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Abstract: Human society has increased its capacity to exploit natural resources thanks to new
technologies, which are one of the results of information exchange in the knowledge society. Many
approaches to understanding the interactions between human society and natural systems have
been developed in the last decades, and some have included considerations about information.
However, none of them has considered information as an active variable or flowing entity in the
human–natural/social-ecological system, or, moreover, even as a driving force of their interactions.
This paper explores these interactions in socio-ecological systems by briefly introducing a conceptual
frame focused on the exchange of information, matter, and energy. The human population is presented
as a convergence variable of these three physical entities, and a population distribution model for
Colombia is developed based on the maximum entropy principle to integrate the balances of related
variables as macro-state restrictions. The selected variables were electrical consumption, water
demand, and higher education rates (energy, matter, and information). The final model includes
statistical moments for previous population distributions. It is shown how population distribution
can be predicted yearly by combining these variables, allowing future dynamics exploration. The
implications of this model can contribute to bridging information sciences and sustainability studies.

Keywords: integrated modelling; social-ecological systems; maximum entropy principle; energy and
information; human population distribution

1. Introduction

A growing human population, which also demands more energy than ever before in history,
strongly depends on ecosystem services and the natural resources of the planet, whose protection
and adequate management is essential for the future well-being of human societies [1]. Modern
consumption habits require enormous amounts of materials from natural sources and products from
industrial processes, favoring the technological flourishing of the industrial era. At the same time,
the abundance and nearness of individuals have favored social benefits such as communication and
learning opportunities, bringing humanity to the information revolution. The information revolution
or fourth industrial revolution [2] increases the demand for both energy and materials.

Increasing research and efforts to explicitly understand human–environmental interactions have
been carried out over the last decades, and there is a general agreement about the usefulness of following
a systems’ perspective in the integrated analysis by modeling the management of natural resources [3–5].

Entropy 2019, 21, 1172; doi:10.3390/e21121172 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6858-1855
http://dx.doi.org/10.3390/e21121172
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/12/1172?type=check_update&version=2


Entropy 2019, 21, 1172 2 of 22

The systems’ perspective brings us a combination of social and natural components, as well as their
interactions and exchanges. The integrated analysis entails difficulties when communicating across
disciplines, in the diverse data types and variables, and misperceptions about the use of social science
information [6] as well as in the heterogeneity of geophysical and ecological data. To bridge the gap
between social and ecological sciences research, and to foster a holistic understanding of how humans
interact with the surrounding ecosystem, a number of frameworks (e.g., social-ecological systems
(SES) and human-environment systems (HES)) have been developed [7] and a common approach is to
consider a human subsystem and its interactions with a natural subsystem. A comprehensive review
of the different methodologies and integrated analytical frameworks and classifications can be found
in Binder et al. [8].

Carl Folke and Fikret Berkes coined the term social-ecological system (SES) to refer to complex,
integrated systems where humans are part of nature as a whole [9,10]. SES is a useful paradigm to
conduct an integrated analysis on the human–natural resources systems, offering a strong prospect
toward the goal of sustainable development. It can help to address complex systems holistically by
considering multiple, interacting variables and emphasizing transdisciplinarity [11]. This has shown
advantages in dealing with biodiversity [12,13], water management [14,15], ecological services [16],
landscapes [17], and environmental management [11], among other key topics.

There is also a wide variety of model paradigms used for representing integrated processes’
dynamics. Some of the most relevant are systems dynamics [18,19], multi-objective optimization,
Bayesian networks, hybrid expert systems and feedback analysis, cellular automata, and agent-based
modeling [20–22]. All offer different advantages and limitations according to specific structures,
data required, and spatiotemporal possibilities [23]. Although there is a growing recognition that
approaches integrating social and ecological knowledge should lead to more effective and sustained
conservation solutions [6], there is still a need to increase the integration of these components to
effectively solve environmental issues [11].

