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A B S T R A C T

The first case of novel Coronavirus (COVID-19) was reported in December 2019 in Wuhan City, China and led
to an international outbreak. This virus causes serious respiratory illness and affects several other organs of
the body differently for different patient. Worldwide, several waves of this infection have been reported, and
researchers/doctors are working hard to develop novel solutions for the COVID diagnosis. Imaging and vision-
based techniques are widely explored for the prediction of COVID-19; however, COVID infection percentage
estimation is under explored. In this work, we propose a novel framework for the estimation of COVID-19
infection percentage based on deep learning techniques. The proposed network utilizes the features from
vision transformers and CNN (Convolutional Neural Networks), specifically EfficientNet-B7. The features of
both are fused together for preparing an information-rich feature vector that contributes to a more precise
estimation of infection percentage. We evaluate our model on the Per-COVID-19 dataset (Bougourzi et al.,
2021b) which comprises labeled CT data of COVID-19 patients. For the evaluation of the model on this dataset,
we employ the most widely-used slice-level metrics, i.e., Pearson correlation coefficient (PC), Mean absolute
error (MAE), and Root mean square error (RMSE). The network outperforms the other state-of-the-art methods
and achieves 0.9886 ± 0.009, 1.23 ± 0.378, and 3.12 ± 1.56, PC, MAE, and RMSE, respectively, using a 5-fold
cross-validation technique. In addition, the overall average difference in the actual and predicted infection
percentage is observed to be < 2%. In conclusion, the detailed experimental results reveal the robustness and
efficiency of the proposed network.
1. Introduction

Coronavirus, declared a pandemic in 2020 by the World Health
Organization (WHO), has critically impacted the life of each human
being in the world. Starting from December 2019, the world has seen
continued growth in the spread of the life-threatening disease COVID
(Coronavirus Disease), with around 457 million cases worldwide and
6.03 million deaths as of March 2022 (WHO, 0000). One primary rea-
son behind the spread of this infectious disease is the lack of required
testing infrastructure (medical kits) to cover the target population. A
fundamental approach to stop the outspread of COVID-19 and improve
the efficiency of medical treatment is the early diagnosis of the disease.
Presently, the Reverse Transcription Polymerase Chain Reaction (RT-
PCR) test is used everywhere to identify/diagnose the patient with
COVID-19. Even though the RT-PCR test has good accuracy, it may
require 6–24 h to determine the results and is expensive. This period is
very long in the present scenario, where the disease spread rate is very
high. As a result, an infected person may infect other persons during
testing time period.
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Hence, more efficient and accurate techniques are required to re-
duce the time period and the related consequences such as high spread
rate, mortality rate, etc. Several research techniques have been pro-
posed to identify infected persons using alternative methods such as
X-ray scans, and CT scans in the recent past (Bougourzi, Contino,
Distante and Taleb-Ahmed, 2021; Lassau et al., 2021; Li, Yang, Liang,
& Wu, 2021; Song et al., 2021). Among these techniques, Computed to-
mography (CT scans) has emerged as a powerful tool to detect/diagnose
the disease with the required efficiency. Using CT scans for the COVID
diagnosis is promising as the CT scans devices have wider availability,
great efficiency, and can generate results in less time. Two or three
days scans of a person with symptoms have been utilized to early detect
the presence of COVID effectively (Chua et al., 2020). However, expert
medical proficiency is required to accurately identify the presence of
disease in the captured CT scans of an infected person. The problem
gets resolved with the introduction of AI (Artificial Intelligence) based
techniques to automatically identify the disease from the given set of
CT scan images.
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In recent years, deep learning approaches have shown broad ap-
plicability in medical and healthcare domains, including cancer detec-
tion, skin lesions classification, eyes disease identification and many
more (Goceri, 2021; Hsu & Tseng, 2022; Ma, Kumar, Khetan, Sen,
& Bhende, 2022; Shimazaki et al., 2022). Considering this, several
researchers have assessed the applicability of computer vision and
machine learning techniques on the target classification task (infection
detection from CT scans images). From the experimental evaluation of
the studies, it is observed that the deep learning techniques, specifically
Convolutional Neural Networks (CNNs) based approaches, are the right
solution for the COVID-19 detection and segmentation tasks. However,
the majority of existing benchmark techniques have majorly focused on
utilizing CT scan images for identification (the presence or absence) or
segmentation of the COVID infection in a person. Moreover, it has been
identified that a few research studies have focused on analyzing and
examining several critical aspects related to COVID infection, such as
analyzing the evolution of infection in patients, analyzing the impact
of a particular treatment on patients’ health etc. In this context, the
present study involves formulating a regression-based research problem
to estimate the percentage of COVID infection in patients from their
respective CT scans.

