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Abstract: Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing
human and animal pathogens, have adopted several mechanisms to sequester iron from the
environment depending on availability and source. Chickens act as a major reservoir for Salmonella
enterica strains which can lead to outbreaks of human salmonellosis. In this review article we
summarize the current understanding of the contribution of iron-uptake systems to the virulence of
non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge
in this field, to help understand and define the interactions between S. enterica and these important
hosts, in comparison to mammalian models.
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1. Introduction

The genus Salmonella is composed of two species, Salmonella enterica and Salmonella bongori.
Salmonella enterica is subdivided into six subspecies; enterica (I), arizonae (IIIa), diarizonae (IIIb), houtenae
(IV), salamae (II) and indica (VI), based on antigenic properties (somatic (O), flagellar (H1, H2) and
capsule (K) antigens) and biochemical properties [1–3]. Salmonella bongori predominantly resides as
commensal in ectotherms and except for a few incidences, mammalian infections are rare [4,5]. It is
hypothesized that adaptation to different niches paved the pathway for speciation of S. enterica and
S. bongori from a common ancestor by means of gene gain, gene loss and conjugation events [6–8].
Salmonella enterica contains >2600 serovars which can infect insects, wild birds, reptiles and mammals.
A significant proportion of human salmonellosis (>99%) are caused by serovars under subspecies I
(enterica) hence it is the most important category in terms of public health. Clinical manifestation of
salmonellosis can vary among serovars. The gastroenteritis-causing strains are collectively known
as non-typhoidal Salmonella (NTS) strains and this review mainly focuses on NTS. Gastroenteritis is
associated with intestinal inflammation and diarrhea without fever in general. NTS strains have the
capacity to infect broad livestock species, yet chickens (Gallus gallus domesticus) are known to be a
major reservoir. This is supported by epidemiological data indicating that poultry represent a major
epicenter for human salmonellosis (non-typhoidal) globally (Table 1) [9,10].
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Table 1. Some of the global incidences of human salmonellosis linked to poultry.

Serotype Source Year(s) Geographical
Region

No of
Cases a References

Enteritidis Chicken (shell eggs) 2010 USA 1939 b CDC 2020 d

Enteritidis Virchow Chicken 2010 (from 2007) Brazil >260 [11]
Enteritidis Virchow Chicken 2010 Taiwan >1000 [12]

Stanley Turkey (meat) 2011–2013 EU 710 [13]
Heidelberg Chicken (meat) 2011 USA 190 CDC 2020 d

Infantis Newport Lille Chicks, ducklings (live) 2012 USA 195 CDC 2020 d

Heidelberg Chicken (meat) 2013 USA 634 CDC 2020 d

Typhimurium Chicks, ducklings (live) 2013 USA 356 CDC 2020 d

Enteritidis Chicken (eggs) 2014 EU >400 [14]
Multiple NTS c Chicks, ducklings (live) 2014 USA 363 CDC 2020 d

Multiple NTS Chicks, ducklings (live) 2015 USA 252 CDC 2020 d

Multiple NTS Chicks, ducklings (live) 2016 USA 895 CDC 2020 d

Typhimurium Chicken (egg) 2015–2016 Australia 272 [15]
Enteritidis Chicken (eggs) 2016–present EU 1656 ECDC 2020 e

Multiple NTS Chicks, ducklings (live) 2017 USA 1120 CDC 2020 d

Typhimurium Chicken (salad) 2018 USA 265 CDC 2020 d

Reading Turkey 2018 USA 358 CDC 2020 d

Enteritidis Chicken (processed meat) 2017–2019 Canada 584 Public Health
Service 2020 f

Enteritidis Chicks, ducklings (live) 2019 USA 1134 CDC 2020 d

a Number of reported incidences. b Estimated due to inadequate reporting. c More than 3 NTS serovars were
involved. d According to the online data published by the Centers for Disease Control and Prevention in
2020 June (https://www.cdc.gov/Salmonella/outbreaks.html). e According to the online data published by the
European Centre for Disease Control and Prevention in 2020, June (https://www.ecdc.europa.eu/en/infectious-
diseases-and-public-health/salmonellosis/threats-and-outbreaks). f Public Health Services, Canada website (https:
//www.canada.ca/en/public-health/services/diseases/salmonellosis-salmonella.html). NTS: non-typhoidal Salmonella.

1.1. Iron Homeostasis by Salmonella in a Nutshell: Regulation and Iron-Uptake Systems

Iron is an indispensable element for S. enterica. Key enzymes involved in bacterial metabolism
depend on iron as a cofactor including DNA synthesis and repair enzymes [16]. Due to its transitional
nature, iron can be either Fe2+/Fe3+ at physiological pH (7.2). In anaerobic environments, Fe2+ can be
dominant over ferric iron, while Fe3+ can be abundant in aerobic conditions. Salmonella has established
various mechanisms to internalize iron depending on its availability. In this review, we will discuss
several important iron-uptake systems available in chicken-associated NTS strains (Figure 1). For more
detail about iron homeostasis in bacteria in general, readers are directed to several references [16–21].

1.2. Ferric Uptake Regulator (Fur)-Mediated Regulation of Iron Uptake, Storage and Utilization

In addition to its innumerable beneficial effects, iron also catalyzes toxic metabolites such
as superoxides, hydroxyl free radicals through Haber-Weiss and Fenton reactions in vivo which
can damage bacterial DNA, iron-sulfur clusters, hence being harmful unless regulated [22,23].
The regulation is mainly under an auto-regulated protein called ferric uptake regulator (Fur) [24].
Fur acts as a repressor for most promoters related to iron uptake [25–27]. Under iron rich conditions,
Fur binds to Fe2+, which causes Fur dimerization and subsequent binding to a consensus DNA
sequence called the “fur box” (GATAATGATAATCATTATC), often present in promoter-containing
regions. Binding overlaps the RNA polymerase (RNAP) binding sequence in the promoter region of
iron-regulated genes [28]. This, in turn, hinders transcription of genes by the RNAP. Under iron-depleted
conditions, Fe2+ dissociates from the dimer, the blockade for RNAP is removed, and iron-regulated
genes are expressed. Apart from serving as a direct transcriptional repressor, Fur positively regulates
iron storage and iron utilization genes via small RNAs called RyhB (E. coli) or its homologues (RfrA/B
in Salmonella) [29,30]. For an example, under iron-rich conditions Fur upregulates iron storage proteins
called bacterioferritins in E. coli via RyhB [31]. First, Fur-Fe2+ represses ryhB transcription and
downregulates RyhB accumulation in the cell. Low intracellular RyhB concentration in turn alleviates
RyhB-mediated destruction of mRNA transcripts and leads to the upregulation of iron storage proteins.
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The network of interacting partners by RyhB and its homologs have added more complexity to the Fur
mediated iron regulation and interactosome of these RNAs are under active research [32].