SES are thermodynamic systems, which is a way of saying they are the complex result of an intricate
set of energy, matter, and information flows. However, none of these analysis frameworks or model
paradigms consider information as an active flow variable closely related to all social-environmental
dynamics. In previous work, Cardona [24] extended a conceptual framework treating SES as
complex, resilient, dissipative, and thermodynamic systems driven by the exchanges and fluxes of
the aforementioned three elemental physical entities: energy, mass, and information. Both ecological
and social processes are based on energy and information, which are the basic variables of nature and
life [16]. Information in SES has been treated, but still remains a concept under research. In an early
conceptual work on integrated models for SES, Bellman [25] described information flows through
layered systems and how it affects matter and energy exchanges through them. Ostrom [26] also pointed
out some interactions among SES components based on information exchange. Information appears as
the key currency for energy and matter transformations and could be the bridge to understanding the
processes between social and ecological systems, and thereby changes in the environment.

Information is a notoriously multifaceted concept with different connotations in various
domains [27] and its study is becoming increasingly relevant in many fields, from cellular information
to social learning, and offers a new possibility to account for system changes. The paper by Kraker [28]
discussed how the idea of social learning could help to improve SES management and governance,
and points out how the field has advanced sufficiently to enable more rigorous and detailed empirical
research. It is precisely the abundance of information in today´s society that offers, on one hand, the
possibility to have a view of how information flows and affects all kind of processes, and on the other
hand, allows having more tools to study, measure, understand, and use information properties and
dynamics in one of our common purposes; that is, sustainable development. So, the subsequent question
would be as follows: is it possible to harness this information’s relevancy for better representation and
understanding of human–natural/social-ecological systems?



Entropy 2019, 21, 1172 3 of 22

Within this context, this paper explores using SES dynamics to assess the relationship between
matter, energy, and information flow, based on a convergent stock variable—the human population.
The human population is simultaneously a result and a driver of information matter and energy
dynamics. The main variable allows focusing on quantifying the effects of information on population
and community dynamics, as well as on measuring field conditions [29] and exploring hypothetical
relationships among SES components through energy, matter, and information dynamics.

To study the human population distribution throughout a period, we apply the MaxEnt principle
to the distribution of the Colombian population. This mathematical structure enables integrating
several variables as restrictions to a main variable distribution using the maximization of entropy of
possible distributions. MaxEnt was introduced to ecology by Phillips et al. [30] to make estimations on
the spatial distribution of species based on partial information, and it has been extensively applied
in the scientific literature. On the other hand, since the work by Wilson in 1970 [31], dedicated to
exploring the applications of the maximum entropy method in the field of regional planning, conceptual
analogies were used to fit the statistical tool to several types of problems. From system dynamics to
transportation problems and urban services locations, the usefulness of maximum entropy as a general
modeling tool [32,33] is quite clear and open to a wide range of disciplines and applications.

Bajat et al. [34] analyzed human dynamics in Serbia from 1961 to 2027 using ecological niche
analysis, which is not often used for human population analysis. The restrictions or predictors used
were the distance to roads, elevation, slope, topographic wetness index, enhanced vegetation index,
and land cover classes, which could show how human habitation preferences change in the studied
time-lapse from topography features towards distance to the road network. Zhao [35] has shown
the case of population dynamics in China using MaxEnt and 19 climate variables and terrain factors,
which demonstrated that these were the most important ones for human settlements. Hernando and
his collaborators [36] studied the population distribution in Spain based on MaxEnt principle and
were able to show how macrostate distributions are connected to microstate dynamics, being able to
replicate behaviors such as migrations and big cities’ saturation. The most relevant aim of that work is
to demonstrate the applicability of MaxEnt to collective human behavior, and the potential use of an
explicit social thermodynamics.

This paper proposes a first approach to a socio-ecological system (SES) model based on a conceptual
framework constituted by the combination of energy, matter, and information dynamics. The novelty
of the proposal lies in the hypothesis that the information dynamics can be considered a central variable
in the model, and simultaneously assessed along with matter and energy variables in an approach
that would allow describing the distribution of the human population. This approach of considering
information as a main variable in models of SES has been previously discussed by Bellman, Ostrom,
and Jorgensen, among others, but attempts to use it usually involve it as an external data source or
signal. The model presented in this paper is the first one, according to the knowledge offered, that
addresses this issue based on easily available datasets for most regions of the world.