In contrast to the several existing benchmark COVID classification
techniques, we aim to propose a fully automatic deep learning and CT
scan-based approach to estimate the evolution and severity of COVID
infection in patients. This kind of information will benefit medical
practitioners in many ways, such as identifying patients with critical
needs, treatment planning activities, progress monitoring, evolution
study, and many more. The primary research contributions of the work
are highlighted as follows. It presents an effective and robust method
for predicting the COVID-19 infection percentage. In recent years, deep
learning techniques have been widely employed and proven effective
in the medical domain for the automated detection and diagnosis of
diseases. In the vision task, both EfficientNet (Tan & Le, 2019) and
Vision Transformer (ViT) (Dosovitskiy et al., 2020) are considered
as computationally efficient and powerful. So, utilizing the benefits
of both, this work embeds the features of EfficientNet-B7 and Vision
Transformer to develop an automated COVID-19 diagnostic system. The
proposed model has been evaluated using 5-fold cross-validation. To
validate the performance of the proposed method, we compare the
evaluated results with the other state-of-the-art methods and observe
that our proposed method achieves state-of-the-art performance on the
Per-COVID-19 dataset for all the considered evaluation metrics.

The remainder of this paper is organized as follows. Section 2
introduces the related work, Section 3 explains the proposed method-
ology. Section 4 presents the experimental results and discussion that
includes dataset description, performance metrics, loss function and
experimental results. Finally, Section 5 concludes the paper.

2. Related work

CT scan images have greatly helped radiologists worldwide in early
diagnosing COVID infection. This section entails providing an in-depth
explanation of the state-of-the-art research utilizing CT scan images and
deep learning for COVID detection. At a broader level, these research
studies can be classified into two types (a) COVID Detection (Bougourzi,
Contino et al., 2021; Lassau et al., 2021; Li et al., 2021; Song et al.,
2021; Ye et al., 2022) (b) COVID Segmentation (Amara et al., 2022;
Bose, Chowdhury, Das, & Maulik, 2022; Elharrouss, Subramanian, &
Al-Maadeed, 2022; Fan et al., 2020; Hu et al., 2022; Stefano & Comelli,
2021). The research studies falling into the aforementioned categories
are explained in the subsequent paragraph.

A sufficient amount of labeled data is a prerequisite for building
an efficient deep learning-based solution to a given problem. In this
context, several research studies have open-sourced their datasets to
help the research community to design better solutions for accurate
diagnosis. Morozov et al. (2020) provided a dataset containing CT scans
2

(anonymous) images. In He (2020), the researcher proposed to address
two major problems pertaining to the COVID-19 diagnosis domain.
Firstly, the authors provided an open-source CT scan dataset for the tar-
get domain. Secondly, a transfer learning-based solution is proposed to
achieve high diagnosis efficiency (achieved 94% accuracy). Polsinelli,
Cinque, and Placidi (2020) introduced a lighter architecture (CNN
based) for COVID-19 detection from Chest CT scans. The results com-
parison of the approach shows that the developed approach achieved
notable improvements (in terms of both accuracy and time) compared
to other complex architecture-based classification approaches. Zheng
et al. (2020) developed a DL model for automatic detection of COVID-
19 from the 3D CT volumes. Initially, the method involved imple-
menting Unet for the lung region segmentation. Followed by this,
a three-dimensional neural architecture is employed to predict the
COVID-19 infection probability. In a similar context, Wang et al. (2020)
employed Unet and 3D deep neural networks for segmentation and
infection identification tasks. The approach involved integrating the
activation regions in the supervised network & connected components
for the localization of the COVID-19 lesions.

Serte and Demirel (2021) developed an artificial intelligence based
classification approach to discriminate between CT scans with COVID
infection and regular scans. The authors employed ResNet-50 in amal-
gamation with the majority voting for the classification task and
achieved 96% classification accuracy. Zhao et al. (2021) performed
a comparative analysis of several existing pre-trained models on the
CT scans based COVID classification task. The authors aim to use the
out-of-the-field knowledge of the existing pre-trained models on the
target problem (CT scans based classification). From the experimental
evaluation, the authors stated that the pre-trained Image net model
outperforms the existing state-of-the-art solutions. From the exist-
ing literature survey, it has been observed that CNN variations have
been widely adopted in the COVID-19 infection prediction domain.
Considering the vast popularity, Lacerda, Barros, Albuquerque, and
Conci (2021) studied the effect of network hyperparameters (backbone
network, learning rate, inception modules, number of neurons) on CNN
performance. The performance estimation is made by creating architec-
tures with different values of the aforementioned hyperparameters. In
2022, Ter-Sarkisov (2022) proposed a two-stage (regional approach)
framework to predict COVID-19. The first stage implements masked
R-CNN to detect lesion types in CT scan images. The fused data of
detections from the previous step is used for classifying the input
image in the next stage. In Basu, Sheikh, Cuevas, and Sarkar (2022),
the authors proposed an end-to-end deep learning pipeline (involving
feature extraction, selection, and model development) for the infection
identification task. The authors combined several advanced techniques
such as CNN (ResNet, Inception, DenseNet), Harmony search and hill
climbing for the target task. The performance evaluation on different
datasets depicts that the model outperforms existing approaches.

