
BIOMEDICAL REPORTS  5:  296-300,  2016296

Abstract. Skeletal muscle function is important for good 
health and independent living, and has been subject to 
numerous studies focused on skeletal muscle development, 
function and metabolism. However, progressive and degenera-
tive changes in skeletal muscle function often occur following 
physiological and pathological stress, and these lead to the 
progression of diabetes, obesity, chronic kidney disease, and 
cardiovascular or respiratory diseases. Identifying the mecha-
nisms that influence the processes regulating skeletal muscle 
function is a key priority. Recently, studies have demonstrated 
that microRNAs (miRNAs) play important roles in regulating 
biological processes. For instance, exosomes are key tools for 
communication between cells. Therefore, by determining how 
select miRNAs are transported to target organs and initiate 
their effects, these results will help explain muscle and organ 
crosstalk, improve our understanding and application of 
current therapeutic approaches and lead to the identification 
of new therapeutic strategies and targets aimed at maintaining 
and/or improving skeletal muscle health.
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1. Introduction

Skeletal muscle is a major organ for all animals, including 
humans, and it comprises ~40% of the body's mass. Control 
of movement and posture are its primary functions, and the 
development and function of skeletal muscle is regulated by 
different factors. Recently, microRNA (miRNA) studies have 
provided an opportunity for improved understanding of the 
molecular processes of skeletal muscle diseases. Research 
suggests that miRNAs play important roles in skeletal muscle 
development, and several miRNAs have been identified as 
biomarkers for myogenesis, muscle mass, and nutrient metabo-
lism in physiological and pathological states (1,2). Several 
miRNAs are specifically expressed in muscle  (myomiRs). 
Myocyte proliferation and differentiation are influenced by 
miRNAs, and miRNAs may affect muscle fiber types by regu-
lating several transcriptional repressors.

In addition, miRNAs have recently been identified in 
extracellular body fluids, such as serum, plasma, urine, milk, 
and spinal fluid (3-5). These circulating miRNAs (ci-miRs) 
are embedded in microvesicles (MVs) or exosomes, which 
transport proteins, lipids, mRNAs and miRNAs to regulate 
recipient cell functions  (6). Multiple cell types have been 
demonstrated to release vesicles into the extracellular medium, 
including mesenchymal cells, adipocytes, fibroblasts, immune 
cells, platelets, myoblasts and tumor cells (7-16). Evidence 
suggests that exosomes carrying specific miRNAs, such as 
miR-1, miR-21, miR-133, miR-182, and miR-206, are targeted 
to myocytes and modulate the physiology and pathology status 
of myocytes by altering gene expression (5,17). To date, there 
is limited knowledge regarding miRNAs and exosome biology, 
therefore, further studies are required to clarify the molecular 
mechanisms and precise involvement of miRNAs in muscle 
development and regeneration.

2. miRNAs and microvesicles

miRNAs are small (~20-30 nucleotides in length), non‑coding 
RNAs that are highly conserved between plants and 
mammals. miRNAs downregulate gene expression post‑tran-
scriptionally and fine-tune target genes in the organs of all 
animals, including humans. Organ-specific miRNAs may 
be important in controlling their development, function and 
disease. Furthermore, a single miRNA targets the expression 
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of multiple genes, whereas one gene is regulated by multiple 
miRNAs (17,18). It has been predicted that miRNAs regulate 
~60% of the protein-coding genes that could be involved in a 
wide range of biological processes (19). The miRNAs miR-1 
and miR-133a are expressed in cardiac and skeletal muscle, 
whereas miR-206/miR-133b is expressed only in skeletal 
muscle (20,21).

Several biological processes, including muscle growth 
and differentiation, are mediated by a collection of specific 
miRNAs. Numerous miRNAs can be released from cells in 
the surrounding areas or into circulation, and appear resistant 
to harsh conditions, such as RNA enzyme degradation (22,23). 
Researchers hypothesize that miRNAs are also involved in 
cell-to-cell communication for the epigenetic regulation of 
recipient cells. miRNAs shuttled between cells appear to be 
preserved and mediated by extracellular vesicles (exosomes 
and MVs), which are emerging as potent genetic transfer 
agents (24,25).