Figure 1. Schematic representation of iron-uptake systems in non-typhoidal Salmonella strains. (A) Fe3+

uptake systems. Enterobactin, salmochelin and aerobactin are secreted (e.g., through EntS and IroC) to
sequester Fe3+ and then bind to their cognate receptors in the outer membrane (OM). Coprogen and
ferrichrome are other ferric iron chelators present in the environment. Energy is generated through
the proton motive force (PMF) in the cytoplasmic membrane (CM) and transduced to the receptor
by the Ton complex (TonB-ExbB-ExbD). The energized receptor undergoes a conformational change
which opens the pathway to mediate uptake of the iron-loaded siderophores into the periplasm (PP).
The iron-liganded siderophores bind to periplasmic binding proteins (FhuD, FepB) which then shuttle
them through ABC family permeases into the cytosol. 1,2 represent linearized forms of enterobactin
and salmochelin respectively. (B) Fe2+ uptake systems. Ferrous iron in aqueous medium travels though
porin channels in the OM according to the concentration gradient. FeoABC is specific for Fe2+ uptake.
Both MntH and SitABCD are divalent metal transporters. (C) Forms of siderophores. Cyclic forms of
enterobactin and salmochelin are hydrolyzed by the iro gene cluster to produce linearized forms of
iron chelators.

1.3. Uptake of Ferric (Fe3+) Iron via Siderophores

Fe3+ is insoluble and often sequestered by host proteins (i.e., hemoglobin, transferrin, lactoferrin)
or bound in complexes (Fe(OH)3) outside the host. Salmonella secrets high-affinity iron-binding
molecules called siderophores (500–1000 da) to hijack Fe3+. Two siderophores belonging to the
catecholate type are well-characterized: enterobactin and salmochelin. Enterobactin is nature’s
superglue for Fe3+ which forms an incredibly stable complex with ferric ion at Kf = 1049 (Kf = formation
constant) [33]. Chemically it is designated as the cyclic trilactone of N-2,3-dihyroxybenzoyl-l-serine.
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N-2,3-dihyroxybenzoyl l-serine (DBS) is the building block of enterobactin which undergoes cyclization
to accommodate iron by six coordinated oxygen atoms in three DBS units. DBS itself can scavenge Fe3+

with low affinity [34]. Salmonella uses nonribosomal peptide synthesis pathways (NRPS) encoded
by entBCDE (Figure 1C) to generate enterobactin in the cytoplasm which is then exported by EntS
located in the inner membrane [35]. Except for some chicken-specific Salmonella serovars, all other
chicken-associated-Salmonella produce enterobactin [36]. Enterobactin can be further linearized due to
the action of hydrolase enzymes (IroE) located in the bacterial periplasm before secretion (Figure 1C).
The linearized forms of the enterobactin (Ent-trimer, Ent-dimer) retain the ability to scavenge ferric iron,
but with reduced affinity compared to its cyclic form (Kf = 1043) [33]. Once the secreted enterobactin
and linearized forms are iron-loaded, they are taken up by their cognate receptors in the Salmonella
outer membrane. Cyclic and linearized forms of enterobactin (ex; Ent-trimer) specifically bind to FepA.
Evidence has suggested that enterobactin break down products like DBS, can be transported via Cir,
FepA and IroN once loaded with Fe3+ [37]. These receptors share sequence similarity and follow the
same general structure [18]. They are composed of a 22 antiparallel stranded β-barrel (which forms the
channel) and an N-terminal globular domain referred to as the “plug” or “cork”. The energy generated
by the proton motive force in the inner membrane is coupled to the outer membrane receptors via
the TonB-ExbB-ExbD complex to achieve siderophore internalization (passage through the upper
binding pocket), then migration through the channel (plug undergoes conformational changes) into
the periplasm. Internalized iron is then released by degradation of enterobactin using Fes enzymes
located in the cytoplasm.

Enterobactin can be glycosylated by a glycosyl transferase enzyme, IroB, to form salmochelin [38].
Glycosylation affixes glucose molecules to enterobactin thus forming the more hydrophilic salmochelin.
It has been hypothesized that salmochelin is produced to counteract iron starvation mounted by the
host. This has been supported by the observation that salmochelin is a better iron scavenger than
enterobactin in presence of serum albumin and also it is not bound by the mammalian innate molecule
lipocalin 2 (Lcn-2) which captures apo-enterobactin or Fe3+-enterobactin to impede iron scavenging by
bacteria [39,40]. Lcn-2 is secreted by phagocytic cells (macrophages, neutrophils) and epithelial cells
during host’s inflammatory response. Glycosylation of the enterobactin moiety sterically hinders the
binding capacity of Lcn-2 and therefore salmochelin is considered a “stealth” siderophore. IroB can
sequentially synthesize several versions of salmochelin termed mono glycosylated enterobactin (MGE),
di-glycosylated enterobactin (DGE/S4) and tri-glycosylated enterobactin (TGE) [38,39]. Work done by
Lin et al., 2005 has further demonstrated that the periplasmic enzyme IroE can linearize salmochelin
to linear trimer (linearized TGE/S3-not shown in the Figure 1C), linear dimer (DGE/S2), MGE trimer,
linear C-glycosylated (DBS)2 (S1) and linear monomer (SX) in vitro [39]. Also, the authors showed
that IroD, a cytoplasmic esterase, can degrade the salmochelin forms into its building blocks (DBS)
thus releasing the iron into the bacterial cytoplasm [40]. Salmochelins have high specificity for outer
membrane receptor IroN and are subjected to TonB-dependant uptake like other siderophores.

Some NTS serovars produce aerobactin, a mixed type of siderophore known as citrate-hydroxamate
type. Aerobactin is synthesized by a NRPS pathway utilizing enzymes encoded in the iucABCD operon.
During synthesis, l-lysine is first converted to N6-acetyl-N6-hydroxy-l-lysine and then complexed into
a citric acid backbone [41]. The iron complex formation constant of aerobactin (Kf = 1023) is weaker
than that of enterobactin [42]. Aerobactin follows the same rule as catecholate-type siderophores
regarding its uptake (Iut receptor) and TonB-dependant transport into the bacterial periplasm. Once in
the periplasm, aerobactin is transported through the binding-protein-dependent ABC transport system
FhuBCD [43]. FhuBCD also mediates the energy-dependant uptake of ferrichromes and coprogen from
the environment (Figure 1A) [43].