Furthermore, to have an in-depth analysis, a comparative summary
of the significant research studies in the COVID-19 detection and per-
centage estimation domain is presented in Table 1. From the exhaustive
literature analysis, we found that majority of the research approaches
have focused on segmentation and detection of COVID-19 in CT scan
images. However, an important research direction on estimating the
COVID infection percentage from CT scan images and analyzing its
evolution is still under-explored. The current research study focused on
exploring this direction and proposed a novel technique for COVID-19
percentage infection estimation using CT scan images.

3. Methodology

The architecture of the proposed EffViT-COVID network is based on
the two most powerful sub-networks, i.e., EfficientNet-B7 (Tan & Le,
2019) and Vision Transformer (Dosovitskiy et al., 2020) . The overall

framework of the network is presented in Fig. 1.
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Table 1
Comparative summary of major research studies in the COVID-19 prediction and percentage estimation domain.

Authors Research approach/Techniques used Task/Dataset Findings/Results

Polsinelli et al.
(2020)

Proposed a light CNN (SqueezeNet) approach to detect
COVID-19 from CT scans.

Classification task (a) The approach results significant enhancement over
complex CNN architectural designs.
(b) The need for GPU acceleration is removed by using
the light CNN architecture.

Serte and
Demirel (2021)

(a) Developed an artificial intelligence system to detect
COVID-19 from 3D CT scan volume.
(b) A fusion mechanism amalgamating image level
predictions to 3D CT volume is employed.

Classification task using
the fine-tuning strategy.

The approach achieved 96% area under curve value for
the target detection task.

Zhao, Jiang, and
Qiu (2021)

Implemented transfer learning to provide a generalized
solution for COVID detection task.

COVID-19 Classification
task

(a) The authors signified the impact of various
initialization parameters and limited dataset availability
on the model results.
(b) The pre-trained model on ImageNet21k achieved best
classification accuracy (99.2%).

Ortiz, Rojas,
Valenzuela,
Herrera, and
Rojas (2022)

Three phase strategy combining CNN DenseNet-161 and
Clustering for the identification, and severity estimation.

Percentage Estimation The evaluation results obtained using the approach
implemented in the research are listed as follows:
PC: 0.95
MAE: 5.14
RMSE: 8.47

Chaudhary,
Yang, and Qiang
(2022)

Amalgamation of Swin transformer (feature extraction)
and multi-layer perceptron (regression).

COVID-19 percentage
estimation from CT-scans

The evaluation results obtained using the approach
implemented in the research are listed as follows:
PC: 0.9490, MAE: 4.5042, RMSE: 8.0964

Napoli Spatafora,
Ortis, and
Battiato (2022)

Authors integrated Mixup Data augmentation module with
Inception-v3 model for improved regression performance.

Percentage estimation from
CT images

The augmentation techniques helped achieving the
desired prediction performance.

Tricarico,
Chaudhry,
Fiandrotti, and
Grangetto (2022)

Proposed feature regularization based deep regression
approach for the severity prediction task.

Percentage estimation from
CT scan.

The approach achieved significant improvements over
baseline by generating 4.912 MAE.

Ter-Sarkisov
(2022)

Two-stage workflow architecture is proposed to detect
COVID. The first phase involves identifying the lesion
types using R-CNN and then, the fused data is used for
classification in the next phase.

Dataset consisting of 3000
images is used for the
COVID detection task.

(a) The model effectiveness is validated on the basis of
various evaluation measures such as sensitivity, F1-score
and accuracy.
(b) The regional predictions detected by first stage have
contributed to the improved prediction results.
Fig. 1. Overall architecture of the proposed Network that comprises of two paths for feature extraction: one is EfficientNet-B7 and the other is Vision Transformer.
The first path of the network, i.e., EfficientNet-B7, extracts the
features from the training set of the considered COVID19 dataset.
EfficientNet-B7 comprises seven blocks and each block has different
number of Mobile inverted Bottleneck Convolution (MBConv) lay-
ers (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018) with different
filter size (3 × 3 or 5 × 5), shown in Fig. 2. A number associated with
3

each MBConv layer in Fig. 2 denotes the ReLU non-linearity, i.e., ReLU1
and ReLU6. ReLU6 makes the function linear for negative values and
also in the range of [0,6]. The initial range of ReLU is [0, inf), this
may blow up the activation and explode the gradient. To deal with
this problem ReLU6 is used to clip the units at 6. In the formulation,
this is equivalent to imagining that each ReLU unit consists of only 6
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Fig. 2. Overall Architecture of EfficientNet-B7, consisting of seven blocks (B1 to B7)
where MBConv (mobile inverted bottleneck convolution) is the main component of
each block.

replicated bias-shifted Bernoulli units, rather than an infinite amount.
The modified ReLU is represented as:

𝑦 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥, 0), 6) (1)

Traditionally, the most common way for scaling convolutional
neural networks is to scale up by any of one dimension; however,
EfficientNet-B7 uses a simple yet effective compound scaling method
(Eq. (2)) that scale all the dimension of the network in a balanced
manner, i.e., depth 𝑑, width 𝑤, and resolution 𝑟.

