practice is currently limited, partly due to

the complexity of the analysis methods, the lack of stan-

dardization in regards to acquisition and analysis protocols

and the limited availability of reference values for the

various pharmacokinetic (PK) parameters for normal and

pathological brain tissues.

Capillary transit time heterogeneity (CTH) may be a

determinant of delivery of substances from the blood to the

brain tissue as originally suggested by Kuchinsky and Paul-

son.4 A recent study showed how an abnormal increase in

CTH theoretically could hamper an efficient oxygen extrac-

tion to the brain tissue.5 Normally, neural activation gives

rise to an increase in local brain tissue perfusion by recruit-

ment of previously nonperfused capillaries.4,6 The capillary

perfusion thus becomes more homogeneous.4,6 The hypoth-

esis put forward is that if brain diseases affect the micro-

vascular regularization, e.g., affecting the pericytes control-

ling the flow through the capillaries, a pathological inhomo-

geneous perfusion pattern ensues, which may become even

more pronounced as perfusion increases. As a consequence

and in contrast to the normal microvascular regulation,

transit times through the capillaries vary more than normal,

and the extraction of blood substances in high flow capillar-

ies will decrease due to a reduction of the extraction

fraction, a consequence of the Crone-Renkin equation,7,8

and if severe enough the flux might also decrease.

Thus, a situation may arise where both high and low

flow capillaries contribute to an overall reduction in flux of

substances from blood to brain tissue. This scenario is evident-

ly dependent on the PS product of the actual substance in

focus. Therefore, CTH dependent blood to tissue flux is rele-

vant for substances with a low to moderate value of the PS

product, where transport over the BBB is diffusion limited.

For substances with a high PS product, the flux from blood to

tissue is flow (perfusion) limited, and the actual perfusion dis-

tribution pattern is of minor importance. If the oxygen trans-

port from blood to tissue over the BBB is diffusion limited, a

subject of considerable scientific interest,9 then CTH may the-

oretically become a determinant of the maximal oxygen

extraction fraction possible.5 If diseases affect the normal regu-

lation of local perfusion, an increase in perfusion may in fact

aggravate a possible pre-existing hypoxic state and the tissue

may become even more hypoxic.5

This idea could also have an important impact for

oxygen delivery in brain tumors, where the normal capillary

architecture is severely disturbed, and high perfusion and

hypoxia may co-exist in some parts of the tumors. For this

reason, methods allowing us to estimate the distribution of

capillary transit times in healthy and diseased tissue may be

of importance, and CTH estimation may provide new

important physiological information like conventional meas-

urements of other tissue parameters, such as CBF or CBV.

The purpose of this study is to develop a method that

enables CTH as well as CBF measurements derived from

DCE-MRI in normal white and deep gray matter. Further-

more, we wish to be able to account for a subtle increase of the

BBB permeability, characterized as a unidirectional transport

from blood to tissue without any back diffusion, which may be

encountered in various brain pathologies such as white matter

of multiple sclerosis patients, Alzheimer’s disease, vascular

cognitive impairment, stroke, and low grade brain tumors.10–12

Materials and Methods

Theory
The fundamental equation relating the tissue concentration as a

function of time, Ct(t), the arterial concentration as a function of

time (AIF), Ca(t), the perfusion f, and the residue impulse response

function, RIF(t), is13:

CtðtÞ5CaðtÞ � f RIF ðtÞ5f

ðt
0

CaðsÞRIF ðt2sÞds (1)

The RIF(t) is defined as the CA fraction remaining in the tissue,

after a brief injected bolus, directly into the tissue (or voxel), as a

function of time. The distribution of transit times, i.e., the fraction

of the CA, which leaves the tissue at time t, per time unit, after a

bolus injection is the frequency function h(t). The RIF(t) is related

to the distribution of transit times, i.e., the frequency function by:

RIF ðtÞ512

ðt
0

hðtÞds (2)

The mean transit time (MTT) is given as:

MTT 5

ð1
0

thðtÞdt5

ð1
0

RIF ðtÞdt (3)

CTH can be defined as the standard deviation (SD) of the frequency

function, h(t):

CTH5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½hðtÞ�

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
ðt2MIT Þ2hðtÞdt

s
(4)

The frequency function, h(t), can be modeled as a simple gamma-

variate function with the parametric form as14:
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hðtÞ5 12t0
tmax2t0

� �a

exp að12
t2t0

tmax2t0
Þ

� �� ��
A (5)

where tmax is time to maximum of the function and t0 is the time

delay from t 5 0 to the time the function begins accounting for

the minimal transit time (minimal TT) through the tissue, and A

is the total area under the function. Thus, h(t) is normalized to

unit area and has three free parameters, tmax, t0, and a, where a is

related to the shape. For a given set of these parameters, numerical

integration of h(t) according to Eq. [2], gives the residue impulse

response function, RIF(t), which subsequently is fitted by use of

Eq. [1] to the observed data, also estimating the perfusion f.