A less common class of siderophores which can be found in Salmonella serovars are phenolate
type siderophores such as yersiniabactin (Ybt). Ybt is abundantly produced in Yersinia species encoded
by a genomic island called high pathogenicity island 1(HPI) [44]. HPI 1 is absent from most Salmonella
enterica serovar subspecies 1 [44] and hence its distribution in Salmonella serovars is low. Seven proteins
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(HMWP1, HMWP2, YbtD, YbtE, YbtS, YbtT and YbtU) have been described in Ybt synthesis from the
precursor isochorismic acid in Yersinia species. The final product is a four-ring structure composed of
salicylate, one thiazolidine and two thiazoline rings. Ybt shows a higher affinity for Fe3+ (Kf = 1036)
than aerobactin, hence it is a potent iron chelator. Once loaded with iron, yersiniabactin is taken up by
the Psn/FyuA receptor in the outer membrane and then shuttled through the YbtPQ ABC transporter
across the inner membrane (not shown in the figure).

1.4. Uptake of Ferrous Iron (Fe2+) via FeoABC, SitABCD and MntH

Ferrous iron is water-soluble and can readily pass through the outer membrane porin proteins
into the periplasm following the concentration gradient. Once in the periplasmic space, Salmonella can
take up Fe2+ via 3 systems: FeoABC, SitABCD and MntH. FeoABC belongs to a family of transporters
that have high specificity for Fe2+. For the FeoABC system, the FeoB permease forms a channel in the
inner membrane and FeoA and FeoC interact with FeoB in the cytoplasm. The N-terminal, cytoplasmic
portion of FeoB contains a G-protein domain which can perform GTP binding and hydrolysis. Therefore,
Feo-mediated Fe2+ uptake is coupled to GTP hydrolysis and signal transduction. For the latest structure
and biology of the FeoABC system, readers are directed to two recent articles [45,46].

SitABCD is an ABC transporter family protein complex allowing the passage of primarily Mn2+

in alkaline pH but capable of transporting Fe2+ with low affinity [47]. Kehres et al., 2002 showed that
SitABCD of Salmonella Typhimurium only transported Fe2+ when the concentration of Fe2+ reached 1
µM or higher in vitro [47]. MntH was also dominant in transporting Mn2+ rather than Fe2+. It was
evident that uptake of Mn2+ was independent of pH, while Fe2+ transport increased by the acidic
pH [47]. Further, it was revealed that affinity for Fe2+ to MntH was much lower than to SitABCD and
only transported ferrous iron when it reached a concentration of higher than 1 µM in vitro [47]. Since
the free, labile iron level is believed to be extremely low in biological fluids (<10−18M) and tissues,
the role of SitABCD and MntH in ferrous iron transport is hypothesized to be of relatively minor
significance compared to Feo-mediated iron uptake. The FeoABC system is recognized as the main
ferrous iron transporter for many Enterobacteriaceae [48].

2. Emergence of Chicken-Associated Invasive NTS: The Iron Link

NTS strains are mainly asymptomatic colonizers in adult chickens, but strains of certain serovars
can be fatal when infecting day-old chicks [49,50]. The major chicken-associated NTS serovars with
potential to cause human epidemics are listed in Table 2. In countries belonging to the European
Union (EU), the majority of breeders and layers were infected with Salmonella Enteritidis (SEn) while
broilers were dominantly colonized by Salmonella Virchow (SVr) [51]. In contrast to the EU countries,
Salmonella Kentucky (SKn) has been the predominant serovar isolated from poultry products in North
America [10,52]. Generally, there is a high genetic synteny among NTS serovars (listed in Table 2) of
chicken origin at core genomic levels [53]. Table 2 has only listed some the genetic differences which
may be linked to virulence in chickens or humans.

Table 2. Most prevalent chicken-associated NTS serovars with public-health risk.

Salmonella Serovar Genetic/Phenotypic Signatures Role Related to Virulence in Chicken
or Human References

Kentucky (SKn)

(1) Colicin production (pColV)
(2) Salmonella genomic island 1 (SGI1)
(3) RpoS regulated gene cluster: csg (curli),
prpBCDE (propionate catabolism)
(4) Lack of Saf and Sef fimbria
(5) Additional iron uptake carried in pColV;
siderophores- aerobactin & salmochelin, sit
operon (Mn2+, Fe2+ uptake)

(1) Increased colonization in chicken gut
(2) Multidrug resistant (MDR) including
3rd generation cephalosporin,
ciprofloxacin resistant *,
(3) Upregulated in chicken cecal explants
(4) Decreased invasiveness in humans
compared to other NTS
(5) NDA (no data available)

[54–56]
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Table 2. Cont.

Salmonella Serovar Genetic/Phenotypic Signatures Role Related to Virulence in Chicken
or Human References

Heidelberg (SHb)

(6) Type IV secretion (T4SS)
(7) SopE (T3SS1 effector) duplication in the
chromosome
(8) Salmonella atypical fimbria (safABCD)
(9) Additional iron uptake carried in pColV;
siderophore-aerobactin

(6) Dissemination of antibiotics resistance
and efficient survival in macrophages
(7) Invasion into epithelial cells and
induce inflammation
(8) Only presented in the outbreak strain
linked to human salmonellosis.
(9) NDA

[55,57,58]

Typhimurium (STm)

(10) Salmonella genomic island 1 (SGI1)
(11) Salmonella genomic island 4 (SGI4)
(12) Plasmid encoded factors; mig-5, rck, spv
(Salmonella plasmid virulence), pef ,
(13) Additional iron uptake in pColV;
aerobactin, salmochelin
sit operon (Mn2+, Fe2+)

(10) Sequence type DT104 showed
Increased egg contamination compared to
SEn phage type 4, contains ACSSuT #

drug-resistant phenotype
(11) Heavy metal resistant in DT104
(12) colonization in chicken gut, systemic
spread
(13) NDA

[59–62]

Typhimurium mono
phasic variant (STmv)

(DT193/DT120)

(14) Phase 2 flagellin not expressed (fljBA
operon)
(15) SGI-4
(16) Lack of Salmonella plasmid virulence
locus,
(17) Lack of Gifsy prophages

(14) Predicted to be an adaptation related
to the expansion of reservoir host
(15) resistant to heavy metals copper and
zinc
(16) less invasive in humans
(17) NDA

[59,63,64]

Enteritidis (SEn)

(18) pSLA5 plasmid
(19) Plasmid encoded factors; mig-5, rck, spv
(Salmonella plasmid virulence), pef
(20) Peg fimbria

(18) Associated with recent outbreaks in
the EU.
(19) Colonization in chicken gut, systemic
spread
(20) Generally unique to Enteritidis.
Facilitates cecal colonization in chickens

[65–68]

Virchow (SVr)
(21) Salmonella Typhi colonization factor:
TcfA
(22) Novel SopE effector

(21) TcfA fimbriae provides tissue tropism
in invasion into human cells. Role in
chickens unknown
(22) Associated with invasive nature of
SVQ1 strain linked to outbreaks in
Australia

[53,69]

Montevideo (SMv) (23) Typhoid-associated virulence factors;
TcfA fimbria, cytolethal toxin B etc.