𝑑 = 𝛼𝜔

𝑤 = 𝛽𝜔

𝑟 = 𝛾𝜔, (2)

where 𝛼.𝛽2.𝛾2 ≈ 2 and 𝛼, 𝛽, 𝛾 ≥ 1, 𝜔 is the compound coefficient deter-
mining the available extra resources, 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 are the constants that
manage the distribution of these resources across the three dimensions
of the network.

In EfficientNet-B7, along with the squeeze and excitation opti-
mization, the main component of the network is a Mobile Inverted
Bottleneck Convolution (MBConv) (Sandler et al., 2018). The sub-
blocks of MBConv are presented in Fig. 3. Initially, the input activation
maps are expanded using 1 × 1 convolution, increasing the depth of
the output feature maps. Further, the 3 × 3 depth-wise convolution
followed by 1 × 1 convolution performs the dimensionality reduction
that reduces the number of network parameters and channels in the
output feature map. The skip connections present in the network reduce
the number of operations as well as the model size. In this work,
ImageNet (Deng et al., 2009) weights of EfficientNet-B7 are kept frozen
for all the layers that support the encoder to learn the features from the
training data efficiently. 𝑓𝐸 is the output feature vector obtained after
the training process.

The second path of the network utilizes the benefits of transformers.
Transformers have gained immense popularity and become state-of-
the-art in many NLP tasks. The idea of its success is pre-trained on a
4

Fig. 3. MBConv block of EfficientNet architecture.

large dataset and then fine-tuned on the smaller one, i.e., specific to the
task. Transformers are computationally efficient and scalable without
compromising performance. Vision transformer (ViT) is proposed as
an extension of standard transformer for the image classification task;
however, in computer vision, CNN networks still remain dominant (He,
Zhang, Ren, & Sun, 2015). Here, we extract the feature map from the
vision transformer and convolutional architecture to utilize the benefits
of both transformer and CNN.

In general, transformers are based on the encoder–decoder architec-
ture and receive a 1D sequence of tokens as input, but for the image
classification task, a 2D image needs to be reshaped first, such that the
input image 𝑥 flattened and transformed into a sequence of 2D patches
𝑥𝑝 ∈ 𝑅𝑁×(𝑃 2 .𝐶), where 𝑥 ∈ 𝑅𝐻×𝑊 ×𝐶 is the height and width of
original image and C represents the number of channels, (𝑃 , 𝑃 ) is the
image patch resolution, and the length of input sequence (𝑥1, 𝑥2,… , 𝑥𝑁 )
for the transformer or the total number of patches 𝑁 is calculated
as 𝐻𝑊 ∕𝑃 2. For performing classification, vision transformers use the
encoder module that helps in the mapping of image patches sequence
and the semantic label. In addition, the idea of attention mechanism
is to employ attention over the different regions of the image and
integrate the gathered information across the entire image. In terms of
performance, it works best in case of a large size dataset, so to achieve
the best out of ViT, pre-trained weights are used and the model is then
trained on our COVID dataset.

The Vision Transformer comprises three parts: an embedding layer,
an encoder, and a final head classifier. The classifier is used for the final
prediction, but here only the final feature vector is noted and embedded
into the network. The architecture of the Vision Transformer module
used in this work is presented in Fig. 4. The detailed description of
each part of ViT is discussed as follows:

Linear Embedding Layer : With the use of learned embedding matrix
𝐸𝑚, the sequence of patches is linearly projected into a vector of the
model dimension 𝑑. The embedding layer then concatenates all the
embedded representations along with the learnable token 𝑥𝑐𝑙𝑎𝑠𝑠 which
helps in the classification task. Also, an additional information about
the patch position is encoded and linearly added to the representations
or the sequence of patches so as to keep track of the spatial position of
the patches in the input image. Based on the attention mechanism, the
positional embedding can be calculated as:

𝐸𝑚𝑝𝑜𝑠(𝑝𝑜𝑠,2𝑖) = sin

(

𝑝𝑜𝑠
2𝑖

)

(3)

10 000 𝑑
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Fig. 4. Architecture of Vision Transformer module.
Fig. 5. Architecture of Transform Encoder and its internal blocks.
𝐸𝑚𝑝𝑜𝑠(𝑝𝑜𝑠,2𝑖+1) = cos

(

𝑝𝑜𝑠

10 000
2𝑖
𝑑

)

(4)

The joint embedding sequence of patches with 𝑧0 token can be
represented as:

𝑧0 =
[

𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝1𝐸𝑚; 𝑥𝑝2𝐸𝑚;… ; 𝑥𝑝𝑁𝐸𝑚
]

+ 𝐸𝑚𝑝𝑜𝑠 (5)

where the patch embedding 𝐸𝑚 ∈ R(𝑃 2 .𝐶)×𝑑 , the positional embedding
𝐸𝑚𝑝𝑜𝑠 ∈ R(𝑁+1)×𝑑 , and 𝑥𝑐𝑙𝑎𝑠𝑠 is class label and 𝑥𝑝𝑁 are the image
patches.

