www.surgicalneurologyint.com

Surgical Neurology International

Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. Editor

SNI: Spine

Open Access

SNI

Nancy E. Epstein, MD Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook

Intramedullary mature teratoma with an exophytic component in an adult: Report of a case and literature review

Abolfazl Rahimizadeh, Zahed Malekmohammadi, Saed Samie, Walter L. Williamson, Mahan Amirzadeh

Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.

E-mail: *Abolfazl Rahimizadeh - a_rahimizadeh@hotmail.com; Zahed Malekmohammadi - dr.malekmohammadi@gmail.com; Saed Samie - ssamie@parsgeneralhospital.com; Walter L. Williamson - wlw83@hotmail.com; Mahan Amirzadeh - mahan.amirzade@gmail.com

Case Report

*Corresponding author: Abolfazl Rahimizadeh, Office of R&D, Pars Advanced and Minimally Invasive Medical Manners Research Center, Numb. 10, Rastak St., Keshavarz Blvd., Tehran, Iran.

ScientificScholar[®] Knowledge is power

Publisher of Scientific Journals

a_rahimizadeh@hotmail.com

Received : 30 May 2020 Accepted : 18 June 2020 Published: 11 July 2020

DOI 10.25259/SNI_325_2020

Quick Response Code:

ABSTRACT

Background: Intramedullary mature teratomas (IMMTs) are rare. This is particularly true in the adult population.

Case Description: A 49-year-old female developed progressive paraparesis due to a T6 intramedullary mature teratoma with an exophytic component. She was successfully managed, utilizing a laminectomy with microsurgical tumor removal. The literature review documented 57 similar cases.

Conclusion: Here, we presented a 49-year-old female with a T6 intramedullary mature teratoma accompanied by an exophytic component who underwent total tumor resection with an incomplete recovery.

Keywords: Adult, Intramedullary epidermoid, Intramedullary teratoma spinal cord, Thoracic spine

INTRODUCTION

Spinal teratomas account for approximately 0.1–0.5% of all spinal tumors.^[1-6,9,10] They display a mixture of tissues derived from three primitive germ layers and are classified as mature, immature, or malignant.^[1-6,9,10] Intramedullary mature teratomas (IMMTs) are the least common subtype found in adults.^[1-6,9,10] Here, we present a 49-year-old female with a T6 IMMT who underwent surgical extirpation of the lesion with a resolution of the right lower extremity weakness, but residual left leg paresis. The literature review revealed 57 similar cases.^[1-6,9,10]

CASE DESCRIPTION

A 49-year-old female presented with progressive weakness of both lower extremities of 2 years duration (i.e., bed-ridden). She was originally misdiagnosed with multiple sclerosis (MS). On examination, she exhibited a severe spastic paraparesis with hyperactive reflexes/bilateral Babinski signs. The thoracic MRI demonstrated a focal intramedullary lesion with an exophytic component at the T6 level with a mixed T2 signal intensity [Figure 1]. Utilizing an operating microscope, the patient underwent a laminectomy and midline myelotomy resulting in grosstotal tumor excision [Figure 2]. The lesion proved to be a mature teratoma [Figure 3]. On the 10-day postoperative, MRI confirmed complete tumor resection [Figure 4]. Ten months later, her

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2020 Published by Scientific Scholar on behalf of Surgical Neurology International

Figure 1: T2-weighted magnetic resonance imaging of the thoracic spine: (a) sagittal image showing a heterogeneous mass with an exophytic component at T6 level and (b) axial image.

Figure 3: Pathology of the tumor, (a) presence of different components including thyroid like glands along with organoid corpuscle like nerve bundles (arrow) and (b) abundant adipose tissue along with focal mature cartilage (arrow) and some glandular structures (arrowhead).

Figure 2: Intraoperative photographs (a) during the excision of a creamy yellow tumor which is fungating from the cord; (b) an irregularly shaped solid-soft tumor mass measuring $3 \times 1.5 \times 1$ cm tumor after total removal.

right lower extremity strength had dramatically improved, but left lower paresis remained unchanged.

DISCUSSION

Etiology

Teratomas originate from pluripotent stem cells which are derived from all three germ cell layers. In IMMTs, all three embryonic layers are misplaced within the dorsal aspect

Figure 4: Postoperative T2-weighted sagittal magnetic resonance imaging of the thoracic spine shows total removal of the teratoma.

of the spinal cord (e.g., in the midline during their normal migration from the primitive yolk sac during neural tube closure).^[1-6,9,10] Associated congenital anomalies include spina bifida, split cord malformation (SCM), meningomyelocele, and Klippel-Feil syndromes.