Cells secrete extracellular vesicles  (EVs), MVs and 
exosomes, which are small, membrane-derived particles, 
usually 30-1,000 nm in diameter (26). Exosomes are defined as 
nanosized membrane vesicles with a diameter of 30-100 nm, 
originating from multivesicular endosomes that fuse with the 
plasma membrane and are released by cells into the extracel-
lular environment. They differ from microvesicles, which have 
a diameter of 100-1,000 nm and originate from the plasma 
membrane (27-29).

While the mechanisms of extracellular formation and 
secretion are not well-defined, evidence indicates that such 
vesicles possess the capability of ‘communicating’ with neigh-
boring or distant cells by fusing with the plasma membrane and 
subsequently delivering their cargo, which consists of various 
molecules including proteins, mRNAs, and miRNAs (30,31). 
Moreover, transported miRNAs are capable of targeting 
mRNAs in recipient cells (30,32).

Exosomes are released from the plasma membrane and 
can be identified by specific markers, such as Hsp-60/70 in the 
lumen and CD9, CD63, CD81 and tissue-specific membrane 
proteins on the cell surface (22,33,34).

The data presented in the study by Yang et al (35) suggests 
that NF-κB may regulate exosomal protein expression at a 
remote site via circulation following ischemia-reperfusion 
injuries. Myoblasts and myotubes utilize exosome clustered 
miRNAs as endocrine signals to regulate important signaling 
pathways (e.g., the Wnt signaling pathway) for muscle homeo-
stasis and regeneration. Furthermore, muscle behavior is 
influenced by the release of vesicles from multiple sources, 
such as mesenchymal stem cells. Recent evidence has demon-
strated that miRNAs (e.g., miR-494 and myomiRs) released in 
exosomes from mesenchymal stem cells can promote muscle 
regeneration following injury by enhancing myogenesis and 
angiogenesis (24,36). Furthermore, stress may promote the 
release of exosomes that are carrying a variety of cargoes, 
inducing transfer to other cells in the local environment or 
farther away through systemic circulation (37).

3. miRNAs, microvesicles and muscle growth

Several miRNAs are highly enriched in skeletal muscle, and 
these can influence myocyte proliferation and differentiation. 

The importance of miRNAs in muscle development has been 
established in a previous study involving conditional trans-
genic mice lacking Dicer in myogenic progenitors. The study 
resulted in aberrant muscle differentiation accompanied by 
hyperplasia (38). Furthermore, miR-206 has been identified as 
the most abundant miRNA in adult vertebrate skeletal muscle 
and is known to promote skeletal muscle development and 
differentiation (22,39).

In fact, myotube-derived exosomes promoted the differen-
tiation of target myoblasts by downregulating Cyclin-D1 and 
Myogenin (40). However, it was unclear whether miR-186, 
-329 and -362 were involved, since they were predicted binders 
for the 3'-UTRs of both genes. Intriguingly, using the same 
myoblast model, atrophic myotubes presented decreased intra-
cellular levels, while showing increased exosomal fractions 
of miR-23a (41) and miR-182 (42). This result indicated that 
the exosome load was selectively choosing miRNAs under 
stressful conditions (43).

The upregulation of miR-1, miR-133, and miR-206 levels 
during myoblast differentiation is known to protect myocytes 
against atrophy (44). Interestingly, a mutation in the myostatin 
gene that causes a dramatic muscle increase in textile sheep, 
creates a target site for miR-206 and miR-1. In these sheep, 
myostatin downregulation determines the phenocopy of the 
double muscling Belgian Blue cattle (22).