Therefore, we have four free parameters to fit. Furthermore, for a

gamma distribution:

MTT 5
a11

a
tmax (6)

CTH5

ffiffiffiffiffiffiffiffiffi
a11
p

a
tmax (7)

If the BBB is leaky and if permeating CA is irreversibly trapped

behind the BBB, at least for the duration of the measurement,

corresponding to a subtle increase of the BBB permeability, then Eq.

[2] is modulated by a factor of (1-E), where E is the extraction fraction:

RIF ðtÞ512ð12EÞ
ðt
0

hðsÞds (8)

This means that a fraction, E, of the CA will not leave the brain

tissue for the duration of the measurement, and RIF(t) will

approach E for longer time values, as h(t) approach unity.

The normal BBB is characterized by very low permeability

for a conventional MR CA, and the permeability is often consid-

ered to be zero. In diseases with a subtle increase of the BBB

permeability, such as multiple sclerosis, small vessel disease, and

low-grade brain tumors, the permeability is not very high, meaning

that transport from blood to tissue can be considered unidirection-

al during the observation time and Eq. [8] will be valid. Equation

[8] is fully compatible with the formula presented by Schabel,15

with the modification of assuming an infinitely large extravascular

space, which is equivalent with no back diffusion. Thus Eq. [8] is

highly suitable in situations with a subtle increase of the BBB per-

meability, because it avoids inclusion of an additional parameter,

the extravascular space. Because only very small amounts of CA

enter the extravascular space, the obtained data will not contain

any information of this parameter whatsoever. Attempts of estimat-

ing the size of the extravascular space from such data will only lead

to a reduction in accuracy and precision in the remaining

parameters.

The unidirectional clearance constant Ki can be estimated

from a Patlak plot16 and E is then estimated from:

E5
f

Ki
(9)

Therefore, Ki enters the model as a free parameter to account for a

leaky BBB. However, due to the relatively high number of fitted

parameters, f and Ki are estimated separately by use of Tikhonov’s

generalized singular value decomposition (GSVD) and Patlak’s

method, respectively, as previously described.2 These values are

then used as initial parameters in the gamma-variate model with

five free parameters, avoiding a local minimum in the fitting rou-

tine. Schabel15 has shown that modeling the capillary transit time

distribution with a gamma-variate distribution is a generalization

of previous suggested models, such as the Tofts model and extend-

ed Tofts model,17 the two-compartment exchange model18 and the

distributed capillary adiabatic tissue homogeneity model.19 Particu-

larly, Schabel showed that the ratio CTH2/MTT2 ( 5 1/(a11) ) is

bound between zero and one, and characterize the distribution of

capillary transit times. The limit CTH2/MTT2 ! 0 denotes a del-

ta function capillary transit time distribution compatible with the

adiabatic tissue homogeneity model, and the limit CTH2/MTT2

! 1 denotes an exponential capillary transit time distribution

compatible with the two-compartment exchange model.

Subjects

HEALTHY SUBJECTS. Twenty-three healthy subjects with a mean

age of 32 years (range, 21–52 years, 9 women) were investigated.

PATIENTS. Four clinical patients were studied. The first, a 71-

year-old man with a left internal carotid artery (ICA) stenosis and

left-sided stroke, with multiple cardiovascular risk factors and pre-

vious femoral by-pass surgery. Another 75-year-old female with a

left ICA stenosis was included as well as a 70-year-old male with a

3-month-old stroke. Clinical symptoms are described in Table 2.

Finally a 37-year-old male was included, who had a reoccurrence

of a previously resected glioblastoma, with enhancing lesion com-

ponent as detected on conventional MRI. He was currently under-

going a radiation treatment regimen.