Incidence

IMMs are very rare in adults; there are 57 similar cases reported in the literature [Table 1]. In those studies, patients

Table 1: Approximately 57 reported cases of IMM in adults within medical literature; IMMs in adults are very rare.							
Author	Year	Sex	Age	Location	Surgery		
Hosoi	1931	М	24	Conus	Subtotal		
Dereymacker	1954	F	43	Cervicothoracic	Total		
Dereymacker	1954	М	34	Conus	Subtotal		
Bakay et al.	1956	F	65	Conus	Subtotal		
Sloof et al	1964	M	20	Conus	Total		
Sloof et al	1964	M	67	Low Thoracic	Autopsy		
Dowcastle and Francoour	1964	E	34	Low Thoracic	Subtotal		
Length out and Daturn d	1904	1 [°]	J4 47		Tatal		
Hansebout and Betrand	1965	M	4/	Conus			
Caruso et al.	1966	M	41	Conus	lotal		
Enestrom and Von Essen	1977	F	36	Conus	Subtotal		
Rosenbaum <i>et al.</i>	1978	М	49	Low thoracic	Total		
Besel,	1979	F	22	Low thoracic	Total		
Garrison and Kasdon	1980	М	23	Conus	Total		
Padovani	1982	F	21	Cervicothoracic	Partial		
Padovani	1983	F	31	L. L. Conus	Partial		
Conti,	1984	F	24	Conus	Partial		
Giacomini	1986	М	31	Conus	Total		
Pelissou-Guyotat	1988	М	33	Conus	Total		
Nicoletti <i>et al.</i>	1994	М	47	L. L. Conus	Partial		
Caruso <i>et al.</i> .	1996	М	41	Conus	Total		
Al-Sarrai	1998	M	35	Conus	Partial		
Koen	1998	F	31	L. L. Conus	Partial		
Poeze et al	1999	M	23	Conus	Partial		
Fon et al	2001	E	13	Conus	Total		
Nonomura et al	2001	L.	43	Low Thoracic	Dortio		
Nonomuna et al	2002	1 [°]	55	Coursi on the superclosure beau	Faitia Dential		
	2002	IVI F	50	Cervicothoracolumbar			
Hejazi and Witzmann	2003	F	45	Conus	lotal		
Hejazi and Witzmann	2003	M	20	Conus	Total		
Sharma, <i>et al.</i>	2003	Μ	32	110	Not specified		
Sharma <i>et al.</i>	2003	М	32	T11	Not specified		
Sharma <i>et al.</i> 31	2003	F	51	T0-L2	Not specified		
Sharma <i>et al.</i>	2003	М	30	L. L. Conus	Not specified		
Fernández-Comjo	2004	М	46	Conus	Total		
Ak	2006	F	43	Cervical	Total		
Paterakis	2006	М	63	Cervical	Subtotal		
Tsitsopoulos	2006	F	44	Low thoracic	Subtotal		
KahiloguL. L.ari, <i>et al.</i>	2006	F	42	Conus	Total		
Caruso and Colonnese,	2006	F	40	Conus	Subtotal		
Caruso and Colonnese,	2006	F	41	Conus	Total		
Makary <i>et al.</i>	2007	F	46	Upper cervical	Total		
Mut et al.	2007	F	34	Conus	Total		
Mohindra	2008	M	35	Conus	Total		
Oh	2009	M	44	L L Conus	Subtotal		
Banas	2009	E	52	L. L. Conus	Subtotal		
Arvin	2009	M	34	L. L. Collus Corvical	Total		
Chasting	2009	IVI E	54	Cervical	Subtotal		
lian	2009	Г	63	Cervical	Tatal		
	2010	M	5/	Conus			
Yu W	2010	M	34	Conus	Subtotal		
ramomoto <i>et al.</i>	2013	Г М	42	Conus	Subtotal		
Alkheray	2015	M	60	Conus	Subtotal		
Asan	2016	F	29	Conus	Subtotal		
Turan	2016	М	48	L. L. conus	Total Exophyt		
Khazendar	2017	М	37	Conus	Total		
Barahona	2018	М	54	L. L. conus	Total		
Oliveiraa	2019	F	35	L. L. conus	Subtotal		
Hrushikesh	2020	М	40	Conus	Total		
Rahimizadeh, et al.	2020	F	49	Mid thoracic	Total		

averaged 39.9 years of age and included 31 males and 26 females [Table 2].