This paper presents a brief discussion of the conceptual framework as the basis of the model’s
construction. It continues with statements on the population as a central variable and the identification
of complementary variables related to information, energy, and matter, as well as the inclusion of
statistical moments for the mathematical model construction. Subsequently, the model’s results are
analyzed regarding its performance and suitability.

2. Methods

Here, we present a brief conceptual discussion to explain how matter and energy were analyzed,
and how to relate to information, which is analyzed more in-depth to propose possible manners to
evaluate and integrate it into a model.

Later in the title, the model’s construction details are presented. The model must fulfill the
purpose of integrating variables related to information, matter, and energy, and being applied to a
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social-ecological system, this is, considering the human population. The following considerations
summarize the model requirements:

a. The human population must have a central role, consistent with the idea of exploring
social-ecological systems.

b. Given the complexity and extent of fluxes and exchanges in the systems, indicator variables
could be eligible to test the global idea to start building the relational hypothesis thereafter.

c. The system must be defined clearly, so a territorial unit was chosen.
d. The data of selected variables must be available homogeneously in the chosen system/territory

extension, and throughout the time.
e. Given the complexity of the system, the model could be built based on statistical or heuristic

structures, not necessarily using functional structures.

2.1. Energy and Matter

As a legacy from ecology and economy, the SES has a wide range of models and
paradigms accounting for energy and matter flow and balances among the system’s components.
Georgescu-Roegen, in the early seventies, pioneered a theory on entropy and the economic process [37];
though it was widely debated later, it is considered a pillar for establishing a converging point between
ecology and economics [38]. In ecology, from Lotka [39] and Lindeman [40], the notion of energy and
nutrients flows in food chains is a study field.

Several frameworks have approached matter and energy balance in SES. MEFA (matter and energy
flow analysis) has been widely applied [41,42]. Suh [43] offered a generalized framework to incorporate
matter and energy flows in an integrated ecological and economic system. Liao and collaborators [44]
proposed a framework based on an analysis of the thermodynamics of Industrial Ecology, which is
the interaction subsystem between human and ecological systems. Gianpietro [45,46] presented the
multi-scale integrated analysis of the societal and ecosystem metabolism (MuSIASEM), more oriented
to processes and scales. The paper by Gerber and Scheidel [47] reviewed the two aforementioned
methodologies to assess their strength and limitations in analyzing the metabolism of social systems.

Through his ecological law of thermodynamics (ELT) [48–50], Jorgensen has argued how
ecosystems’ fundamental processes are based on matter, energy, and information flow. According to
ELT, from a set of possible configurations, an ecological system will adopt the one that is the farthest
from thermodynamic equilibrium. That means a configuration that offers the most intricate and efficient
use of low entropy energy. To fulfill that law, an ecological system can develop by increasing biomass,
extending and reinforcing energy dissipation networks, and increasing complexity and organization.

Cardona [24] proposed a simple balance useful to visualize and relate matter and energy processes
with information in a SES. Matter stock varies depending on internal processes, source–sink reactions,
and external exchanges with other systems. For two different times, the variation in the amount of
matter can be expressed as follows:

mt1 −mt0 = minput −moutput + mprocesses + msources. (1)

In the same system, energy exchanges are represented by low-entropy energy (useful) entering
the system and energy fixed by the system (e.g., photosynthesis), both of which add to the increase of
internal energy, while energy diminishes simultaneously by the work exerted and low-entropy energy
dissipated. Over a period, an expression to represent system energy is as follows:

et1 − et0 = euse f ul + e f ixed − ework − edissipated. (2)

In Equations (1) and (2), the transformations represent an infinite number of configurations of
substances, states, and energy forms, and a complete balance can become impossible. However, it
illustrates how each term depends on the interactions and transformations of energy, matter, and
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information. Here, we present a simple distinction; that is, a spontaneous transformation results from
available energy and accessible substances, no information is used for the transformation, even when
it can be generated in the event. A conditioned transformation, on the contrary, will create changes in
matter balance using available energy and useful information. This implies that an information user
is an organism or organization that is only capable of profiting from energy or matter by means of
information use. A wildfire, for instance, produced by a lightning is a spontaneous transformation, but
a dam built across a river is a conditioned transformation.

As SES are constituted basically by organisms and organizations, whether social or ecological, the
SES development is based on conditioned transformations and, consequently, on information.

