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Abstract

The nucleus-to-cytoplasm ratio (N:C) can be used as one metric in histology for grading cer-

tain types of tumor malignancy. Current N:C assessment techniques are time-consuming

and low throughput. Thus, in high-throughput clinical contexts, there is a need for a tech-

nique that can assess cell malignancy rapidly. In this study, we assess the N:C ratio of four

different malignant cell lines (OCI-AML-5—blood cancer, CAKI-2—kidney cancer, HT-29—

colon cancer, SK-BR-3—breast cancer) and a non-malignant cell line (MCF-10A –breast

epithelium) using an imaging flow cytometer (IFC). Cells were stained with the DRAQ-5

nuclear dye to stain the cell nucleus. An Amnis ImageStreamX® IFC acquired brightfield/

fluorescence images of cells and their nuclei, respectively. Masking and gating techniques

were used to obtain the cell and nucleus diameters for 5284 OCI-AML-5 cells, 1096 CAKI-2

cells, 6302 HT-29 cells, 3159 SK-BR-3 cells, and 1109 MCF-10A cells. The N:C ratio was

calculated as the ratio of the nucleus diameter to the total cell diameter. The average cell

and nucleus diameters from IFC were 12.3 ± 1.2 μm and 9.0 ± 1.1 μm for OCI-AML5 cells,

24.5 ± 2.6 μm and 15.6 ± 2.1 μm for CAKI-2 cells, 16.2 ± 1.8 μm and 11.2 ± 1.3 μm for HT-

29 cells, 18.0 ± 3.7 μm and 12.5 ± 2.1 μm for SK-BR-3 cells, and 19.4 ± 2.2 μm and 10.1 ±
1.8 μm for MCF-10A cells. Here we show a general N:C ratio of ~0.6–0.7 across varying

malignant cell lines and a N:C ratio of ~0.5 for a non-malignant cell line. This study demon-

strates the use of IFC to assess the N:C ratio of cancerous and non-cancerous cells, and

the promise of its use in clinically relevant high-throughput detection scenarios to supple-

ment current workflows used for cancer cell grading.

Introduction

There is a need in cancer diagnostics for techniques that overcome the drawbacks of current

conventional cancer cell assessment methods. Currently, histological assessment is the gold

standard of assessing cell and tissue malignancy [1] but lacks speed, high-throughput, and can
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be prone to differing interpretation from pathologists. In addition, histology is an inefficient

technique in clinically relevant contexts that require high-throughput cellular analysis such as

diagnostics of hematological diseases [2], diagnosis of minimal residual disease [3] and circu-

lating tumor cell detection [4]. Thus, the utilization of high throughput techniques to assess

cell malignancy may improve cancer diagnostics by providing cellular information of these

rare phenotypes.

Clinicians have identified an enlarged nucleus as a prevalent characteristic of certain types

of malignant cells [5–7]. The enlarged nucleus of these malignant cells led to the development

of the nucleus-to-cytoplasmic (N:C) ratio, defined as the ratio of the cross-sectional area of the

nucleus divided by that of the cytoplasm [8]. Although histology and cytology are the gold

standards of the N:C ratio assessment method, many studies have reported the interobserver

variability that exists in during visual quantitation [9–11]. In practice, cytology, where slides of

biological specimen are fixed to a glass slides and examined, is another method used to assess

the N:C ratio. In addition, although this metric is used in many tissue types (e.g., urothelial car-

cinoma), in others (e.g., melanoma), lower N:C ratios [12] despite malignancy and higher N:C

ratios in normal cells (e.g., lymphocytes) prevent adoption of the N:C ratio as a grading

method. Nevertheless, new techniques with less subjectivity have been developed to assess and

quantify the N:C ratio of cancer cells (e.g., computer vision, two-photon microscopy, immu-

nohistochemistry analysis techniques) [13–18]. Since these techniques rely on histological sec-

tioning to assess the N:C ratio, they lack translatability to high-throughput clinical contexts

where a liquid biopsy would be used to assess malignancy. A high-throughput technique that

can assess cell malignancy using cells in suspension would be ideal. Imaging flow cytometry

(IFC) can provide such a cytometric assessment method due to the high-throughput collection

of images of single cells. IFC is a hybrid technology that combines conventional flow cytometry

(FC) with high-throughput microscopy to generate high-resolution images of single cells in

suspension within minutes [19, 20]. IFC combines the advantages of using FC with the ability

to visually identify single cells. IFC has been used in many applications, including radiation

biodosimetry, analysis of autophagy, and quantification of cellular heterogeneity [21–24]. In

this work we demonstrate how IFC can be used to assess the N:C ratio of several malignant cell

lines and a single non-malignant cell line.