Muroya et al (45) investigated the effects of grazing on the 
expression of miRNAs in cattle plasma with the hypothesis that 
the plasma miRNA profile reflects the physiological adaptation 
of different tissue types, such as skeletal muscle and adipose 
tissue. The miR-451 levels were elevated in the grazing cattle 
in comparison with the housed cattle. Synchronous miR-451 
expression was also observed in the skeletal muscle, which may 
result in the secretion or intake of miRNAs between circulation 
and tissue cells in grazing cattle. Nakamura et al (36) inves-
tigated the role of mesenchymal stem cell (MSC) exosomes 
in skeletal muscle regeneration. MSC exosomes promoted 
myogenesis and angiogenesis in vitro, and muscle regeneration 
in an in vivo model of muscle injury. Although MSC exosomes 
had low concentrations of muscle‑repair-related cytokines, 
several repair-related miRNAs were identified. The results of 
the study by Nakamura et al (36) suggest that the MSC-derived 
exosomes promoted muscle regeneration by enhancing 
myogenesis and angiogenesis, which is partially mediated by 
miRNAs, such as miR-494.

4. miRNAs, microvesicles and muscle wasting

Numerous previous studies have indicated that miRNA 
expression is involved in skeletal muscle diseases. In muscular 
dystrophy, inflammatory, myopathies, and congenital myopa-
thies rhabdomyosarcomas (muscle tumor), individual miRNAs 
have been shown to cause or alleviate disease. It is known that 
ci-miRs are traceable in plasma or serum and appear resis-
tant to harsh conditions, such as RNase activity. Among the 
vesicle-based carriers, exosomes are emerging as important 
regulators of long-range miRNA shuttling (43,46).

Many miRNAs may potentially be used as biomarkers, 
since they circulate in the blood, are often tissue-specific 
and resistant to degradation due to circulation in protec-
tive exosomes  (47-49). Several miRNAs, including miR-1, 
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-133, -206, and ‑499, involved in muscle homeostasis and 
metabolism were demonstrated to be associated with muscle 
wasting (50-52). Furthermore, miR-30b and -181a are involved 
in the regulation of muscle regeneration and inflamma-
tion (50,53). Those muscle-specific miRNAs may be useful 
biomarkers for the early development of acute muscle wasting 
in critically ill patients (49).

A previous study demonstrated that tumor-derived 
microvesicles induced apoptosis in skeletal muscle cells. This 
proapoptotic activity was mediated by miRNA cargo, miR-21, 
which signals through the toll-like  7 receptor  (TLR7) on 
murine myoblasts to promote cell death (5,54,55). Xu et al (56) 
verified that miRNA-486 decreases FoxO1 protein expression 
and promotes FoxO1 phosphorylation to suppress E3 ubiquitin 
ligases, and thus presents an excellent candidate for future 
studies on the mechanisms of regulation of muscle atrophy 
by miRNAs in cachexia. In addition, miR-206 and miR-21 
were recently described as being important in muscle wasting 
during catabolic conditions (57).

miR-29a, a key regulator of tissue fibrosis, is highly 
expressed in the exosomes and marginal area of a remote 
ischemic conditioning (RIC) group. Even in the differentiated 
C2C12-derived exosomes, miR-29a expression is signifi-
cantly increased under hypoxic conditions (58). Hu et al (59) 
confirmed that age-induced muscle senescence resulted from 
the activation of miR-29 by wnt-3a, which led to suppressed 
expression of the signaling proteins p85α, IGF-1 and B-myb, 
which coordinate to impair the proliferation of the MPCs and 
contribute to muscle atrophy.

In chronic kidney disease (CKD), muscle atrophy is 
a serious complication as it is associated with increased 
morbidity and mortality. Hu et al (60) confirmed that CKD 
suppresses miR-29 in the muscle, which leads to higher expres-
sion of the transcription factor YY-1, thereby suppressing 
myogenesis. However, further studies are required to identify 
whether miR-29 is transported by exosomes and microvesicles 
to affect muscle atrophy.

5. miRNAs, microvesicles and exercise

Exercise stimulates numerous structural, metabolic, and 
morphological adaptations in skeletal muscle. These adapta-
tions are vital in order to maintain human health over a life 
span, and miRNAs constitute a new regulatory component 
that may be important in these adaptations  (61). Since 
miRNAs are incorporated into exosomes, microvesicles, or 
protein complexes, they can be detected in human plasma (62). 
miRNAs in skeletal muscle are modified after physical exer-
cise, especially after acute exercise. miR-1, -133a, and -206 are 
potential novel biomarkers for aerobic exercise capacity since 
they are highly correlated to standard performance parame-
ters (62). Baggish et al (63) demonstrated altered expression of 
specific ci-miRs in response to both acute and chronic exercise 
interventions.