2.2. Information

From Boltzmann to Landauer, information has gained its place as a real physical entity [51], but
from Schrodinger’s reflections on life and information, the debate has been open and the meaning of
the information concept is further than the physics or mathematics realm.

Vihervaara et al. [16] offer a clear and concise review of information concepts in different contexts,
from physics to biology, including the mathematical concept from Shannon. Jorgensen [50] establishes
a positive correlation between complexity, energy flows, information content, biodiversity, and
redundancy of the ecological system, and Vihervaara uses this as a basis to asses environmental services
based on information content and energy, the concept of embodied energy from Odum [52].

Ecology and biology studies have addressed issues such as the importance of information in
evolution theory [53], based on organisms’ capacity to record environmental conditions in their genetic
code [54,55]; have discussed the effects of social information on individual behavior in animals [29];
and have modeled human–wildlife interactions based on information exchanges [6], as well as the
relationships between information transmission and social structures [56], among others.

Dolgonosov presented a parallel between information and the human population and represents
its dynamics through history [57] and into the future [58] by defining knowledge functions as the
information recognition capacity. Lange [59] studies the structure of information flow in groups
using social network analysis, demonstrating how it is possible to incorporate these approaches into
conservation intervention strategies. Siebenhüner and others [60] show a review regarding social
learning in the context of ecological economics and reveal how the increase of published research has
still not yet delineated a dominant conceptual approach for the study of the subject.

Information Balance in SES

The idea of information flow or transformation in an SES to perform a sort of balance and establish
it as a central variable involves several considerations explained here. In socio-ecological systems,
information is exchanged with the surroundings through the system’s boundaries, while also flowing in
internal processes and subsystems. Information can be transferred, but the increase inside the systems
is not easily linked to gross inputs and outputs as matter or energy. Still, it is reasonable to think that
the input of information contributes to the increase or change of the previous amount of information in
the system. It does not happen the other way around, though. The information delivered or sent to the
surroundings does not necessarily reduce the content of information inside the system. Information
can be replicated, transferred, or destroyed [55] by causing energy cost, but the information also could
be created, in the sense of order, inside the organism or organization, with the cost being their own
energy [61,62]. That means that the increase in the total content of information in the system will cost
energy and, reciprocally, more energy dissipation will demand more information [48,49,63].

Here, we state two basic ideas discussed above: (a) more energy allows more information
production and more information (organization) allows more efficient energy dissipation, (b) raw
information content is positively related to more refined information (organization, knowledge,
communication, and learning).
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With that in mind and considering the final remark in Section 2.1, we can expect the content
of information to be related to organization, knowledge, and learning, which favors conditioned
transformations, which are required for SES development. Shannon’s probabilistic approach accounts
for information in the sense of uncertainty [64] associated with a random variable, but it lacks
quantifying the information’s meaning. Zurek, in contrast, assures that information cannot be
separated from its meaning [65]. Assessing the content of information in a system is a complex
task [66,67]. Estimations of the global information have been carried out by quantifying information
contained in text pages of all books ever written [57,68] or supposing all the information has been
digitalized [69].

According to Dolgonosov [57], each organism contributes to an amount of finite information
through its genetic code, its neural capacity, and currently an amount of information in external media
isystem = igenetic + ineural + iext−media. The estimates of information are not concerned with information
exchange and transmission.

Living organisms are characterized by their ability to perceive and analyze information about
their environment [54] and they are, at the same time, information users and encoders [54,57], with
the purpose of obtaining and using useful energy; in the words of Boltzmann, life is the struggle for
free energy [48]. An individual will prioritize processes where it can find information useful to get
energy. These processes are information exchange, communication, cooperation reproduction, and
so on. According to this, the conceptual model by Cardona [24] states that a system’s information
depends not only on the number of organisms, but on their informational interactions.

The individuals or organizations in the system use and enrich the content of information through
their interactions and information exchanges. For all of the above, the system’s information would be
as follows:

isystem = iindividuals + iexternal media + iexchange, (3)

where iindividuals = igenetic + ineural. It has been argued how grosser information favors more structuring
and complexity in it. While this does not address the distinction between information and knowledge,
it is expected that measuring any information variable provides a better understanding of learning
and the system’s organization capability. In human communities, for instance, governmental and
educational establishments boost the flows of information to individuals and other organizations,
enabling the exceptional development of societies.