Previously, our group has used IFC to compare cell size measurements with measurements

done by photoacoustic microscopy and photoacoustic flow cytometry which were used for the

N:C analysis of cultured breast and prostate cancer cells [25–27]. In this work, we determine

the N:C ratio of four different malignant cell lines each originating from different tissues and

the N:C ratio of a single non-malignant cell line. Here, acute myeloid leukemia (OCI-AML-5,

blood cancer), CAKI-2 (kidney cancer), HT-29 (colon cancer), SK-BR-3 (breast cancer) cells,

and MCF-10A (breast epithelial) cells were used for the measurements. Across cell lines, we

observe varying cell and nuclear sizes but a common N:C ratio of ~0.6–0.7, consistent with

international standards of diagnosis of urothelial carcinoma [7] and a smaller N:C ratio of 0.53

in the non-malignant cell type. This work demonstrates the diagnostic potential of IFC as an

assessment technique of the N:C ratio and the promise of its use in clinically relevant high-

throughput detection scenarios.

Methods

Cell preparation

In this work (1) SK-BR-3 (ATCC, Virginia, USA, HTB-30), HT-29 (ATCC, Virginia, USA),

and CAKI-2 cells were thawed and cultured for two weeks in McCoy’s 5A (modified) Media

(Wisent Inc., Quebec, Canada, 317-010-CL) supplemented with 10% fetal bovine serum (FBS),
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and 1% penicillin/streptomycin, (2) OCI-AML-5 cells (DSMZ, Braunschweig, Germany,

ACC247) were thawed and cultured for two weeks in Alpha modified Eagle medium (Wisent

Inc., Quebec, Canada, 310-010-CL) containing 10% FBS and 1% penicillin-streptomycin

(Wisent Inc., Quebec, Canada, 450-201-EL) by volume, and (3) MCF-10A cells MCF-10A cells

(Addex Bio, California, USA, C0006015) were thawed and cultured for three weeks in 1:1 Dul-

becco’s Modified Essential Media and F12 media (ThermoFisher, Massachusetts, USA,

11330032), supplemented with 5% Horse serum (Sigma-Aldrich, Ontario, Canada, H1270), 20

ng/mL EGF (Peprotech, New Jersey, USA, AF-100-15), 0.5 ug/mL Hydrocortisone (Sigma-

Aldrich, Ontario, Canada, H0888), 100 ng/mL Cholera Toxin (List Biological Laboratories,

California, USA, 100B), 10ug/mL Insulin (Sigma-Aldrich, Ontario, Canada, I1882), and 1%

penicillin-streptomycin (Wisent Inc., Quebec, Canada, 450-201-EL). Once confluent, all

adherent cells were trypsinized and resuspended in phosphate-buffered saline (PBS). The cells

were stained using a 1:200 solution of DRAQ-5 (Thermo Fisher, Mississauga, Canada), a fluo-

rescent nuclear dye and resuspended in a volume of 50 μl PBS and 1% FBS in a 1.5 ml low

retention microfuge tube (MilliporeSigma, Oakville, Canada).

Image flow cytometer operating parameters and post-processing

The imaging parameters and post-processing for this work have been previously described

[26]. Briefly, An Amnis ImageStreamX1MarkII IFC (MilliporeSigma, Seattle, USA)

equipped with a 5-laser 12-channel system at 60x magnification, following ASSIST calibration

(MilliporeSigma, Seattle, USA) was used for image acquisition. In this study, channels 1 to 11

were used for acquisition along with a 642-nm laser (150 mW); however, analysis on only

channel 1 (430 to 480 nm), 7 (430–505 nm), and 11 (660–740 nm) were completed (Ch 1/7 –

malignant cells, Ch1/11 –non-malignant cells). Since both Channel 7 and 11 are used for fluo-

rescent imaging in IFC, there is no difference between usage of either channel. A bright-field

area lower limit of 50 μm2 was used to eliminate debris and speed beads during acquisition.