(23) Predicted to increase tissue tropism
and invasions in humans. Role in
chickens unknown

[53,70]

Infantis (SIn)

(24) Plasmid-encoded factors;(pESI like);

• MDR; Extended spectrum beta
lactamases (blaCTX-M-65)

• Additional ferric uptake system;
yersiniabactin (irp),

• Fimbria: E coli K88, Infantis plasmid
fimbriae (ipf )

(24) Associated in human outbreaks. Also,
plasmid-encoded fimbria were
contributed a colonization in the
gastrointestinal tract of chicks

[71–74]

* Global pandemic strain of SKn with ciprofloxacin resistant, ST198-X1-SGI1 originated from chickens. # ACSSuT =
ampicillin, chloramphenicol, streptomycin, sulfamethoxazole and tetracycline.

The chicken host has been a hotspot for shaping new NTS pathotype strains that can cause
extraintestinal diseases in humans due to bacteremia, often with antimicrobial resistant (AMR)
phenotypes. NTS bacteremia can lead to severe inflammation within different organs, leading to
organ dysfunction and sometimes death (Figure 2). In these more systemic infections, antibiotics are
required for successful treatment. Salmonella Heidelberg (SHb) and SVr are among the top-four NTS
serovars with highest invasiveness indices (proportion of bacteremia from total isolates) globally for
which chickens act as a reservoir [75–78]. Apart from that, Salmonella Typhimurium (STm) and SEn are
cumulatively responsible for the highest human epidemics globally with potential to cause blood-borne
infections [79]. Comparative genomic analysis has predicted that Salmonella pathogenicity islands (SPI),
adhesin molecules (fimbriae, invasins), secretion systems, virulence plasmid (spv), toxins, multidrug
resistant genomic islands and colonization factors have a role in causing blood-borne infection in
humans [52,53,57,58,80,81]. Another important virulence trait that has been overlooked in NTS serovars
is iron uptake. As summarized in Table 2, there is a general trend in strains of important NTS serovars
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to acquire additional iron-uptake systems. Kajanchi et al. (2017) reported that a significant number of
STm strains, isolated from chickens, turkeys and humans, carried ColV plasmids which encoded genes
for divalent metal uptake (sitABCD) and Fe3+ uptake via synthesis, secretion and translocation of
aerobactin (iucABCD, iut) [62]. The plasmid encoded sitABCD was phylogenetically distinct from the
chromosomally encoded loci. The effect of having two sitABCD operons for clonal expansion and/or
virulence is still unknown. ColV plasmids have been associated with SKn strains and to a lesser extent
with SHb strains in the USA that were isolated from poultry [55]. For SKn, there was a significant
fitness defect in colonizing the chicken cecum in strains lacking pColV [55]. In addition, systemic
dissemination and the ability to cause splenic lesions was reduced in pColV null background compared
to the pColV positive strain, indicating that genetic factors carried in pColV plasmids are important
virulence determinants during extraintestinal disease [55]. SKn is an emerging pathogen which can
cause blood-born infections in humans [82–84], thus ColV plasmid-encoded factors including iron
uptake functions most likely contribute to overall virulence.

The aerobactin operon (iucABCD), also carried on pColV plasmids, is of particular interest, because
normally its prevalence is low in most Salmonella [42]. Aerobactin-producing NTS serovars (SEn, STm,
SVr,SIn etc) were highly associated with human salmonellosis caused by ingestion of contaminated
poultry products in Spain [85]. In some reports, it has been documented that aerobactin production is
exclusively linked to blood-born infection rather gastroenteritis, as aerobactin-producing NTS serovars
were exclusively isolated from human blood [86,87]. In fact, some of the properties of aerobactin can
provide NTS serovars a better survivability during systemic dissemination, even though affinity to Fe3+

of aerobactin is lower than most other siderophores. Some of these features include: higher transfer
rate of Fe3+ from transferrin receptors to aerobactin in the serum, higher solubility, low wastage of
resources during aerobactin production (recycled) and rapid secretion out of the cells to be available
for ferric uptake compared to enterobactin, which tends to accumulate in the inner-membrane [42].
The iron in the mucosal surface of the gastrointestinal tract is mainly bound by lactoferrins which has a
high affinity for iron (Kf = 1020) like transferrin [88,89]. Therefore, secretion of additional siderophores
such as aerobactin may provide NTS strains a competitive advantage for multiplication and invasion
into the gastrointestinal tract. In addition, aerobactin is not bound by Lcn-2 which will provide a
defense against Lcn-2-mediated iron starvation during inflammation. So, in the bottom line, aerobactin
can be involved not only in the systemic phase of infection but also in enteric infection. The pColV
plasmids are well-distributed among E. coli strains and it is believed that chicken-associated NTS strains
may have acquired the pColV from an avian pathogenic E. coli (APEC) strain. APEC strains cause
high morbidity and mortality in chickens (colibacillosis) due to their ability to cause septicemia [90].
Dozois et al., 2003 showed that among pathogen-specific gene clusters expressed in APEC strains,
both aerobactin and salmochelin were important for virulence in chickens [91]. Further, significant
reduction of colibacillosis-associated pathology was observed in an aerobactin-knockout APEC strain
carrying ColV plasmids [92]. In a similar manner the hypervirulent Klebsiella pneumoniae strain solely
uses aerobactin to confer its hypervirulent phenotype which leads to septicemia in humans [93]. By all
these means, acquiring aerobactin production may indeed cause the chicken-associated NTS serovars
to become more virulent once infected in humans. There are number of other genetic factors encoded
on pColV plasmids which can contribute to virulence, including the iss gene associated with increased
serum survival in APEC strains [94]. Therefore, experimental approaches will be necessary to study
the role of aerobactin encoded on pColV regarding virulence of NTS serovars in chickens and humans.