2.3. Construction of the Model

Any living organism could be considered as a special combination, convergence, or specific
arrangement of information, matter, and energy flows. Human society will be a greater and even more
complex combination of these factors. In the proposed model, the energy, matter, and information
accounts can be described by population. At the national level, throughout a period, population is
related to aggregated variables representing the macro-scale or macro-state of the “nation” system.
Similarly, the population distributed in space in regions or provinces will affect matter, energy, and
information processes at the regional scale. This is called the system’s microstates and its change
in space and time will depend on specific regional sets of patterns of energy, matter, or information
production/consumption rates.

These sorts of relationships at the macro- and micro-states come close to the idea of distribution
analysis using the maximum entropy principle proposed by Edwin Thompson Jaynes [70]. A complete
description is presented by Levine and Tribus [71]. According to the principle, the allocation of
probabilities to an unknown distribution is that which maximizes the entropy subject to the information
available [72]. In the case of a population, these restrictions to the maximization can be understood
as systems’ macro-state conditions and their regional distribution. The restrictions are configured to
involve information, matter, and energy flows.



Entropy 2019, 21, 1172 7 of 22

Mathematical Structure

If pi is the probability of a given variable X:{xi}, the function to maximize is Shannon’s entropy:
H (P) = −

∑N
i=1 pi loge pi [73]. The univariate, discrete, and general form of the principle is given by

the following:
H(P) = −

∑N
i=1 pi loge pi = −

∑N
i=1 pi ln pi,

Subject to :
∑N

i pi = 1, pi ≥ 0, i = 1, 2, . . . , N,∑N
i=1 pigri = Cr, r = 1, 2, . . . , m,

(4)

where gri = gr(xi) it is the R-th function of X: {xi} to express the restriction Cr and m is the number of
restrictions. Mohammad-Djafari [74] developed a computational algorithm generalized for continuous
variables. This algorithm was adapted and used as a calculation engine in the model.

Departments are territorial units (TUs) comparable to the concept of province or state. Let the
national population be Bt for any year t, and bi,t the population in the ith department in the year t.
Thus, the following proportion:

pi =
bi
Bt

, (5)

represents the distribution of the population in departments or TUs. The natural restriction is
∑n

i pi = 1.
Several modeling exercises were carried out, first considering the natural restriction, the number

of students (information), electrical consumption (energy), and water demand (matter) as restrictions
called physical or flow variable restrictions. Furthermore, restrictions given by statistical moments
of the population’s distribution were included to involve social trends and previous states of the
distribution. Each variable and the restriction in the form

∑N
i=1 pigri = Cr is presented next.

2.4. An Informational Variable

We have argued that a larger population favors more information production, given the number of
individuals and some specific patterns of consuming/producing information. Also, more information
is related with complexity/organization and that is associated with social institutions. Avoiding the
discussion on the quality of the information, it is assumed that institutions and their original products
denote social organization and a more complex system.

To define an informational variable, several concepts and available data were considered. Two
kind of variables were explored, products of information exchange and organizations themselves. In
the first case, the focus was on technical or scientific production, artistic products, and legislation or
normativity. In the second case, the focus was placed on the number of educational, governmental, or
productive institutions. The data explored included national legislative production, number and size of
governmental institutions, number and size of industrial organizations, registry of artistic production,
and national editorial industry, among others, but none of these data were as comprehensive and
homogeneously registered as those from the educational sector and scientific production.

Scientific knowledge or new knowledge attained by social arrangement can be compared, for
example, with the number of scientific papers produced in different fields of knowledge. The
number of publications summarizes the collective effort to generate new knowledge and represents a
well-organized and well-structured system, as well as research-oriented educational institutions. It
also requires financial and governmental support, policies, and facilities, as well as abundant students,
to support the synthesis of information in a sort of pyramidal structure. However, scientific production
is a dataset available at the national level; no information was found at the TU scale. On the basis
of the idea of a pyramidal structure for scientific production, and also on the analyses presented by
Cardona [24], where he shows how scientific production in Colombia is linearly correlated with the
number of universities, the number of research groups, and the number of students, this was selected
as an informational equivalent or indicator variable.