Cell image analysis was carried out using the Amnis IDEAS1 software platform (version

6.2). An overview of the analysis workflow is shown in Fig 1A. The nucleus diameter and cell

diameter were determined using a custom workflow in IDEAS, which is illustrated in Fig 1 and

adapted from our previous work [26]. Briefly, from Fig 1.a.I, the gradient root-mean squared

feature was applied to the acquired OCI-AML-5, CAKI-2, HT-29, SK-BR-3, and MCF-10A cell

images, and the corresponding values were plotted on a normalized relative frequency distribu-

tion to remove unfocused cell images. Fig 1.a.II depicts the area and aspect ratio features com-

bined to remove images containing multiple cells. In our workflow, we included cell images

with an aspect ratio between approximately 0.55 and 1 to avoid cell fragments and other debris.

Fig 1.a.III shows the raw centroid X feature plotted against a normalized relative frequency dis-

tribution to remove clipped cell images. The raw centroid X feature quantifies the central loca-

tion of the acquired images. Lastly, Fig 1.a.IV depicts a positive gate for DRAQ-5-positive cells

that was obtained using fluorescence intensity and area features. Through gating for solely

DRAQ-5-positive cells in plot IV, we exclude cell images containing calibration beads, which

are required for alignment of the sample stream during imaging. The rationale for this gate is

based on the visual clustering of cells we see in the scatter plot based on area and high pixel

intensity. Masks used for the image analysis process following the same protocol as our previ-

ously published work to accurately measure cell diameter and can be seen in Fig 2B–2D [25–

27]. Here, the eroded masks were used to determine the cell diameter where IDEAS provided

the diameter of a circle that has the same area as the eroded masks [28]. DRAQ-5 leakage out of

the nucleus was addressed in our workflow for the non-malignant cells by adding a plot that

used gradient root-mean-squared feature on the fluorescent images to isolate cells that had
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localization of the DRAQ-5 dye in their nucleus (high gradient RMS value). This plot is pro-

vided in Fig 1B. We applied this extra gate on all cell lines and saw minimal changes in the N:C

ratio across the cancer cell lines (see S1 Table). The feature statistics from each measurement of

each cell line were exported from IDEAS and imported into Jupyter Notebooks. Further post-

processing involved the removal of images of cells which were analyzed as having nucleus diam-

eters larger than that of the entire cell diameter. Lastly, the N:C ratio for the leftover cells was

calculated. All data and post processing scripts can be found here.

Results

Image flow cytometer

In this work, we interrogated four diverse cancer cell lines: OCI-AML-5, a blood cancer cell

line; CAKI-2, a kidney cancer cell line, HT-29, a colon cancer cell line; and SK-BR-3, a breast

Fig 1. IFC analysis workflow and representative cells. (a) The IFC analysis workflow excludes: (I) unfocused cells, (II) multiple cells per brightfield image, (III),

clipped cells in brightfield images, (IV) unstained cells. Sequential gating bars (I–blue, II–green, III–yellow, IV–orange) depict manually gated ROIs for each cell

population. (b) Additional gating step for MCF-10A cells to address leakage due to extended trypsinization. (c-g) Representative cells from each cell line after IFC

gating cell mask (left column), stained fluorescent image (middle column), and cytoplasm (right column).

https://doi.org/10.1371/journal.pone.0253439.g001
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cancer cell line. Initially, 43,237 OCI-AML-5, 19,699 CAKI-2, 32,907 HT-29, and 25,073

SK-BR-3 cells were imaged using the IFC within minutes. In our IFC gating process, we

excluded out of focus cells, cell images containing alignment beads, and multiple or frag-

mented cells. We also removed objects analyzed in the IDEAS software that indicated a larger

nucleus mask than cytoplasm mask. From this post-processing, we were able to analyze 5284

OCI-AML-5 cells, 1096 CAKI-2 cells, 6302 HT-29 cells, and 3159 SK-BR-3 cells. Table 1 and