A recently emerging poultry-associated multidrug resistant Salmonella Infantis (SIn) lineage,
harbored yersiniabactin secretion systems (irp) on pESI like plasmids [71,95]. As mentioned earlier,
yersiniabactin is rarely present in Salmonella strains and its role is unknown regarding the existence in
chicken-associated NTS strains. Yersiniabactin can sequester copper iron apart from ferric, to form a
stable complex (yersiniabactin-cupric) which resists proteasomal degradation. In a series of experiments
conducted by Chaturvedi and colleagues, they were able to show that the yersiniabactin-cupric complex
neutralized superoxide (super oxide dismutase-like activity) generated in phagosomes which gave
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uropathogenic E coli bacteria, a survival advantage in vitro and in vivo [96,97]. This new paradigm
for the role of yersiniabactin in virulence is highly applicable to NTS serovars, because Salmonella
enterica species do need to resist copper (Cu2+) accumulation inside macrophages for the survival [98].
Once accumulated in the cytoplasm of macrophages, Cu2+ oxidized into a Cu1+ which is toxic to
bacteria. So, co-expression of yersiniabactin and catecholate siderophores (enterobactin, salmochelin)
in the SIn strain may provide a survival advantage by facilitating iron acquisition as well resistance to
copper-mediated toxicity.

Figure 2. Bacteremia-induced complications by non-typhoidal Salmonella. Generally, 5% of
gastroenteritis cases develop into bacteremia-associated complications in immunocompetent people.
However the burden of NTS bacteremia is higher in immunocompromised patients and children under
5 years old (can reach up to 34%). Data related to epidemiology has been obtained from a variety of
published case reports and outbreak analysis. [99–110].

The acquisition of siderophore secretion and metal iron-uptake systems in chicken-associated
NTS serovars might be linked to their invasive phenotypes in humans but more studies are needed to
confirm their role. Whether they are important for the pathogenesis in chickens remains a question to
be answered.

3. Iron Uptake in NTS Virulence: Chicken vs. Mammalian Models

Most of our understanding related to the role of iron-regulated gene clusters in Salmonella
pathogenesis has derived from experimental infection with Salmonella Typhimurium (STm) using
mouse models and mammalian cell culture assays. Due to differences in how pathogens interact
with avian environments, we cannot directly extrapolate this information to chickens [111,112].
The relationship of virulence with various iron-uptake systems in pathogenic bacteria including
Salmonella enterica species has been extensively reviewed [16–21,113]. Unfortunately, limited data in
chicken models and avian cell lines remains a barrier to understanding the host–pathogen interactions
of the iron-uptake system in Salmonella serovars. Here we discuss the potential role of iron-uptake
systems in NTS serovars towards infection and colonization in chickens compared to mammals. Some
of the gaps in knowledge which need to be addressed in poultry are summarized in Figure 3.
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Figure 3. Interaction of non-typhoidal Salmonella strains with chicken and the environment. The role of
iron-uptake systems during key steps of Salmonella life cycle illustrated here needs to be investigated in
chicken models in future [50,114–122].

3.1. Feo-Mediated Fe2+ Uptake Involved in Rapid Colonization of the Gut and Systemic Spread

To identify differentially expressed gene profiles of STm isolated during colonization of the lumen
of the chicken cecum (compared to in vitro cultures), Harvey et al., 2011, detected the upregulation of
the sitABCD operon [123]. In contrast, the major Fe2+ uptake facilitator, the FeoABC system, was not
differentially expressed during the same experiment. However, these researchers only assessed gene
expression at 16 hours post-infection in newly hatched chicks so they may not have been able to
capture the full spectrum of iron-regulated gene expression over time [123]. The sitABCD gene cluster
was a major virulence factor in an avian pathogenic E. coli (APEC) strain causing colibacillosis in a
chicken air sac model [124]. Evidence suggested that manganese uptake was more important than
the Fe2+ uptake during extraintestinal phase in APEC strains [124]. In contrast, both Mn2+ and
Fe2+ uptake contributed to the full virulence of STm to cause typhoid disease in mice [125]. Portillo
et al., 1992 estimated that 1 µM of free Fe2+ prevailed inside the STm containing vacuole within
Madin-Darby canine kidney cells and it was sufficient for replication, for at least 8 h of infection [126].
This suggested that Fe2+ iron uptake might be more important than Fe3+ in the initial stages of STm
establishment in the gastrointestinal tract. Supporting this hypothesis, Tsolis et al., 1996, showed that
the lack of the Feo system significantly reduced the fecal shedding of STm in mice (C57BL/6) at day 4
post-challenge while a Fe3+ uptake null strain was recovered at a level similar to the wildtype [127].
In line with these findings, Costa et al., 2017 showed that Feo-mediated iron uptake provided a fitness
advantage for STm, during gastrointestinal colonization (fecal shedding) via intragastrical route in a
streptomycin-pretreated mouse (C57BL/6) colitis model at 2 days post-infection [128].

Similar to mammals, chickens mediate Fe2+ egress from macrophages by expressing NRAMP-1
(Natural Resistance-Associated Protein 1) in the phagosomal membrane [129]. The action of NRAMP-1
is thought to limit the free, labile iron pool available to intracellular pathogens [130]. Thus, it is very
likely that Feo-mediated ferrous iron uptake plays a crucial role for Salmonella to establish systemic
infections in chicken. NRAMP-1 expression has been linked to Salmonella-resistance in certain chicken
genetic lines (White Leghorn W1) [131]. The susceptible chicken line (CC) had a conservative mutation
in the amino acid residue located at 223 (Arg223

→Gln223) of NRAMP-1, which was highly predictive of
a functional anomaly in the NRAMP- 1 protein [131]. Consistent with this finding, authors observed
that only 15% birds survived to a parenteral challenge of STm in the susceptible chicken line (CC)
7 days post-infection while almost all birds survived in the resistant chicken line [131]. However,
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the mortality rate of the susceptible chicken line was comparable to the resistant chicken line beyond
day 7 post-infection irrespective of the NRAMP-1 status [131]. This reflected that Fe2+ starvation in
presence of a functional NRAMP-1 certainly did limit rapid systemic spread of the STm in chicken but
bacteria somehow adopted the new iron status in chicken and survived, pertaining their virulence
during persistent infection. Future studies are needed to examine the iron distribution during Salmonella
pathogenesis in chicken (cecal colonization and extraintestinal dissemination) and how this will shape
overall regulation of iron-uptake systems in NTS serovars.