Encoder : The resulting sequence from the embedding layer is passed
to the transformer encoder. There are 𝐿 identical layers in the encoder,
5

and each layer has two major components, one is a multi-head self-
attention block (MSA), and the other is a fully connected feed-forward
dense block (MLP), as shown in Fig. 5. MSA is the central block
of the transformer, and its role is to determine the relationship and
importance of single patch embedding with other embeddings within
the sequence. It splits the input into several heads and, based on the
previous operation, computes the scaled dot product attention for all
the heads individually; that is, each head is learning a different level of
self-attention. Later, the output of all the attention heads is concate-
nated and fed into the MLP layer consisting of two fully connected
layers and a GELU (Hendrycks & Gimpel, 2016) non-linearity. Both
MSA (Eq. (6)) and MLP (Eq. (7)) layers are followed by LayerNorm (LN)
and after each block residual connections are applied, as presented in
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Fig. 6. Some Sample CT Images of COVID-19 patients with infection percentage: 0%, 8%, 16%, 48%, 65%, 𝑎𝑛𝑑 85%, respectively (starting from first row, left to right) Bougourzi et al.
(2021).
Fig. 7. Boxplot of the 5-fold cross validation results showing MSE, RMSE, subject-wise MSE, subject-wise RMSE.
Fig. 5. The final feature map obtained from the transformer encoder be
denoted as 𝑓𝑉 .

𝑧′𝑙 = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1, 𝑙 = 1, 2,… , 𝐿 (6)

𝑧𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝑙)) + 𝑧′𝑙 , 𝑙 = 1, 2,… , 𝐿 (7)

The feature vectors from both the module or path of the network
are added and a single feature vector 𝐹𝐸𝑉 is thus attained (Eq. (8)).
Further, a dropout of 0.3 is applied and the output is fed into a dense
layer followed by Leaky ReLU and finally a linear layer to achieve the
output probability.

𝐹𝐸𝑉 = 𝑓𝐸 + 𝑓𝑉 (8)
6

First, the dataset images are resized to 244 × 244 at the time of
training and the AdamW optimizer (Loshchilov & Hutter, 2017) is used
with an initial learning rate of exp(−5) and weight decay of 0.01. As
part of data augmentation, we adopted random cropping of resolution
224 × 224 and random rotation with an angle in the range of [−10, 10].
Initially, the proposed network is trained for 30 epochs with initial
learning rate exp(−5), a learning rate decay of 0.1 after every 10 epochs
until the loss converges.

We implemented the proposed architecture using the PyTorch li-
braries (Paszke et al., 2019) and all the experiments are conducted on
a machine with NVIDIA TitanX 12 GB GPU, Intel core 8th generation
i7 and 16 GB RAM.
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Fig. 8. Quantitative performance analysis by the different methods in terms of MAE,
RMSE, Subject-wise MAE and Subject-wise RMSE.

4. Experimental results and discussion

4.1. Dataset description

The dataset comprises a total of 183 CT scans of Coronavirus
infected patients. The data have CT scans of both male and female
COVID-19 patients of different age groups ranging from 27–70 years.
As reported in Bougourzi, Distante et al. (2021) the COVID-19 CT scans
were collected from two hospitals of Algeria from June to December
2020. Each CT-scan comprises around 40–70 slices, and there are 150
CT-scans taken with Hitachi ECLOS CT-Scanner having 5 mm slice
thickness and 33 CT-scans of 3 mm slice thickness with Toshiba Alexion
CT-Scanner collected from Hakim Saidane Biskra and Ziouch Mohamed
Tolga hospital, respectively. Based on the ratio of infected lung area
and the overall lung size, two radiologists estimated the percentage of
COVID-19 infection. There are 3986 labeled slices, which are converted
into PNG followed by manual cropping of the lung region. Furthermore,
the dataset is divided into five patient-independent folds, i.e., no inter-
fold similarity in patient slices. Along with that, the fold slices have
an almost similar distribution. Some of the sample CT slices from the
dataset are shown in Fig. 6.

4.2. Performance metrics

In order to quantitatively evaluate the capability and effectiveness
of the proposed approach and demonstrating the comparative analysis
with other state-of-the-art methods, we employ the most widely-used
slice-level metrics, including Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Pearson Correlation coefficient (PC), can be
defined as:

𝑀𝐴𝐸 = 1
𝑚

𝑚
∑

𝑗=1
|𝑥𝑗 − 𝑥𝑗 | (9)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑚

𝑚
∑

𝑗=1
(𝑥𝑗 − 𝑥𝑗 )2 (10)

𝑃𝐶 =

∑𝑚
𝑗=1(𝑥𝑗 − 𝑥𝑗 )(𝑥𝑗 − 𝑥𝑗 )

√

∑𝑚 (𝑥 − 𝑥 )2
√

∑𝑚 (𝑥 − 𝑥 )2
(11)
7

𝑗=1 𝑗 𝑗 𝑗=1 𝑗 𝑗
where, 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑚) are the test data ground truth of COVID-19
percentages for 𝑚 number of slices and �̂� = (𝑥1, 𝑥2,… , 𝑥𝑚) are their
corresponding estimations.