Fig 1B–1F provides a summary of the results of the IFC gating, analysis and post processing

for each cell line and corresponding standard deviations. There is noticeable variability in the

nuclear uptake of the DRAQ-5 as depicted in the 2nd vertical panel of Fig 1C–1G. The

Fig 2. Cell diameter, nuclear diameter, and N:C ratio distribution. (a, c, e) Beeswarm plots and (b, d, f) density

distributions display (a, b) cell, (c, d) nucleus, and (e, f) N:C ratio distribution across cell lines. Triple asterisks indicate

a p-value of<0.001.

https://doi.org/10.1371/journal.pone.0253439.g002

Table 1. A summary of IFC measurements and corresponding standard deviations for the cell and nucleus diameter as well as the N:C ratio for each cell line.

Cell Line OCI-AML-5 (n = 5284) CAKI-2 (n = 1096) HT-29 (n = 6302) SK-BR-3 (n = 3159) MCF-10A (n = 1109)

Cell Diameter [μm] 12.3 ± 1.2 24.5 ± 2.6 16.2 ± 1.8 18.0 ± 3.7 19.4 ± 2.2

Nucleus Diameter [μm] 9.0 ± 1.1 15.6 ± 2.1 11.2 ± 1.3 12.5 ± 2.1 10.1 ± 1.8

N:C 0.73 ± 0.07 0.64 ± 0.08 0.69 ± 0.07 0.71 ± 0.13 0.53 ± 0.11

https://doi.org/10.1371/journal.pone.0253439.t001
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variability of nuclear dyes has been studied and empirically determined as being cell cycle,

cell-type, and concentration dependent [29–31]. To account for this variability in dye uptake,

the fluorescent intensity gating process (Fig 1.a.IV) is individualized for each cell line. We also

interrogated 158,069 MCF-10A non-malignant breast epithelial cells. Following the post-pro-

cessing steps outlined above on the malignant cells, we were left with 21,396 cells that were

DRAQ-5 positive but overestimated the N:C ratio of these cells. However, in looking at the

IFC images, we noticed significant leakage of the nuclear dye out of the nucleus into the cell.

Thus, we gated the fluorescent channel images based on their gradient root-mean-squared val-

ues to isolate cell images that were highly focused to distinguish between the nucleus and other

parts of the cell (see Fig 1B). This left us with 1,109 cells MCF-10A cells. This modified tem-

plate produced minimal changes to the N:C ratio when applied on all four malignant cell lines

(see S1 Table) but did lower the analyze sample population. Overall, CAKI-2 cells had the larg-

est diameter (24.5 ± 2.6 μm), followed by MCF-10A cells (19.4 ± 2.2 μm), SK-BR-3 cells

(18.0 ± 3.7 μm), HT-29 cells (16.2 ± 1.8 μm), and lastly, OCI-AML-5 cells (12.3 ± 1.2 μm). The

IFC measurements of cell diameter are in good agreement with published values of the

OCI-AML-5 and HT-29 cell diameters that used the Coulter Counter [32], slightly larger than

SK-BR-3 cell sizing using microfluidic cytometry [33], and in good agreement with published

values of MCF-10As [34]. Moreover, our previous studies with MCF-7, PC-3 and MDA-MB-

231 cells were all in good agreement with other validated techniques [25–27]. The nuclear

diameters of these cell lines follow a similar trend, with CAKI-2 cells (15.6 ± 2.1 μm) having

the largest nuclei, followed by SK-BR-3 cells (12.5 ± 2.1 μm), HT-29 cells (11.2 ± 1.3 μm),

MCF-10A cells (10.1 ± 1.8 μm), and OCI-AML-5 cells (9.0 ± 1.1 μm). From the cell and

nuclear diameters, the N:C ratio of each cell line was calculated. All cancerous cell lines,

regardless of tissue origin, had similar N:C ratio values. OCI-AML-5 cells had the largest N:C

ratio (0.73 ± 0.07), followed by SK-BR-3 cells (0.71 ± 0.13), followed by HT-29 cells

(0.69 ± 0.07), CAKI-2 cells (0.64 ± 0.08). The non-malignant MCF-10A cells had the smallest

N:C ratio (0.53 ± 0.11). In addition, given the standard deviation of the MCF-10A cells, their

N:C ratios are also within range of published values [35]. Corresponding beeswarm plots and

kernel density histograms of the size distributions for the cell diameter (Fig 2A and 2B),

nucleus diameter (Fig 2C and 2D), and N:C ratio (Fig 2E and 2F) are shown in Fig 2.