Circulating miRNA-126 increases in response to different 
forms of endurance exercise in healthy adults, however, there 
is no impact on the levels of miRNA-133, a marker for muscle 
damage (64). Nielsen et al (65) examined miRNAs in human 
plasma as a response to acute exercise and chronic endurance 
training with a novel methodological approach. Their data 

indicated that eight ci-miRs (miR-106a, -221, -30b, -151-5p, 
let-7i, miR-146a, -652,-151-3p) were downregulated imme-
diately following acute exercise. Six ci-miRs (miR-338-3p, 
-330-3p, -223, -139-5p, miR-143, -1) were upregulated 1-3 h 
following acute endurance exercise. Basal ci-miRs levels 
were altered following 12 weeks of endurance training, and 
seven ci-miRs (miR-342-3p, let-7d, miR-766, -25, -148a, -185, 
-21) were decreased, while two ci-miRs (miR-185, -21) were 
increased following the training period (65).

Guescini et al (66) investigated muscle tissue release of 
EVs carrying miRNAs in the bloodstream during physical 
exercise. A significant positive correlation was found between 
the aerobic fitness and muscle‑specific miRNAs, and EV 
miR‑133b and -181a-5p were significantly upregulated 
following acute exercise. Therefore, EVs could be a novel 
means for muscle communication involved in muscle remod-
eling and homeostasis.

6. Muscle and organ cross talk through microvesicles

Organ crosstalk may also be achieved by the release of 
miRNAs packaged in exosomes that are transported through 
circulation and delivery to other tissues (67,68). Accumulating 
evidence suggests that skeletal muscle is also involved in the 
crosstalk between other organs (69,70).

In the past year, multiple publications have introduced 
exciting details regarding cell-to-cell communication, and 
exosomes are quickly becoming biomarkers for disease 
progression and cancer recurrence. Research has shown that 
cell-to-cell communication using microvesicles and exosomes, 
produced by MSCs, can be transferred to damaged tissues to 
help repair skeletal muscle injuries (71).

The data confirmed that β-F1-ATPase translation was 
lower in obese individuals compared with healthy weight 
controls and was correlated with miR-127-5p expression. 
Moreover, studies demonstrated that miR-127-5p is present 
in muscle-derived blood exosomes, suggesting their putative 
involvement in intracellular cross-talk (72).

The field of direct cell-to-cell communication, especially 
myocyte to other neighboring cells, is an exciting one (73). 
miRNA enriched exosomes are highly regulated by various 
stressors and disease conditions, and have been implicated 
in skeletal muscle function (19). Therefore, it is possible that 
exercise leads to the release of miRNA-enriched exosomes 
into the circulatory system from working muscles, the heart, 
or adipose tissue to facilitate organ crosstalk and control gene 
expression (67).

Muscles and kidneys can crosstalk with the slow progres-
sion of CKD. The mechanisms for this interaction involve 
muscle secretomes, consisting of a variety of growth factors 
and cytokines that are expressed and secreted by skeletal 
muscle  (69). Akt1-mediated fast/glycolytic skeletal muscle 
growth reversed muscle wasting and reduced renal damage in 
a UUO model (74). However, it is unclear if microvesicles and 
exosomes mediate muscle-kidney crosstalk.

7. Conclusion

The emergence of the exosome field provides an exciting 
opportunity to further understand cell-cell communication in 
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skeletal muscle and muscle-organ crosstalk. miRNAs trans-
ported via extracellular vesicles may mediate skeletal muscle 
development, regeneration, function and diseases. miRNAs are 
potential biomarkers that may be powerful and exciting tools 
for the diagnosis and treatment of skeletal muscle diseases in 
the future.
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