Ethics
The study was approved by the Ethics Committee of Copenhagen

County according to the standards of The National Committee on

Health Research Ethics, protocol number H-D-2008-002. All

experiments were conducted in accordance with the Declaration of

Helsinki 1975 and all subjects gave written informed consent.

DCE-MRI
The DCE MRI experiments were performed using a 3.0 Tesla (T)

Philips Achieva (Philips Medical Systems, Best, The Netherlands)

and a 32-element phased-array receive head coil. A two-

dimensional (2D) saturation recovery gradient recalled sequence

was used both for an initial T1 measurement and for the subse-

quent dynamic imaging. Each slice was acquired after application

of a nonselective saturation prepulse with a saturation time delay

(TD). Echoes were read with an radiofrequency flip angle of 30 �,

repetition time of 3.82 ms, echo time of 1.9 ms, centric phase

ordering, scan matrix size 96 3 61 (interpolated to 256 3 256),

SENSE factor 2, field of view (FOV) 240 3 182 mm2 and 5 slices

of 8 mm thickness resulting in an acquired spatial resolution of

2.5 3 3.1 3 8 mm3. The T1 measurement was performed by vary-

ing the TD value (120 ms, 300 ms, 600 ms, 1 s, 2 s, 4 s, 10 s).

The passage of the bolus of the CA was imaged using a fixed

TD of 120 ms. The most caudal slice was (independently of the

other slices) placed orthogonally to the ICA based on an MR

Larsson et al.: Capillary Transit Time Heterogeneity Measured by DCE-MRI
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angiogram to obtain an arterial input function (AIF) with minimal

partial volume. In total 350 frames, with a time resolution of 1.25

s, were obtained. Both modulus, real and imaginary images were

stored. The dose of CA GadovistVR (1.0 mmol/mL) was 2 3 0.045

mmol/kg (in the patient with brain tumor only one injection was giv-

en: 1 3 0.045 mmol/kg), and the CA was injected with 3 mL/s fol-

lowed by 20 mL saline using an automatic CA injector (Medrad

Spectris Solaris MR injector system) at time 15 and again after 70

frames (only after 15 in the patient with brain tumor). The magni-

tude of the dose was based on a compromise between increasing the

CNR for a higher dose and the possibility of introducing a T �2
effect or truncation of the bolus peak of the AIF. Anatomical

turbo spin echo images with high spatial resolution (acquired

matrix size of 512 3 512, FOV 240 mm, 8 mm slice thickness, acqui-

sition time 2 min) were obtained corresponding to the five perfusion

slices.

The relationship between the MR signal and CA concentra-

tion is not linear, but the change of R1 (DR1) is proportional to

the CA concentration with regard to both blood and tissue. When

using centric phase ordering, the MR signal, s(t), as a function of

time t, DR1(t) and concentration C(t) are related by:

sðtÞ5M0sinðaÞ½12exp
�

2TD
�

R11DR1ðtÞ
		
�;DR1ðtÞ5r1CðtÞ

(10)

The relaxivity r1 of Gd-DTPA at 3T was set to 4 s21 mM21, a text-

book value provided by the Bayer Pharma AG, producer of GadovistVR .

Equal relaxivities were assumed for the intravascular compartment and

for the tissue in general. The signal equation for a saturation recovery

(Eq. [10] with DR1 5 0) was fitted to the data obtained for varying TD

to determine T1 and M0. The MR signal was converted to DR1 during

the bolus passage as a single point resolved T1 determination, assuming

a fast water exchange regime.20 The pixels in the center of the ICA

were used for the input function. This arterial input function was fur-

ther scaled with a venous outflow curve obtained from the sagittal sinus

to reduce the partial volume effect. A possible partial volume effect of

the venous outflow curve was effectively eliminated using the modulus

and phase information.21,22

CTH Estimation
Calculations were performed both for selected regions of interest

(ROIs) and pixelwise with the purpose of creating parameter maps.