An ordinary one-way ANOVA with Tukey’s multiple comparisons test (alpha = 0.05) was

used to test for significant differences between the means of the cell, nuclear, and N:C ratios

between cell lines (GraphPad Prism v8.0, San Diego, USA). A statistically significant difference

(p<0.001) was observed between all means between cell lines.

Discussion

The N:C ratio can be used as a histological metric in grading malignant disease in certain tissue

types and cytologic specimens. In these biological samples, an enlarged nucleus has become a

hallmark due to the abundance of chromatin present within malignant cells [1]. Currently, his-

tology is the gold standard assessment method for the determination of the N:C ratio but it

cannot be practically used when analyzing large populations of cells. Histology is advantageous

when examining cohesive cells and tissue fragments, but it cannot be optimally used when

analyzing large populations of cells. In addition, techniques which require a single cell suspen-

sion, such as IFC, would require special preparation techniques if using samples obtained

from punch biopsies. These methods could in turn alter the cellular morphology and state of

the cells and impact the resultant analysis. However, in many high-throughput clinical con-

texts, such as bodily fluid analysis for the detection of circulating tumor cells, minimal residual

disease and hematological diseases, cytology would be cumbersome. Thus, an objective high-
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throughput technique to assess the N:C ratio would provide an approach that would provide

this measurement more reliably and with larger sample datasets.

The drawbacks of histology to assess the N:C ratio and reported inaccuracies and inconsis-

tencies in N:C assessments by morphologists and clinicians [9–11] have motivated the imple-

mentation of new techniques to determine the N:C ratio, including the use of computer vision

[13], multi-photon microscopy [14–16], Cell-CT [17] and immunohistochemistry analysis

techniques [18]. Rahmadwati et al. [13] applied k-means clustering to segment nuclei and

cytoplasm from background and connective tissue to detect features indicative of normal tis-

sue, pre-cancerous tissue, and malignant tissues in cervical cancer histology images to assess

the N:C ratio. Morphological features were extracted from a region-of-interest (ROI) on sam-

ple histological images of normal tissue, pre-cancerous tissue, and malignant tissues. These

extracted features were used to classify other histology slides as normal, pre-cancerous, or

malignant. The technique is heavily ROI dependent and details regarding sample size and

number of histological images used are not provided. Multi-photon microscopy techniques

studied by Huang et al. [14, 15] suffered from low sample populations (n< 25) and thus, were

not representative of the entire cell population and ineffective in high-throughput settings. A

two-photon microscopy (TPM) technique was implemented by Su Lim et al. [16] to assess the

nuclear area and N:C ratios in human colon tissues. Although the authors analyzed thousands

of TPM images from ex vivo colon histological slices for 7 patients, their technique would not

be feasible in a high-throughput context. Moreover, the technique is specific to colon cancer.

The Cell-CT [17] device has been used to assess the nucleus-to-cytoplasmic ratio but has a

lengthy imaging time. This poses a problem for live cell imaging as the cells may undergo apo-

ptosis or other alterations during imaging. Lastly, Xu et al. [18] used Image Pro Plus 6 (Media

Cybernetics Corporation, USA) to calculate the nuclear/cytoplasmic ratio of 70 pairs of gastric

cancer tissues, that are positive for death domain associated protein 6 (Daxx), and adjacent

normal tissues. Three microscope images at 400x magnification were obtained for each tissue

sample and each image included at least 100 Daxx positive cells. This clinical study shows the

application of the current gold standard, histological sectioning, combined with a computa-

tional histological analysis method. The subjectivity and low-throughput nature of histology is

improving using digital pathology and computer-aided image analysis; however, IFC provides

an alternative for high throughput analysis with large sample analysis populations measured in

a short period of time and would be useful in high-throughput clinical contexts to assess the N:

C ratio of certain types of cells.