While further experiments are warranted to investigate the role of Fe2+uptake in relationship to
the NRAMP-1 status in chicken lines, mouse models of infections have provided some insight into
the interplay between NRAMP-1 and Feo-mediated iron uptake. Feo-mediated iron uptake provided
a competitive advantage during persistent infection of STm (SL1344-calf virulent isolate) in both
NRAMP-positive and -negative backgrounds of mice [132]. Authors observed that a ∆feo STm strain
was significantly reduced in its ability to colonize deeper tissue in the gut such as Peyer’s patches
(PP), mesenteric lymph nodes (MLN), as well as liver and spleen during a mixed infection [132].
Mice were orally challenged resembling natural infection with Salmonella. In the same study, it was
documented that the lack of Feo-mediated Fe2+ uptake affected the overall iron homeostasis in a STm
strain during a single infection challenge model [132]. The study revealed that the ∆feo STm strain
compensated the requirement of iron by upregulating siderophore-mediated Fe3+ uptake (enterobactin,
salmochelin) systems during systemic infection (liver and spleen) [132]. Interestingly, this upregulation
of siderophore-mediated ferric uptake resulted in increased bacterial burden in the liver and spleen
during persistent infection in NRAMP+/+ mice [132]. There are growing numbers of evidence indicating
that Salmonella preferentially resided in hemo-phagocytosed macrophages in the liver and spleen
during infection [133–135]. One plausible explanation for this might be the abundant source of iron that
Salmonella can exploit during degradation of erythrocytes (Fe3+/Fe2+) in those macrophages. Hence
hypersecretion of siderophores may benefit growing Salmonella under such conditions. Expression
of iron-uptake systems certainly may differ among different types of tissues the bacterium has to
encounter or might vary due to host responses. For example, transferrin-bound iron (Fe3+) in the
intestines provides a good source of iron for Salmonella and the uptake can be facilitated by the
stress-induced norepinephrine hormone which is produced abundantly in the mesenteric organs both
in chickens and mice [136].

Highlights-1:

(i) Feo-mediated ferrous iron uptake is important for rapid colonization by and systemic spread of
Salmonella Typhimurium in NRAMP+/+ mice. We predict the same in chicken–NTS interaction.

(ii) Feo may not be essential for persistent infection in mouse models due to redundancy of
various iron-uptake systems. This includes Mn2+ uptake via SitABCD and MntH, and uptake
of siderophores.

(iii) NTS predilects to iron-rich hemophagocytes during systemic infection.

3.2. Siderophore Synthesis Is Important During Persistent Infection and Bacteremia

Iron restriction is well-studied related to antimicrobial properties of egg white in vitro [137–142].
Kang et al., 2006, showed that a ∆entF strain of SEn which was unable to produce a catecholate
siderophore, was significantly attenuated in its ability to survive in egg albumen in vitro which
suggested that siderophore production is an important virulence determinant during internal
contamination of the eggs [143]. The egg is enriched with a variety of iron chelators such as
ovotransferrin (in egg white) and phosphovitin (in yolk) hence it is very likely that potent ferric hijacking
systems will benefit Salmonella in colonizing the eggs during transovarian transmission. Van Immerseel
et al., 2010, proposed the hypothesis that stress-induced survival mechanisms governed by SEn led
to egg-associated human outbreaks due to the fact that eggs possessed an arsenal of antimicrobial
properties [144]. However, in-vivo gene expression studies did not identify iron-uptake systems as
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differentially expressed gene clusters during oviduct colonization or egg contamination [145,146].
Gene expression studies have been conducted using an intravenous challenge model which is an
unnatural route of infection in hens. So, it might be possible that gene expression of Salmonella during
intravenous challenge might be different compared to oral infection in hens. Siderophore-mediated
ferric iron uptake has not been identified as a major virulence determinant during colonization in
the gut and systemic infection in chicken, so far. There are not enough studies performed using
iron-homeostasis-related mutants of Salmonella to investigate their role in infection, colonization
and transmission in a chicken model. In a series of experiments executed by Rabsch et al., 2003,
it was proposed that siderophore degradation product such as N-2,3-dihyroxybenzoyl-l-serine (DBS)
will be more important in colonization and systemic spread in the absence of an active siderophore
uptake system in chicken [37]. The authors confirmed this hypothesis in a mouse model of infection
(intragastric route) using a ∆fepA ∆iroN ∆cir strain of STm (SL1344) which was significantly attenuated
in colonization of the cecum and systemic spread, which in contrast was not observed in a ∆fepA ∆iroN
mutant (enterobactin and salmochelin uptake deficient). In a chicken model, SEn strains carrying fepA
iroN mutation profiles behaved similarly as in mice indicating that siderophore uptake was not essential
during early colonization events [37]. Interestingly, the authors concluded that in BALB/c mice who
are intrinsically susceptible to Salmonella infection, salmochelin was not important to cause infection.
All these data have to be used cautiously due to following reasons; (i) N-2,3-dihyroxybenzoyl-l-serine
(DBS) is not occurring naturally in the environment. It needs to be synthesized (entABCDE) or liberated
as a byproduct due to action of Fes and IroE (Figure 1) on enterobactin/salmochelin. So, if DBSs are
important so is the siderophore synthesis. When uptake routes are blocked spontaneous breakdown
of siderophores can be a rapid process. (ii) At a given time, siderophores and its degraded products
(enterobactin, salmochelins, Ent-trimer, Ent-dimer, DGE-trimer, DBS etc.) can be present and this
cocktail may have a biological role in vivo. For example, degradation to more soluble form such as
DBS, enables Salmonella to internalize iron rapidly. The mixture of derivatives might also exhaust
the immune system in mounting an effective antibody response (antibodies against one particular
siderophore derivative will spare others in the mixture) [147,148]. (iii) The genetic background of
the host organism will have a major effect on the outcome of animal experiments. For example,
the importance of iron-uptake systems described in mice that are genetically susceptible or resistant
to Salmonella has been contrasting [149,150]. This will most likely be applicable to chickens as well
(Salmonella-resistant and -susceptible chicken lines). Another crucial factor is the age of the birds: e.g.,
chicks (weak immune system) vs. adult chickens.

Fe3+ uptake via FepB (periplasmic binding protein for some catecholate type siderophores) has
been identified as an absolute requirement for the persistent infection in mice (Sv129S6-Nramp1+/+)
with STm (SL1344) [151]. FepB is needed to shuttle Fe3+ bound to enterobactin, salmochelin or
DBS (2,3-dihydrobenzoic acids), from the periplasm to the inner membrane transport components
(Figure 1A). The ∆fepB of STm dramatically lowered the bacterial recovery below the detection limit
in most of the tissues examined in mice (cecum, MLN, PP, liver and spleen) [151]. Most importantly,
the authors in these studies showed that siderophore synthesis (enterobactin, salmochelin) played a
significant role in gastrointestinal colonization and systemic spread during persistent infection [151].