In the 23 healthy subjects, one ROI was placed in the thalamus, one

in the putamen and one in the frontal white matter. In both patients

with internal carotid stenosis, ROIs was placed in the hypo-perfusion

area of the left frontal gray/white matter and a symmetric contralater-

al area in normal perfused gray/white matter as well as the basal gan-

glia in both hemispheres. In the patient with a 3-month-old stroke

were placed ROIs in the stroke region and in the contralateral appar-

ently healthy brain tissue as well as the basal ganglia. Finally, in the

TABLE 1. Values Based on the Gamma-Variate Model From 23 Healthy Subjects

Percentile 2.5% 25%
50% 75% 97.5%

R1

(1/s)
CBF
(mL/100g/min)

CBV
(mL/100g)

MTT
(s)

CTH
(s)

CTH2/MTT2 Ki

(mL/100g/min)

Frontal WM n523

0.86 6.0 0.8 3.3 0.09 0.000 0.006

0.99 9.2 1.1 4.3 0.67 0.011 0.025

1.02 12.1 1.8 5.2 2.44 0.130 0.094

1.07 14.8 1.9 6.3 3.78 0.365 0.112

1.29 22..7 2.9 8.2 6.41 0.763 0.140

Thalamus n523

0.67 10.6 0.6 2.6 0.01 0.000 0.001

0.71 15.7 1.5 3.7 0.15 0.001 0.033

0.75 19.8 1.7 4.1 0.35 0.006 0.064

0.77 23.9 1.9 4.7 1.69 0.073 0.091

0.93 29.8 2.2 6.6 3.75 0.335 0.183

Putamen n523

0.64 14.7 1.2 1.7 0.00 0.000 0.011

0.68 26.6 1.6 2.3 0.40 0.008 0.029

0.69 31.5 1.8 3.0 0.93 0.062 0.070

0.72 41.8 2.1 3.3 1.73 0.232 0.118

0.86 51.9 3.0 3.8 2.91 0.659 0.286
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patient with brain tumor, an ROI was placed in the enhancing part of

the tumor. ROIs were placed carefully avoiding partial volume

effects, especially from larger vessels. The size of the individual ROIs

in white matter was approximately 1 cm2. The ROIs were drawn on

the corresponding high-resolution anatomical image.

The obtained dynamic data were interpolated to a higher time

resolution with a factor of 3 before any calculation to reduce discreti-

zation inaccuracy in the calculations. After conversion of MR signal

to concentration of CA, the gamma-variate model imbedded in Eq.

[1] and Eq. [2] was fitted to data. So far, we have assumed that there

is no delay in the CA arrival between the AIF and the tissue curve,

here called the bolus arrival delay time. This is not always true and

one has to shift either of the curves to synchronize bolus arrival in tis-

sue with the AIF. This was accomplished by fitting a short segment of

a gamma-variate function to the AIF and the tissue curve starting

with the baseline points and ending a few points after peak enhance-

ment. This fit directly gives an estimate of the starting point of the

enhancement of blood and tissue, see Eq. [5]. This allowed us to shift

the AIF so that the bolus arrival time corresponded to that of the ini-

tial tissue enhancement. This was done before fitting the tracer kinet-

ic model to data from ROIs or pixel wise calculations. The variance

of the estimated h(t) was calculated using Eq. [4]. In addition, the

ratio CTH2/MTT2 was also calculated.

Results

Healthy Controls
In the 23 healthy controls, we find symmetric h(t) functions

with an average CTH of 0.93 s (interquartile range [IQR]

1.33 s) and CTH2/MTT2 of 0.062 (IQR 0.22) in putamen

gray matter, compatible with a homogenous delivery of

nutrients through the capillary bed (see Table 1). Spearman

nonparametric correlation analysis showed an inverse corre-

lation between capillary heterogeneity and blood flow esti-

mated with Tikhonov GSVD (thus entirely independent

from the CTH estimation) in putamen gray matter

(cc 5 20.472; P 5 0.023) and in frontal white matter

(cc 5 20.438; P 5 0.037). This inverse relationship where

high blood flow is equal to a more homogenous capillary

delivery is also reflected in white matter, where CBF is sig-

nificantly lower (t 5 8.9; P 5 0.1 3 10211) and CTH values

significantly higher (t 5 23.6; P 5 0.001) when compared

with their respective values in putamen gray matter.