Moreover, we also compute the subject-wise metrics, i.e., 𝑀𝐴𝐸𝑠𝑢𝑏𝑗 ,
𝑅𝑀𝑆𝐸𝑠𝑢𝑏𝑗 , and 𝑃𝐶𝑠𝑢𝑏𝑗 , and can be defined as:

𝑀𝐴𝐸𝑠𝑢𝑏𝑗 =
1
𝑠

𝑠
∑

𝑗=1
|𝑥𝑠𝑗 − ̂𝑥𝑠𝑗 | (12)

𝑅𝑀𝑆𝐸𝑠𝑢𝑏𝑗 =

√

√

√

√

1
𝑠

𝑠
∑

𝑗=1
(𝑥𝑠𝑗 − ̂𝑥𝑠𝑗 )

2 (13)

𝑃𝐶𝑠𝑢𝑏𝑗 =

∑𝑠
𝑗=1(𝑥𝑠𝑗 − 𝑥𝑠𝑗 )( ̂𝑥𝑠𝑗 − ̂𝑥𝑠𝑗 )

√

∑𝑠
𝑗=1(𝑥𝑠𝑗 − 𝑥𝑠𝑗 )

2
√

∑𝑠
𝑗=1( ̂𝑥𝑠𝑗 − ̂𝑥𝑠𝑗 )

2
(14)

where, 𝑋𝑠 = (𝑥𝑠1 , 𝑥𝑠2 ,… , 𝑥𝑠𝑚 ) are the test data ground truth of COVID-
19 infection percentages of the slices of each patient’s CT scan. �̂�𝑠 =
( ̂𝑥𝑠1 , ̂𝑥𝑠2 ,… , ̂𝑥𝑠𝑚 ) are their corresponding patient-level estimations.

4.3. Loss function

Mean Square Error (MSE) is the simplest and most widely used loss
function. It is the average of the squared difference between predictions
and the ground truth across the whole dataset. As the difference is
squared for every data point, MSE will never be negative. However,
squaring of difference magnifies the error, and this is one of the major
drawbacks of MSE. MSE for 𝑁 batch size is defined as:

𝐿𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑗=1
(𝑥𝑗 − 𝑥𝑗 )2 (15)

Mean Absolute Error (MAE) covers the drawback of MSE by taking
the absolute value of the difference between predictions and ground
truth. Thus, all the errors will be weighted on the same linear scale.
But it fails in the case of outliers prediction because the more significant
errors will be weighted the same as smaller ones.

For learning outliers, MSE performs well, whereas for ignoring, MAE
is preferred. To utilize the benefits of both, we used a custom loss
function, ‘Huber Loss’ (Huber, 1992), that balances the MSE and MAE
together. MAE and dynamic Huber Loss can be defined as:

𝐿𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑗=1
|𝑥𝑗 − 𝑥𝑗 | (16)

𝐿𝐻𝑢𝑏𝑒𝑟 =
1
𝑁

𝑁
∑

𝑗=1
𝑧𝑗 (17)

𝑧𝑗 =

⎧

⎪

⎨

⎪

⎩

1
2 (𝑥𝑗 − 𝑥𝑗 )2 𝑓𝑜𝑟|𝑥𝑗 − 𝑥𝑗 | ≤ 𝛿

𝛿|𝑥𝑗 − 𝑥𝑗 | −
1
2 𝛿

2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(18)

where 𝑁 is the batch size, 𝛿 is the controlling hyper-parameter that
decreasing from 15 to 1 in the training phase, 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑁 ) is
the ground truth COVID-19 percentages, and �̂� = (�̂�1, �̂�2,… , �̂�𝑁 ) is the
estimated percentages.

If error is less than 𝛿, use MSE, and MAE, otherwise. Let say, 𝛿 = 1,
so, for the data points having loss value greater than 1, Huber loss
magnifies the loss values until they are greater than 1, and when loss
values of these data points drop down below 1, it maintains a quadratic
function near the center.

4.4. Experiment results

This section presents the performance of the proposed method and
the state-of-the-art methods (Bougourzi, Distante et al., 2021; Huang,
Liu, Van Der Maaten, & Weinberger, 2017; Xie, Girshick, Dollár, Tu, &
He, 2017; Zhang, Zhou, Lin, & Sun, 2018) on the COVID-19 test set. The



Expert Systems With Applications 213 (2023) 118939J. Chauhan and J. Bedi
Fig. 9. Average inference time in seconds for the proposed approach and the state-of-the-art methods.
Fig. 10. Image-wise absolute error analysis.
Table 2
5-fold cross-validation results and the overall average performance by the proposed
EffViT model.