Image flow cytometry boasts high-throughput and multiparametric abilities enabling the

acquisition of morphological information of single cells. The lack of high throughput tech-

niques available to analyze the N:C ratio provides a niche opportunity for this emerging cyto-

metric method to be used in certain cell types. Although IFC does take 2D images of single

cells, the high-throughput nature of IFC provides a more reliable estimate of the N:C ratio

over an analysis of a single 2D histological slice. Moreover, histological sectioning analysis

requires microscope images from sections of a slice with an unknown amount of stained posi-

tive cells. By combining the statistical and gating capabilities of flow cytometry with the imag-

ing capabilities of bright-field microscopy, IFC provides an opportunity for the development

of a statistically powerful analysis (thousands of cells) of the N:C ratio in cancerous and non-

malignant cells. Here, we interrogated four cell lines of variable tissue origin (blood cancer,

kidney cancer, colon cancer, and breast cancer) and a single non-malignant cell line (breast

epithelium). Although the cell and nuclear diameters of each cancerous cell line differed (Fig

2) and statistical analysis revealed a significant difference between all their means, there is con-

siderable overlap between their respective N:C ratios. However, we see a clear difference

between malignant and non-malignant N:C ratios.
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From Fig 2A and 2D, the measurements of cell diameter were consistent with the measure-

ment of nuclear diameter over a range of cell sizes. This relationship between cell and nuclear

size throughout the cell cycle is in line with what has been observed in the literature [36–38]

and the future studies will examine the effect of the cell cycle [37] on the N:C ratio. In particu-

lar, the distribution of SK-BR-3 cell diameter found in Fig 2A and 2B does not show a Gauss-

ian-like shape like the other cell lines did. The shape of the cell size distribution can be affected

by the length of time the cell spends in each phase of the cell cycle. In this work however, the

time in the S/G2/M phase is similar for all the cell lines studied (SKBR3–36%, HT-29–32%,

CAKI-2–35%) [39–41]. Therefore, it is possible that the size variability of the SK-BR-3 cell line

is inherent to this cell line.

To our knowledge, this high-throughput study is the first to measure the N:C ratio across

malignant and non-malignant cells of different tissue origins. Our N:C results are consistent

with international standards of cytopathology (Hang et al.’s [42] finding of an N:C ratio cutoff

value of 0.5 for atypical urothelial cells, and McIntire et al.’s [43] finding of a N:C ratio cutoff

value below 0.7 for high-grade urothelial carcinoma). Previous work by Rahmadwati et al. [13]

and Huang et al. [14, 15] have shown that non-malignant cell types have N:C ratios between

0.2–0.4. Given the standard deviations of our non-malignant cell N:C ratios, our measure-

ments fall within this range. To bolster our hypothesis related to the N:C distributions

observed in our study, we plan on conducting a larger-scale study composed of multiple cell

lines and their non-malignant counterparts. Additionally, since DRAQ-5 was the only nuclear

dye examined in this study, the examination of the effects of various nuclear stains, their dye

uptakes, and effects on the N:C ratio will be studied. However, we hypothesize that an alternate

dye would not address the leakage problem as DRAQ5 has shown high nuclear localization in

other studies [44]. Moreover, our future work will consider the effects of aneuploidy in the

context of the N:C ratio. As many cell line subtypes can have varying nuclear size, shape, and

complexity, their N:C ratio can be variable. It is beyond the capabilities of the currently pre-

sented technique to definitively state the cell subtype. However, a preliminary comparison

between the N:C ratios of malignant and non-malignant cell lines does point towards a poten-

tial use for determining whether an individual cell is oncogenically transformed. Moreover,

since this study focused on the presentation of a novel high-throughput technique to charac-

terize the N:C ratio in multiple cell lines, the effects of aneuploidy were not considered.