Using a record of the number of scientific papers published per year by Colombian researchers from
1995 to 2015 from SCImago National Ranks-Jrs [75], and compared to active students at Universities
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and Technical Educational Institutions, a linear correlation is observed (see Figure 1). Data on students
enrolled in higher education are available from the Ministry of National Education’s Information
System, MEN-SNIES.Entropy 2019, 21, 1172 8 of 22 
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Educational Rate

In a TU, the relationship between population bi and the number of students ui is αi =
ui
bi

, the
higher education or training rate. To build a restriction on the synthesis, production, or availability of
information, it can be expressed as bi.αi = ui,

n∑
i

bi.αi = Ut. (6)

The summation of all TUs of the amount of inhabitants times the local training rate equals the
total number of students in the country Ut, which is a system macrostate.

The distribution of students is non-uniform; on the contrary, the presence of students in a TU will
be likely according to regional conditions. In a similar way to pi,

qi =
ui
Ut

, (7)

where qi corresponds to the weighting factor in each TU and according to the definition of the mean, it
corresponds to the probability of ui. As a result, an average of students per department should respond
to the following:

n∑
i

qi.ui = ut. (8)

Replacing, conveniently,
∑n

i qi.bi.αi = ut and
∑n

i qi.(pi.Bt).αi = ut. Including now the definition
of qi,

n∑
i

ui
Ut

.(pi.Bt).αi = ut and
n∑
i

Bt

Ut
.pi.ui.αi = ut,
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if At =
Ut
Bt

, represents the national average university education rate, and thus the following is obtained:

n∑
i

pi.ui.αi = ut.At. (9)

2.5. Energy Variable

In the case of the energy variable, fuel for transportation, oil exploitation, electricity consumption,
and primary productivity were considered among others. Electrical consumption is selected as the
energy-related variable given the wider availability of data and its relation to information dynamics
given the rising use of informatics and computational technologies. In relation to water, hydropower
generation in Colombia is of major importance, and thus possible interactions can be further depicted.
Total consumption cei in a TU is estimated from the following expression:

cei = εi ∗ bi, (10)

where εi is the factor or module of electricity consumption per capita in that particular TU, similarly
for the development for the Equation (6), the following can be argued:

n∑
i=1

bi.εi =
n∑

i=1

cei = CEt,

where CEt is the national electrical consumption in year t. The electrical weighting factor is qei =
cei

CEt
;

therefore,
∑n

i=1 qei.cei = cet and
∑n

i=1
cei

CEt
.pi.Bt.εi = cet.

Considering Et =
CEt
Bt

,
n∑

i=1

pi.cei.εi = cet.Et, (11)

where Et is the national average consumption module and cet is the average departmental consumption
for the year t.

2.6. Matter Variable

In the case of matter, the variable selected was water demand from options such as agricultural
products, industrial raw materials, and international trades. As in the case of electrical energy, data
about water are available and rather abundant. Also, the fact that water is related to diverse human
activities and environmental processes is important, thus allowing to preview further cause–effect
relations or models. The water demand per capita in a TU is wi, where total demand will be
the following:

cwi = wi ∗ bi. (12)

In the homologous form, now for the case of water demand, the following is obtained:∑n
i=1 cwi = CWt, considering qwi =

cwi
CWt

,∑n
i=1 qwi.cwi = cwt,

Wt =
CWt

Bt
,

n∑
i=1

pi.cwi.wi = cwt.Wt, (13)

where CWt is the total national consumption for the year t, Wt it is the national average per capita
consumption module, and cwt the average departmental consumption for the year t.
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Table 1 summarizes all variables expressions and abbreviations for a better understanding of
the model.

Table 1. Abbreviations of variables and mathematical expressions.

Variable Units
n∑
i

pi.ui.αi=ut.At

At
[

students
inhabitants

]
National training rate

ut

[
students

department

]
National average academic production per department.