Fold 𝑃𝐶 ↑ 𝑀𝐴𝐸 ↓ 𝑅𝑀𝑆𝐸 ↓ 𝑃𝐶𝑠𝑢𝑏𝑗 ↑ 𝑀𝐴𝐸𝑠𝑢𝑏𝑗 ↓ 𝑅𝑀𝑆𝐸𝑠𝑢𝑏𝑗 ↓

Fold 1 0.9924 1.38 2.64 0.9951 1.86 2.25
Fold 2 0.9781 1.71 4.87 0.9861 2.53 4.47
Fold 3 0.9795 1.36 4.68 0.9712 2.39 6.50
Fold 4 0.9957 0.82 1.70 0.9976 1.17 1.55
Fold 5 0.9974 0.86 1.70 0.9987 1.26 1.49
Mean 0.9886 1.23 3.12 0.9897 1.83 3.25
STD 0.0092 0.378 1.56 0.0115 0.608 2.18

results are presented in Tables 2 and 3. Here, we have adopted the five-
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fold cross-validation techniques, and the results on all five folds by the
proposed method are listed in Table 2. It is to be noted that folds 2 and
3 are the most challenging ones as compared to folds 1, 4, and 5. This
is probably due to the presence of more challenging patients data in
these folds. Fig. 7 present the boxplot of the 5-fold cross validation, and
Table 2 presents the evaluation results for each validation fold in more
detail. We can observe that overall PC varies from 0.9924 to 0.9974,
the MSE varies from 0.82 to 1.71, and RMSE varies from 1.70 to 4.87.

Compared with the benchmark percentage estimation approaches
(Bougourzi, Distante et al., 2021), our proposed approach performs
better for all considered performance metrics. Our method outperforms
the best performing method reported by Bougourzi, Distante et al.
(2021), i.e., Inception-V3 by 5.21% in terms of PC, and a difference
of 3.87 and 6.13 is observed, in MAE and RMSE, respectively. More-
over, for the subject-wise results, our methods show comparable better
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Fig. 11. Qualitative results by the proposed EffViT method on some of the CT Images from test set of COVID-19 dataset (Bougourzi, Distante et al., 2021). Starting from first
row, left to right; actual: 60% pred: 60%, actual: 38% pred: 39%, actual: 85% pred: 87%, actual: 26% pred: 26%, actual: 90% pred: 91%, actual: 5% pred: 5%, respectively.
Fig. 12. GradCAM maps of some slices of a patient’s CT scan.

Table 3
Overall average performance by the proposed EffViT method and the state-of-the-art
methods.

Methods 𝑃𝐶 ↑ 𝑀𝐴𝐸 ↓ 𝑅𝑀𝑆𝐸 ↓ 𝑃𝐶𝑠𝑢𝑏𝑗 ↑ 𝑀𝐴𝐸𝑠𝑢𝑏𝑗 ↓ 𝑅𝑀𝑆𝐸𝑠𝑢𝑏𝑗 ↓

ResneXt-50 0.9207 5.29 10.10 0.9532 3.95 7.14
DenseNet-161 0.9341 5.23 9.42 0.9582 4.07 7.00
Inception-V3 0.9365 5.10 9.25 0.9603 4.01 6.79
MobileNetV3-S 0.9374 6.01 9.45 0.9540 4.16 7.06
SuffleNet 0.9409 5.46 8.92 0.9613 3.98 6.37
MobileNetV3-L 0.9427 5.95 9.59 0.9598 3.97 6.49
GoogleNet 0.9438 5.93 9.63 0.9577 4.55 6.99
RegNet_y_1_6gf 0.9442 6.02 9.72 0.9598 4.18 6.72
RegNet_x_1_6gf 0.9443 5.17 8.67 0.9590 4.14 6.76
Ours 0.9886 1.23 3.12 0.9897 1.83 3.25
9

performance, an improvement of 2.94% and deduction of 2.18/3.54 is
observed in terms of 𝑃𝐶𝑠𝑢𝑏𝑗 and 𝑀𝐴𝐸𝑠𝑢𝑏𝑗∕𝑅𝑀𝑆𝐸𝑠𝑢𝑏𝑗 , respectively. The
performance difference can be visualized from Fig. 8.

We report the average inference of the proposed method and other
approaches in Fig. 9. It can be observed that, the average inference
time for the percentage prediction task using the proposed method
is less than that of second best performing method 𝑅𝑒𝑔𝑁𝑒𝑡_𝑥_1_6𝑔𝑓
and overall, the average inference time for these different methods is
observed to be within 1.56 s–5.42 s.

Further, we analyze the image-wise results and calculated the abso-
lute error of actual vs predicted percentage value for each image of the
dataset, shown in Fig. 10. We observed that almost 83% of the images
are under error value of 2 and only 6% images have error value greater
than 5.