The majority of lesions (39 cases) involved the terminal portion of the spinal cord/conus followed by the lower thoracic region (eight cases), cervical spine (five cases), cervicothoracic junction (three cases), and mid thoracic level (one case) (i.e., decreasing frequency).

Clinical picture

The clinical features of IMMTs reflect their locations. Those with conus lesions typically present with over-flow incontinence and progressive lower extremity paraparesis. More cephalad cervical tumors may result in quadriparesis, while upper thoracic lesions will be associated with higherlevel paraparesis.

Imaging with CT/MR

MR scans are the studies of choice, as they readily demonstrate intramedullary heterogeneous cystic and/ or solid masses with/without an exophytic component (latter seven patients in the literature). CT may document attendant bony abnormalities (i.e., a variable tumor density or calcification within the tumor).

Histopathology

As they originate from pluripotent stem cells, teratomas can incorporate a wide range of tissues including; skin, muscle, bone, cartilage, intestinal mucosa, fat, teeth, and even hair.^[1-6,9,10] The distinction between epidermoid cysts and juxtamedullary lipomas with IMMTs may prove difficult.^[7,8]

Table 2: The sex frequency and percentage of 57 adult cases withIMMT.

Sex	Frequency	Percent
Male	31	54.4
Female	26	45.6
Total	57	100.0

 Table 3: Management of 57 patients with IMMT with frequency and percentage.

Surgery	Frequency	Percent
Autopsy	1	1.8
Not specified	4	7.0
Partial	9	15.8
Subtotal	16	28.1
Total	27	47.4
Total	57	100.0

Treatment

The best treatment for IMMTs is gross total surgical excision (e.g., found in 27 cases from the literature). Intimate adherence of tumor to the spinal cord parenchyma may preclude total removal (e.g., showing in 25 cases). Notably, 4 out of 57 cases in the literature did not specify what operative approaches were utilized [Table 3]. Postoperative neurological recovery may vary, long-lasting urinary incontinence and/or other long-term permanent deficits may not improve or resolve, and there is always the risk of worsening.^[1-6,9,10]

CONCLUSION

The occurrence of an IMMT in an adult is rare. Timely diagnosis and surgical management (e.g., gross total if feasible) of these lesions remain critical in achieving the best postoperative outcomes.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- 1. Alkherayf F, Arab AF, Tsai E. Conus medullaris teratoma with utilization of fiber tractography: Case report. J Neurol Surg Rep 2015;76:e183-7.
- Beneš V, Barsa P, Mikuláštík J, Suchomel P. Exophytic intramedullary mature teratoma of the conus medullaris: Case report and review of the literature. Cent Eur Neurosurg 2009;70:154-60.
- 3. Ghostine S, Perry E, Vaynman S, Raghavan R, Tong KA, Samudrala S, *et al.* The rare case of an intramedullary cervical spinal cord teratoma in an elderly adult: Case report and literature review. Spine 2009;34:E973-8.
- Jian W, Ying W, Chao Y. Intramedullary spinal teratoma of the conus medullaris: Report of two cases. Acta Neurochir (Wien) 2010;152:553-4.
- 5. Jinlu Y, Ye L, Huang H. Coexistence of spinal teratoma of the conus medullaris and arteriovenous malformation in an adult: A case report. Turk Neurosurg 2012;22:510-4.
- 6. Mut M, Shaffrey ME, Bourne TD, Jagannathan J, Shaffrey CI. Unusual presentation of an adult intramedullary spinal teratoma with diplomyelia. Surg Neurol 2007;67:190-4.
- 7. Rahimizadeh A, Sharifi G. Spinal intramedullary epidermoid cysts: Three case presentations and literature review. Surg

Neurol Int 2020;11:17.

- Rahimizadeh A, Soufiani H. Upper cervical intermedullary lipoma with extension into the cistern magna in an elderly: Report of a case and review of the literature. World Spinal Column J 2011;2:114-8.
- 9. Turgut M. Spinal intramedullary teratoma with exophytic components. Neurosurg Rev 2004;27:137-8.
- 10. Yamamoto J, Takahashi M, Nakano Y, Saito T, Kitagawa T,

Ueta K, *et al.* Intratumoral hemorrhage because of primary spinal mixed germ cell tumor presenting with atypical radiological features in an adult. Spine J 2013;13:e31-8.

How to cite this article: Rahimizadeh A, Malekmohammadi Z, Samie S, Williamson WL, Amirzadeh M. Intramedullary mature teratoma with an exophytic component in an adult: Report of a case and literature review. Surg Neurol Int 2020;11:187.