αi
[

students
inhabitants

]
i

Regional, departmental training rate

ui [students]i Number of students in a department (i).
n∑

i=1
pi.cei.εi = cet.Et

Et
[

kWh
inhabitants

]
National average electrical consumption rate per capita.

cet.
[

kWh
department

]
National average electrical consumption per department

εi
[

kWh
inhabitants

]
i

Regional/department per capita electrical consumption in
department (i).

cei [kWh]i Total electrical consumption in department (i).
n∑

i=1
pi.cwi.wi = cwt.Wt

Wt
[

m3

inhabitants

]
National average water demand rate per capita

cwt

[
m3

department

]
National average water demand rate per department

wi
[

m3

inhabitants

]
i

Regional/department per capita water demand in
department (i).

cwi.
[
m3

]
i

Total water demand in department/province (i).

2.7. Statistics as Initial Conditions

In order to include information about previous microstates of the system, to find the dynamic
evolution of the model, several restrictions based on statistical moments were included. The mean
and standard deviation, for instance, from the previous period can improve the results of population
distribution. Conceptually, that can be conceived as a tendency of the population to maintain its current
distribution given social behaviors such as the affective attachment to a place, family, or cultural bonds,
among others. On the basis of Equation (1), for an r number of restrictions, and with g(xi)r being the
index i, the restrictions can be set as follows:

N∑
I=1

impi = Cm, (14)

where Cm is the mth statistical moment estimated from currents pi available [76].

3. Results from the Model

The full expression of the MaxEnt integrated model for the restrictions of the three flow variables
and m constraints of statistical moments is presented in Equation (15).

Official information was used in the model as reported by National Administrative Department of
Statistics (DANE, by its acronym in Spanish) based on the 1985, 1993, and 2005 censuses and projections
to 2020. The total number of departments and the district of Bogotá add up to 33 departments or TUs;
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Figure 2, shows the number of inhabitants by department in 2002 arranged according to a departmental
code, an official standardization used by the DANE.
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Figure 2. Population by department/province in Colombia for the year 2002 (Source: DANE—National
Administrative Department of Statistics).

Data corresponding to the average water demand in 2007 were taken from Public Services
Information Services in Colombia (SUI, by its acronym in Spanish). Electrical consumption values
were taken from yearly reports by the Mining and Energy Planning Unit (UPME, by its acronym in
Spanish), the national agency in charge. Restriction variables are presented in number of students,
total electrical consumption in KW h, and total water demand in m3. In addition, the production or
consumption rates must also be known: αi, εi, and wi.

3.1. Calibration and Verification

The calibration process consisted of modifying, including, or combining restrictions into
the MaxEnt structure, while searching for the best fitness in the yearly population distribution.
Combinations considered the natural restriction, the three restrictions to flow variables, and from 2 to
20 statistical moments and data indexing in descending or bell-shaped order. Two sets of experiments
are presented here. One exploring the number of statistical moments to consider and the second
combining physical variable restrictions.
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max
(
H(pi) = −

N∑
i=1

pi ln pi

)
; Subject to :

(15)

r0. Natural restriction
n∑
i

pi = 1

r1. First restriction
For 33 departments and macro-state:
national rate of training per student
average.

n∑
i

pi.ui.αi = ut.At

n∑
i=1

pi.ui.αi =
[
p1·α1·u1 + p2·α2·u2 + · · ·+ p33·α33·u33

]
= ut.At

r2. Second restriction
For the case of n = 33 departments and the
national macro-state of electrical
consumption

n∑
i=1

pi.cei.εi = cet.Et

n∑
i=1

pi.cei.εi =
[
p1·ce1.ε1 + p2·ce2.ε2 + · · ·+ p33·ce33.ε33

]
= cet.Et

r3. Third restriction
For the case of n = 33 departments and the
national macro-state of water consumption

n∑
i=1

pi.cwi.wi = cwt.Wt

n∑
i=1

pi.cwi.wi =
[
p1·w1·cw1 + p2·w2·cw2 + · · ·+ p33·w33·cw33

]
= cwt.Wt

r4. Fourth restriction
For the case of moments with ascending
indexes.

n∑
i=1

pigri =
[
p1g1,1 + p2g1,2 + · · ·+ p33g1,33

]
= C1

n∑
i=1

pigri =
[
p1·1 + p2·2 + · · ·+ p33·33

]
= C1

· · ·

rm.m th restriction
For the case of moments not centered with
ascending indexes.

n∑
i=1

pigri =
[
p1gm,1 + p2gm,2 + · · ·+ p33gm,33

]
= Cm

n∑
i=1

pigri =
[
p1·1

m + p2·2
m + · · ·+ p33·33m

]
= Cm

Calibration was carried out with data between the years 2000 and 2010. Subsequently, a verification
or checking of the model was performed with data between 2011 and 2015.