To more comprehensively interpret the effectiveness and signifi-
cance of the proposed method, we analyzed the qualitative results and
observed that there is not much variation in the actual and predicted
infection percentage for the majority of the CT images of patients in
the COVID-19 dataset. The overall average difference in the actual and
predicted percentage is 1.77. The Qualitative results of the proposed
method on some sample CT images from the test set are presented
in Fig. 11. From Fig. 11, it can be noted that the model effectively
predicts the percentage of COVID-19 infection even when the infection
percentage of COVID-19 is at higher side, i.e., 90%, or it is low, i.e., 5%.
Based on the proposed network, we also generated the GradCAM maps
for some slices of a patient’s CT scan. The Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) provides visual
explanations that showcase how the CNN is internally learning. The
visualization presented in Fig. 12 shows the active areas or regions
where the model is focusing. From the maps, it can be observed that
the model is mainly focusing on the right side internal region and the
left upper and lower lobe. Also, based on the ground truth and visual
inspection of the selected slices, the COVID-19 symptoms are mainly
present in the same region as displayed in GradCAM maps.

Further, we extended the quantitative and qualitative analysis and
noted that out of 3986 slices or CT images, only 31 images are there
with a predicted percentage difference greater than 10. However, based
on the visual examination of a patient’s CT images, we observed
a difference in the appearance of the lungs in different slices with
the same infection percentage. In Fig. 13, for all three images, the
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Fig. 13. Results on some sample CT Images of a COVID-19 patients with actual infection percentage 25% for all the three images and predicted as 27%, 61%, 64%, respectively.
Fig. 14. Results on some sample CT Images of a COVID-19 patients with actual infection percentage 2% for all the three images and predicted as 3%, 4%, 27%, respectively.
Bounding box and arrows represents the region with ground glass opacity (GGO).
Table 4
Overall average performance by the proposed EffViT method and the state-of-the-art
methods for the noisy data.

Methods 𝑃𝐶 ↑ 𝑀𝐴𝐸 ↓ 𝑅𝑀𝑆𝐸 ↓

ResneXt-50 0.8410 10.31 19.15
DenseNet-161 0.8435 10.02 18.93
Inception-V3 0.8542 9.87 17.02
MobileNetV3-S 0.8496 9.66 16.78
SuffelNet 0.8679 9.59 16.55
MobileNetV3-L 0.8722 9.34 15.93
GoogleNet 0.8774 9.01 15.75
RegNet_y_1_6gf 0.8845 8.98 14.98
RegNet_x_1_6gf 0.8936 8.85 13.54
Ours 0.9568 4.01 6.35

actual infection percentage is 25%, and the predicted percentage is
27%, 61%, 64%, respectively. Similarly, in Fig. 14, for all three images,
the actual infection percentage is 2%, and the predicted percentage
is 3%, 4%, 27%, respectively. When examined closely, different levels
of ground glass opacity (GGO) (Cozzi et al., 2021) can be noted in
different slices of CT scan with the same infection percentage. Ground
glass opacity is defined on CT scans as a hazy gray area, with increased
density inside the lungs and preserves the margins of pulmonary ves-
sels. Research (Cozzi et al., 2021; Shi et al., 2020; Wang et al., 2020)
shows that in the case of COVID-19 pneumonia, GGO is the most
common abnormality present in the CT scans of patients. In general,
the CT scan of a healthy chest appears black, whereas the haze gray
region on the lung indicates that the air spaces inside the lungs are
partially filled with some fluid. In Fig. 13, as compared to 1st image,
2nd and 3rd image is having high ground glass opacity. The bounding
box and arrows represent the region with GGO. Similarly, in Fig. 14, in
the last image high hazy gray region is present as compared to 1st and
2nd. The presence of variations in glass opacity might have influenced
and confused the model, leading to erroneous results in some cases.

Moreover, for verifying the robustness of the proposed method, we
added the Gaussian noise to the data and evaluated the performance
of the proposed model and the other approaches. From Table 4, we
10
observed a comparatively high error for noisy data as compared to
the original data. However, it has been noted that the difference in
performance of noisy and original data by our method is quite less
as compared to the other approaches. Overall, our method performs
significantly better when compared to other methods for both original
and noisy data.

5. Conclusions

The present research study proposed a framework integrating a con-
volutional neural network with a transformer architecture for predict-
ing the COVID-19 infection percentage using the CT data. Moreover,
we used the Huber loss as our loss function that overcame the draw-
back of MSE and MAE losses and employed the 5-fold cross-validation
approach for the performance evaluation of the model. The prediction
results reveal that the proposed EffViT-COVID network outperforms the
other state-of-the-art methods and, as compared to other methods, a
significant difference is observed in subject-wise as well as overall PC,
MAE, and RMSE evaluation metrics. Further, the average difference
between actual and predicted COVID-19 infection percentage by the
proposed network is < 2%. The results demonstrated the efficacy and
robustness of the network. In future, we plan to explore and study the
other COVID-19 datasets, such that more informative data can be used
for better COVID-19 diagnosis. In addition, several data augmentation
and post-processing techniques can be tried out to improvising the
performance.
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