Salmochelin synthesis and export have been identified as major virulence factors during bacteremia
in mice (C3H, Nramp+) measured by mortality after intraperitoneal injection of STm [152]. Parenteral
injection of STm carrying a mutation in tonB which completely blocked all siderophore uptake has
previously been shown to significantly increase the LD50 in mice compared to the challenge with
wildtype STm [127]. Further, in a study which analyzed differentially expressed genes in STm-SL1344
by transcriptomic and proteomics techniques, enterobactin synthesis and uptake genes were highly
upregulated during systemic infection in a mouse (C57BL/6) model [153]. Most interesting finding of that
study was, in addition to enterobactin, salmochelin-related genes were upregulated in immune-deficient
mice background (deficient in ROS generation) but not in wildtype mice background [153]. In the
same study high bacterial growth has been observed in spleen of immune-deficient mice which may
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have been linked to a high demand of iron for growth of STm [153]. It is well-documented that
salmochelin provides a defense against Lcn-2-mediated enterobactin chelation by the host during
inflammation (mouse colitis model) [154]. Hence it is possible that mice with deficiency in respiratory
burst effect, may rely on antimicrobial mechanisms such as more Lcn-2 secretion to limit Salmonella
replication in phagocytic cells. Also, serum is considered as an extremely low iron compartment for
pathogens in vertebrates [155]. Serum iron is mostly bound to transferrin, albumin and ferritins. In the
presence of serum albumin, enterobactin is not considered as an efficient iron chelator as it is rapidly
cleared [156,157]. Hence secretion of stealth siderophores (aerobactin, salmochelin and yersiniabactin)
will be beneficial for NTS serovars during bacteremia.

The extracellular fatty acid-binding protein (ExFABP) of chickens has been identified as the
chicken equivalent of Lcn-2 [158]. Its overall structure is similar to Lcn-2 yet it has a more extended
positively charged calyx (which is the binding pocket for ligands) with two binding specificities:
one for siderophores and the other for lysophosphatidic acid [158]. Interestingly, the calyx of Ex-FABP
accommodates one form of salmochelin, mono- glycosylated enterobactin (MGE/S1) which is not
normally bound by Lcn-2 [158]. Lcn-2 cannot bind to any salmochelin derivatives. So, the “chicken
lipochalin-2” seems to be more potent in withholding iron compared to Lcn-2 during Salmonella infection.
There is ample evidence for expression of Ex-FABP in the cecum associated with inflammation of
day-old chicks when infected by NTS [159,160]. Chicken egg white which has antibacterial properties
against Salmonella in vitro also contains Ex-FABP [145]. Adult chickens generate a more tolerogenic
response towards non-typhoidal Salmonella (NTS) infection [161,162]. The inflammation induced in
adult chicken is transient yet sufficient enough to contain the bacteria in the gut while some may spread
systemically to colonize spleen and liver. Significant inflammation in the liver and spleen has not been
observed in more mature birds except for follicular lesion [161]. The lack of marked inflammatory
response in adult chicken towards NTS infection is an indication that some of the stealth siderophore
secretion might not be essential during the colonization process compared to mammals.

Highlights-2:

(i) Ferric iron uptake mechanisms are important for persistent infection.We predict similar results
for chicken as those found in mouse models because bioavailability of iron is expected to be low
in most compartments of the host.

(ii) Aerobactin, salmochelin and yersiniabactin provide a serum resistance during bacteremia and
systemic infection. This may explain the siderophore link towards chicken-associated virulent
NTS serovars.

(iii) The role of stealth siderophores of NTS in adult chickens during colonization may be nonessential
due to tolerogenic response.

4. Opening the Pandora’s Box of Gallus-Iron-Salmonella Interaction

Iron uptake is a primary virulence factor for Salmonella. But how each iron-uptake system partakes
in pathogenesis in a chicken model still needs a thorough investigation. This is intriguing because
chickens are the major reservoir for Salmonella; yet we know least about its interactions with the host.
We want to highlight some of the important aspects which need to be addressed in future experiments
using chickens as model related to the Gallus-Iron-Salmonella interaction. This will certainly lay a
platform to discuss the potential for developing therapeutics targeted at iron homeostasis in Salmonella.

4.1. Nutritional Immunity Status in Chicken during Salmonella Infection

Nutritional immunity is defined as part of the host’s innate immune response to withhold essential
nutrients, including iron, from invading pathogens [163]. The interplay between iron-withholding
mechanisms in chicken and iron homeostasis in Salmonella during pathogenesis is largely unknown.
The interaction between siderophores and extracellular fatty acid binding protein (ExFABP), which is
part of chicken-iron-withholding strategy, has recently been well-documented in eggs [164]. A study
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revealed that SEn has to synthesize stealth siderophores such as salmochelin to overcome iron starvation
induced by ExFABP (chelation of Fe3+-enterobactin) in egg white in vitro [164]. Ovotransferrin,
synthesized by oviduct cells, is a transferrin family protein which transports iron into the growing
embryo. It is the major constituter of egg albumin. The iron complex formation constant of
ovotransferrin (iron affinity of the C lobe is 1018 and N lobe is 1014 ) is low compared to most
siderophores secreted by Salmonella hence iron restriction is not the major mechanism behind its
antibacterial effect [165]. Egg yolk is the major iron store for growing embryos and almost all iron is
bound to phosvitin. The affinity of phosvitin to iron is comparable to ovotransferrin (Kf = 1018) [166].
So, Salmonella can rely on enterobactin (Kf = 1049) rather on the expression of stealth siderophore to
hijack iron from phosvitins, unless ExFABP is expressed in sufficient amounts. However, currently
there is no evidence that stealth siderophores are indeed expressed to counteract ExFABP-mediated
nutritional immunity in chickens during colonization in various tissue in vivo.