IFC has some inherent disadvantages. Post-processing of the acquired cell images removed

many images. Removal of images due to cells being out of focus, truncated cell boundaries, the

presence of alignment beads in the field of view and all other factors resulted in the exclusion of

up to 80–94% of acquired malignant cell images. Of the excluded images, 80–90% of the images

were excluded during the gating step that determined whether the cell image was in focus. This

exclusion was based on a cell edge gradient threshold of 60, commonly used in IFC gating analy-

sis. The trypsinization of all cells before use in the IFC could have led to cytological damage to the

cell membranes that caused their removal during the post-processing of the acquired IFC images

In addition, we hypothesize that trypsin’s known damaging effects on the cell membrane [45]

may have led to cell fragmentation that could have led to exclusion of affected cells during the

post-processing of the acquired IFC images and account for the high cell loss in our IFC post-pro-

cessing analysis. For example, the post-processing steps that gate single cell IFC images could

have removed cell images that contained both the cell and its corresponding fragment due to

trypsinization Initially, using the malignant cell line workflow, we noticed DRAQ-5 leakage out

of the nucleus in the analyzed IFC images. We hypothesize that the extended immersion in the

trypsin solution could have caused damage to the cell membrane [45], proteomic alterations [46],

decrease in cellular protein expression [47], and damage to the nuclear proteins [48]. To account

for this leakage, we added an extra gradient-root-mean-squared gate to isolate fluorescent cell
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images with sharp nuclear boundaries that were highly focused. This modified template produced

minimal changes to the N:C ratio when applied on all four malignant cell lines (see S1 Table) but

did lower the sample population that was analyzed. This subjective gating and masking approach

is a limitation to imaging flow cytometry. Nevertheless, we are still able to reliably size thousands

of cells. Modifications of this exclusion criteria could risk unfocused cells being used in proceed-

ing gating steps and potentially impact the accuracy of our results. Moreover, cells with frag-

mented plasma membranes caused leaking of the DRAQ-5 into other parts of the cell which

caused nuclear masks to be larger than cell masks. These cells were excluded in post-processing

steps but demonstrates a limitation of the analysis technique to identify a stained nucleus if

nuclear membrane fragmentation occurs. Similarly, the use of the “Diameter” feature to mask the

cell or nucleus provides the diameter of a circle that has the same area as the masked cell or

nucleus [28]. This step introduces the possibility of overestimating the nuclear diameter in cases

of nuclear shape variability. Furthermore, although the gating strategies used in our analysis tem-

plate were well-suited for the assessment of the N:C ratio, the potential user bias associated with

the development of this template also introduces a subjective element in this approach. We have

observed these common drawbacks to IFC in our previous work [49] and other groups have

sought to improve the gating process [50, 51]. To eliminate these disadvantages of the IFC analy-

sis workflow, our future work will focus on the use of computer vision and machine learning

strategies to assess the N:C ratio. Here, no gating strategies are implemented to limit the loss of

IFC images. Our group combined computer vision and machine learning strategies in the context

of red blood cell storage lesions [52, 53]. We look to further incorporate techniques used by Doan

et al. [54], Blasi et al. [55], and Hennig et al. [56] that use an unsupervised or weakly supervised,

deep-learning method [57] for the assessment of the N:C ratio in both non-malignant and malig-

nant cell lines. This would overcome drawbacks of IFC manual gating and user bias to provide an

objective assessment of cell malignancy in a high-throughput context.

Conclusion

We present a high-throughput image flow cytometric assay to assess the cell diameter, nuclear

diameter, and N:C ratio of four different malignant cell lines (OCI-AML-5—blood cancer,

CAKI-2—kidney cancer, HT-29—colon cancer, and SK-BR-3—breast cancer) and a single

non-malignant cell line (MCF-10A –breast epithelium). We observe that, although the cells had

a wide range of cell and nuclear sizes, a general N:C ratio of ~0.6–0.7 is common to all interro-

gated cancer cell lines and an N:C ratio of 0.53 for the non-malignant cell line. Limitations of

our analysis technique lie in the manual gating strategies used in the accompanying analysis

software. Our future work will focus on the application of computer vision and machine learn-

ing techniques on IFC data to assess this metric in rare cell types and more non-malignant cells.

Supporting information

S1 Table. A summary of IFC measurements and corresponding standard deviations for the

cell and nucleus diameter as well as the N:C ratio for each cell line using the modified IFC

workflow on all non-malignant and malignant cell lines.
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