A Mann Whitney U-test showed higher blood flow (for

both the Tikhonov and the adiabatic tissue model) in females

compared with males in putamen (P 5 0.027) and white

FIGURE 1: An example of calculation from an ROI placed in the thalamus of a young healthy subject. Note the symmetrical shape
of the h(t) function and that RIF(t) stays at a value of 1 for approximately 3 s, which correspond to the minimal TT for that ROI.
The MTT, i.e., the area under the RIF(t) is 4.8 s. MTT, CTH, and CTH2/MTT2 values are inserted.
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matter (P 5 0.025), but apart from this we observed no gen-

der or age effects on the estimated PK values (Mann Whitney

U-test and Spearman correlation analysis). We found no time

delay of bolus arrival between the tissue curve and the AIF in

the healthy subjects. The method allows estimation of R1,

CBF, CBV, MTT, and Ki in addition to CTH and CTH2/

MTT2. A typical example of an ROI placed in the thalamus

of a healthy control can be seen in Figure 1, and pixelwise

maps from the same subject in Figure 5.

PATIENTS. In the 71-year-old male stroke patient with a

complete occlusion of the left sided ICA, we observe a marked

difference between h(t) functions between the contralateral and

ipsilateral hemispheres (Figs. 2 and 3). In the contralateral

“unaffected” hemisphere we observe a slightly asymmetrical

h(t) function with a CTH of 1.8 s and a CTH2/MTT2 of 0.34.

In the ipsilateral, possibly ischemic left frontal gray/white mat-

ter of the same patient with the left internal carotid stenosis, the

h(t) function is highly asymmetric with a CTH of 4.3 and a

CTH2/MTT2 of 0.21. Pixelwise maps of one selected slice of

this patient is shown in Figure 6. A similar hemisphere differ-

ence is observed in the 75-year-old female with similar clinical

picture (Table 2). Thus in these two patients we observe an

absolute hemisphere difference of 33–238% and much higher

than values from the healthy controls. However, CTH2/MTT2 is

high in both hemispheres, signifying a more exponential like

distribution of capillary transit times. In a 70-year-old male

with a 3-month-old stroke and no carotid artery occlusion, we

find no differences between the hemispheres or in the stroke

region.

The investigated patient with a brain tumor showed

leakage of the BBB in the tumor itself, which is evident

when observing the tissue enhancement curve (Fig. 4), i.e.,

the slope of the tail is markedly increased compared with

nonenhancing tissue curves (Figs. 1–3). The h(t) shows

asymmetry, and RIF(t) approaches a constant level at a value

of around 0.18, which reflects the estimated extraction frac-

tion. If this additional parameter is eliminated from the fit,

then the fit becomes extremely poor. CTH is high and

CTH2/MTT2 is much higher than seen in healthy tissue.

Pixelwise maps of one selected slice of the tumour patient is

shown in Figure 7.

To compare performance of perfusion estimation by

the gamma-variate model and the Tikhonov’s GSVD, we

conducted correlation analysis and found a correlation coef-

ficient of 0.97 (P< 0.001). A Bland-Altman plot showed a

bias of 1.9 (SD 3.9) mL/100 g/min in favor of the gamma-

variate model.

FIGURE 2: An example of calculation from an ROI placed in frontal gray/white matter of a 71-year-old man having internal carotid
stenosis contralateral to the ROI placement.
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Discussion

In this study, we have developed a relatively simple method

that allows us to estimate the distribution of in vivo capillary

transit times in the healthy human brain, using dynamic

contrast-enhanced T1-weighted MRI (DCE-MRI). The

approach follows the basic idea of Schabel,15 who modeled the

capillary transit time as a gamma-variate distribution. Our

main finding is the capillary transit time heterogeneity is quite

small with a delta-function like h(t) distribution in normal

subjects. In addition, our values of CTH in healthy controls

are quite distinct from CTH values in the two patients with

complete internal artery occlusion and the patient with a brain

tumor investigated in this study, and these results are in line

with values reported by Schabel15 from three patients with

brain tumors.