Adaptation to an iron-deficiency status in humans plays an important role in resistance to bacterial
and viral infections [167]. The response is also termed as hypoferremia of inflammation or anemia of
inflammation (AI). The key player for hypoferremic response is recognized as hepcidin, the master
regulator for iron metabolism in humans and it is believed to be hepcidin independent in chickens
(chicken genome seems to lack hepcidin up to date) [168–170]. Inflammation caused by pathogenic
invasion induces hepcidin secretion from liver [171]. Hepcidin mediates ferroportin (Fpn) degradation
which inhibits iron efflux from macrophages and iron absorption from intestines [172]. Fpn degradation
also affects hepatocytes which increases their ferritin levels and the ability to store accumulated iron.
All these mechanisms lead to a significant drop in the serum iron level (hypoferremia). The low
level of iron in the serum may limit bacteremia, yet current evidence suggested that the burden of
NTS increased in systemic infection-related sites such as the spleen during hypoferremic response in
mice [173–175]. Similarly, infection with chicken-specific serovars such as Salmonella Gallinarum and
Salmonella Pullorum led to anemia of inflammation (AI) in chicken with increased bacterial burden
in spleen and liver [176]. The increased Salmonella colonization in the “systemic sites” correlated
with a spike in the iron content both in mice and chickens. The reason for such a spike of iron in
spleen can be partly due to the accelerated red blood cell turnover rate triggered by inflammation
induced hypoferremia response. It has been documented that in mammals the half-life of red blood
cells decreased dramatically during AI response and led to increased destruction of red blood cells by
macrophages in spleen and liver [177]. Since Salmonella can profit from the iron abundancy (Fe2+/Fe3+)
in hemophagocytic cells [132], they may preferentially rely on a specific iron uptake system during AI.
Supporting this hypothesis, the African lineage of iNTS (invasive NTS) strain Salmonella Typhimurium
313 (ST313) appears not to rely on salmochelin-mediated Fe3+ uptake during systemic infection in
mice [178]. There is a strong association of African linage of iNTS strains with malaria parasites which
increase intracellular iron levels in macrophages [179]. An abundance of the Fe 2+ pool may have
inherently adapted the ST313 to reduce the expression of stealth siderophore uptake systems which are
a metabolically demanding process to produce. There is currently no experimental data indicating the
occurrence of AI in chicken during NTS infection. Broader host range serovars such as NTS strains
colonize mainly the gastrointestinal tract without overt inflammation in adult birds. In such a situation,
AI will not be profound. Virulence of NTSs varies according to serovars and chicken susceptibility
depends on their genetic background and the age of the birds. For example, NTS such as STm and SEn
do cause systemic inflammation during enteric infection in young chickens. They are also capable of
infecting the yolk sac in young birds leading to the development of omphalitis. Yolk sac infections
result in high mortality due to septicemia [180]. The role of iron-uptake systems of NTS, when the
host undergoes hypoferremia needs to be investigated in a chicken model of infection. It will be
especially important to examine iron distribution in compartments such as blood, liver, spleen and
gastrointestinal tract of chickens following infection. Research on iron-regulated gene expression
combined with proteomic studies is needed to assess how each iron-uptake system is regulated in
parallel to anemia of inflammation.
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4.2. Non-Canonical Function of Siderophores: Defense against Respiratory Burst and
Immunomodulatory Function

There are growing number of evidences suggesting that siderophores have other biological
functions apart from Fe3+ uptake [181]. One such alternative function is defense against oxidative stress
provided by catecholate siderophores [182–184]. The mechanism behind the enterobactin-mediated
defense against reactive oxygen species is currently been investigated. One of the mechanisms
suggested that Ent-trimer (Figure 1C) which is the linearized molecule of enterobactin, participates in
ROS scavenging by providing hydroxyl groups from the freed end of the backbone [185]. Generation
of a robust respiratory burst is a key mechanism to kill Salmonella inside phagocytic cells [186]. In this
regard, catecholate siderophore production will provide a survival advantage inside macrophages
which is a major replication niche during systemic dissemination and colonization. Also, it may be
plausible that synthesis of catecholate siderophores will be important irrespective of iron limitation
inside phagocytic cells because of their diverse functions apart from iron scavenging. Some of
the phagocytic cells in the chicken immune system do not induce a strong respiratory burst effect
to Salmonella. The chicken lacks neutrophils yet has heterophils that are functionally equivalent
to neutrophils. Heterophils are unable to synthesize myeloperoxidases and rely on a repertoire of
antimicrobial peptides to kill bacteria instead of respiratory burst [114,187,188]. It has been documented
that enterobactin inhibited the myeloperoxidases activity in E coli and provided a survival advantage
in inflamed gut [184]. Hence it is important to investigate the interplay between enterobactin and
heterophils during gastrointestinal colonization. Macrophages from Salmonella-resistant chicken lines
(SALI) showed more pronounced respiratory burst effect while susceptible and inbred lines had low,
variable level respectively [189]. So future experiments are warranted in chickens to investigate the
role of siderophore-mediated defense against reactive oxygen and nitrogen species.

Holden et al., 2016, showed that siderophores produced by Klebsiella pneumoniae (enterobactin,
salmochelin and yersiniabactin) can induce inflammation in lung epithelial tissue by stabilizing the
hypoxia inducible factor-1α (HIF-1α) in C57BL/6 mice [190]. In a previous study, Holden et al.,
2014, showed that enterobactin together with Lcn-2 can potentiate the induction of pro-inflammatory
cytokines in cultured murine lung epithelial cells through chelation of iron [191]. These data are highly
suggestive that siderophores can mount an inflammation in vivo. Inflammatory cytokines liberated
will help to attract macrophages and dendritic cells to the infective loci and subsequent systemic spread.
It will be interesting to investigate whether siderophores facilitate systemic infection by induction of
inflammation at different colonization sites in chicken by NTS serovars. Enterobactin-mediated iron
chelation has been documented to polarize the macrophage from M1 phenotype to M2 phenotype
in bone-marrow-derived cells [192]. M2 phenotype of macrophages will safeguard intracellular
pathogen such as Salmonella by avoiding generating an oxidative killing mechanism [193]. Chicken
has low number of resident macrophages in organs and relies on bone-marrow-derived monocytes to
migrate to the inflammatory loci for pathogen control [187]. Presence of distinct M1 (killing/towards
inflammatory) and M2 (healing/towards adaptive response) phenotypes [194] of chicken macrophages
is yet to be fully elucidated. Further studies are needed to unravel how Salmonella mediates iron
homeostasis in infected chicken macrophages as this microenvironment may impose a different iron
status during polarization [195].

5. Concluding Remarks

Our understanding of iron in infection and immunity remains close to its infancy due to the
complex nature of the interaction and ever-growing Salmonella serovars found in nature. Concerning
chickens as a reservoir, it will be pivotal to understand how iron-regulated genes of Salmonella are
expressed during pathogenesis in a chicken model of infection (Figure 3). Enhanced detection of
in vivo siderophore production during colonization in different chicken host niches in situ will be key
in understanding their role in the future. Experiments are needed to address how iron metabolism and
homeostasis in the chicken are regulated in response to NTS infection. There are other metal uptake
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systems (Mn2+, Cu, Zn2+) apart from iron uptake which are not well-characterized in a chicken model
regarding their role in NTS colonization. We believe that these efforts to understand the involvement
of iron homeostasis in pathogenesis of NTS will pave the way for the development of a successful
therapeutic strategy in the poultry industry to limit chicken-associated Salmonella “spillovers” to
humans and the environment.
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