The so-called frequency function h(t), modeled as a

gamma-variate function, represents the distribution of tran-

sit times, and we have shown that it is a narrow symmetrical

function with CTH values around 0.6 s in healthy gray

matter of young subjects and higher in white matter, pre-

sumably related an inverse correlation between perfusion

and capillary heterogeneity. CTH values have previously

been measured in brain capillaries of rats, using confocal

laser-scanning microscopy or intravital video microscopy,

with typical values of CTH in resting condition between 1

and 1.3 s, while activation (electrical stimulation, hypox-

emia, hypercapnia) decreased CTH to around 0.2–0.7.23–25

Thus, our CTH values in healthy human brain tissue are

comparable to those found in rat brains during various types

of stimulation. A likely explanation for the difference could

be some degree of arousal of the humans lying inside the

noisy scanner, while the rats are anesthetized. In brain tissue,

supplied by a stenotic artery, potentially suffering from lack

of oxygen, the h(t) shows a pronounced asymmetry with a

much larger variance. The CTH values we find in healthy

subjects show a homogenous distribution, while both

patients with complete carotid stenosis and the patient with

a brain tumor investigated in this study have CTH values

that differ substantially from the healthy controls. This is in

line with previous study of three brain tumor patients by

Schabel.15

The h(t) configuration has previously been theorized

to provide important information of the capillary blood to

tissue transport capability. Jespersen and Østergaard have

FIGURE 3: An example of calculation from an ROI placed in frontal gray/white matter ipsilateral to an internal carotid stenosis in a
71-year-old man (same subject as in Fig. 2). MTT, CTH, and CTH2/MTT2 values are inserted. Note the asymmetry of h(t) signifying
a large heterogeneity in capillary transit times.
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shown that the h(t) distribution may set the limit for the

maximum oxygen extraction fraction encountered in brain

tissue.5 Evidently, this also dependents on the exact BBB

permeability of oxygen, but the h(t) distribution may very

well have impact on other substances being transported from

the blood to the brain tissue, including toxic substances.

Modeling the distribution of transit times in case of a

leaky BBB constitute a special challenge. The model represented

by Eq. [5] is well suited for an intra-vascular CA with no or

minimal leakage over the BBB. Conventional brain MRI CA is

normally considered strictly intravascular. It has previously been

demonstrated that subtle leakage can be measured in healthy

subjects, and a higher but still small leakage can be measured

in periventricular normal appearing white matter in patients

with multiple sclerosis and patients with optic neuritis.10,26 In

patients with brain tumors, leakage is often seen, and it is well

known that the BBB permeability can range from zero to very

high levels of permeability similar to what is encountered in

capillaries outside the brain, although this is rare.

However, it is possible to incorporate some degree of

leakage into the model. The area of the h(t) is normalized to

one, meaning that the entire amount of CA leaves the tissue.

If a small fraction of CA is bound “irreversible” in the tissue,

i.e., no back diffusion from tissue to blood occurs during the

measurement period, then the area of h(t) is reduced to (1-E)

times h(t), where E is the extraction fraction. This step is

important when estimating the residue impulse response func-

tion. Introducing this modification corresponding to Eq. [8],

improved the fit remarkably, see Figure 4. However, in cases

with higher permeability, the model represented by Eq. [8] is

not adequate and the full model developed by Schabel15

should be used, where the interstitial volume is added as an

additional free parameter to be estimated. This additional

parameter should only be included if the measured tissue data

contain such information, i.e., if back diffusion occurs during

the measuring period. Otherwise, data may be over-fitted and

parameter precision and accuracy become poor.

A pertinent question is whether the frequency function,

h(t), which literally represents the outflow of the CA from the tis-

sue volume, can be described analytically as a gamma-variate

function. Schabel15 have shown that the gamma-variate model is

a more general model encompassing both the common two-

compartment exchange model2,18 and the adiabatic tissue homo-

geneity model19 as two opposite extremes of the gamma-variate

FIGURE 4: An example of calculation from an ROI placed in a tumor with leaky BBB. Note the asymmetry of h(t), and also that the
RIF reaches a plateau at around 0.18 corresponding to the extraction fraction of the CA. CTH2/MTT2 is higher compared with nor-
mal tissue. Note that MTT refer to capillary transit times and excludes CA having passed the BBB. Thus, MTT is accordingly
smaller than the area under the residue impulse response function.
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model, with a corresponding distribution of capillary transit

times as an exponential distribution (CTH2/MTT2! 1) and a

delta function (CTH2/MTT2 ! 0), respectively. Due to a low

voxel SNR of 7 in the DCE data, Schabel was only able to analyze

voxels within brain tumor regions with high degree of enhance-

ment where he found values (CTH2/MTT2) around 0.2–1.

FIGURE 5: Pixel wise calculated maps of CBF, CBV, permeability Ki, MTT, minimal TT, and CTH, from a healthy subject. The results
from the ROI on the CBF map are shown in Figure 1.

FIGURE 6: The figure shows results from a 71-year-old man with a complete left sided internal carotid stenosis and multiple
thrombo-embolic episodes. Perfusion (CBF) is decreased while the CBV is increased in the fronto-parietal region, but the perme-
ability (Ki) seems relatively normal. The MTT, the minimal TT, and CTH are prolonged in the entire region showing altered
perfusion.
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Furthermore, he found that the two-compartment

exchange model and the gamma-variate distribution model

performed equally well. In the three clinical examples where

we found altered CTH values, we did also notice values of

CTH2/MTT2 around 0.2–0.4 in the affected brain tissue.

However, in the healthy subjects, we found CTH2/MTT2

one order of magnitude lower, around 0.02–0.1, signifying

that perfusion and transit time distribution is quite homoge-

neous, resembling a delta-function. Thus, the adiabatic tis-

sue homogeneity model seems more appropriate as a model

for perfusion in healthy human brain tissue.

From the present study, it cannot be shown whether

CTH provides additional information compared with MTT.

Obviously, these measures are correlated, as seen from our

data. However, a necessary requirement is an accurate and

reproducible estimation of the CTH value either based on

ROI or pixel wise calculation. In the study of Schabel the SNR

was approximately 6, using a scanner field strength of 1.5T,

and the uncertainty of CTH was very large.15 Our study was

performed at a higher field strength of 3T with a SNR of

approximately 70 and a CNR of approximately 7 for single

voxel in white matter.1 The precision of our CTH values is

acceptable on an ROI basis; however, when calculated pixel

wise, the CTH images become noisier, and improvement is

desirable. Schabel pointed to the importance of obtaining

data with a sufficient time resolution, heuristically set to 3

Dt<MTT, where Dt is the time between data points

acquired. Our time resolution of 1.25 s is compatible with

this requirement, but even higher time resolution may be

beneficial for accurate estimation of h(t) and RIF(t).

Also, the bolus arrival time in tissue may be of impor-

tance. If the AIF and tissue enhancement curve is wrongly

synchronized, this may transform to an altered configuration

of h(t) and RIF(t) and, therefore, CTH. It may also be

important to reduce the number of free parameters that

have to be estimated, especially in the presence of a leaky

BBB. Perfusion f and the permeability constant Ki can be

estimated separately by use of Tikhonov’s GSVD and

Patlak’s method, respectively, reducing the number of free

parameters to be estimated in the gamma-variate model. It

is interesting to note that the perfusion estimated from

Tikhonov’s method and the perfusion estimated from the

gamma-variate model in the healthy subjects (no BBB

defect) yields very similar results, even though the configura-

tions of RIF(t) from the two methods are quite different.

The imbedded regularization in Tikhonov’s method does

not favor the initial plateau and a nonzero minimal transit

time as the gamma-variate method does.

We have previously been able to estimate CBF successful-

ly from DCE-MRI data based on Tikhonov GSVD,1 and there

is good agreement between this approach and the estimates pre-

sented in this study using the gamma-variate distribution mod-

el. The absolute perfusion values are slightly lower than typical

PET values from the literature, where gray matter perfusion is

FIGURE 7: The results of a patient with reoccurrence of a glioblastoma, showing diminished perfusion (CBF) in the parieto-
temporal region, and a central part showing leakiness (Ki) up to 2 mL/100 g/min. The MTT is prolonged in the region showing leak-
iness, but also outside in a larger region nearly corresponding to the area showing decreased perfusion. The CTH is large in the
tissue showing leakiness, but even larger in the core with diminished leakiness.
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typically in the range of 40–60 mL/100 g/min.27,28 However,

we find a gray matter/white matter perfusion ratio of 3, which

is supported by several other studies.28,29 Our values of blood

volume are in the range of 2–5 mL/100g/min reported in post-

mortem studies30 and from PET studies.28,29 Our MTT values

are in the typical range of 3–5 s, reported by PET28 and MRI

perfusion studies.31,32

Study Limitations
Because this is a small exploratory study, there are some

inherent limitations, the most important being small cohort

size, only four subjects with pathological changes studied

and finally no external validation.

In conclusion, we have shown that it is possible to

calculate the distribution of capillary transit times from DCE-

MRI at 3T, giving a measure of capillary transit time heteroge-

neity. The clinical impact of this measure awaits further studies

of both healthy subjects and various brain pathologies to estab-

lish reference values in health and disease as well as determining

the relationship with other physiological brain metrics, such as

CBF, CBV, MTT, and cerebral metabolic rate of oxygen.
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