Initially, the statistical moments did not match the population distribution with the data arranged
according to the original codes shown in Figure 2. Tests with data distributed in bell-shaped order,
disposing of more populated TUs in the middle, as well as in descending order, were evaluated.
Illustrating results are presented in Figure 3, where it is shown how the error diminishes consistently
only with the data-indexing organization. Experiments using non-centered moments and a descending
order of data show greater and faster adjustment, achieving average relative error values of less than
10% from the eigth moment.

Physical Variable Restrictions

Each of the discussed physical variables and the natural restriction were separately evaluated
in order to have an overview of their capability to represent the system’s state, but the results were
unsuccessful. Figure 4 illustrates the results of these marginal evaluations. In all graphs, the actual
value of each variable is presented in the color bars for the 33 TUs and varying tone from year 2000
(dark blue) to 2010 (yellow). The colored lines, different for each year, link points of the estimated
values of the population distribution pi.
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Figure 3. pi estimation error. Twenty statistical moments (horizontal axis). Root Mean Square Error -
RMSE from the model with data indexed in centered bell-shaped order (a) and relative error (%) (b).
For data organized in descending order, RMSE (c) and relative error (d).
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Figure 4. Marginal models. pi estimations based on natural restriction and (a) number of students,
(b) water demand, and (c) electricity consumption. territorial unit’s (TU’s) index from 1 to 33 on the
horizontal axis. Values of pi on the vertical axis. Real pi in colored bars and estimated pi in colored lines.
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Variables were combined in the following cases: water–energy, water–number of students, and
energy–number of students. However, the best result was obtained from combining the three of them,
as shown in Figure 5a.
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Figure 5. Integrated model. Real values in colored bars and estimated in colored lines. Results of
estimated pi show a big deviation from real pi values, especially in lower populated TUs (a). Estimation
of number of students (b), water demand in cubic meters (c), and electrical consumption in kW/h (d).
All the estimates are based in modeled pi values from the integrated first model.

Figure 5 also shows, as a form of control, estimated values of student population (top right), water
demand (bottom left), and electrical consumption by TU using modeled values of pi.

Fairly acceptable goodness-of-fit is observed between the estimated data and actual values.
Acceptable in terms of relation, causality, and trends. However, the estimation of relative errors
is not favorable for the possible applications of the model. Errors were particularly considerable
when assessing low populated territories, which are usually associated with poor quality of life.
Departments 1 to 25 show relative estimation errors for pi around 15%, while the groups from 26
to 33 show departments with very few populations, with errors exceeding 300%. These results led
to the consideration of variables representing previous states of the population distribution, that is,
statistical moments.

3.2. Integrated Model

The results for the optimum model, combining three flow variables and ten statistical moments,
with data arranged in descending order, are presented in Figure 6 where the real and estimated pi

are shown.
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Figure 6. Estimated pi (colored lines) versus real pi (colored bars). Horizontal axis: 33 departments in
descending order.

Errors found with this complete model are synthesized in Figure 7. The relative error with the
current integrated model reaches 5.9% with 10 statistical moments, but shows an error below 10% even
from the third statistical moment.
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Figure 7. Relative error in percentage (a) and RMSE (b) for the integrated model and up to 12 moments
(horizontal axis).

In the verification process between 2011 and 2015, coefficients or parameters were unknown in
each time step. Production rates related to water, energy, and information per capita were considered
to be constant, but the net production per department was estimated based on linear regressions.
Table 2 gives the linear regression parameters in an equation of the form y = mx + b, for each statistical
moment, where x is a given year. Figure 8 presents a graphical summary of the model algorithm,
which also illustrates the difference between the calibration and verification processes.
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Table 2. Regressive parameters for moments of the integrated model for a given year.

Moments Equation Correlation Coefficient

First Moment = –0.0040226 × year + 16.1782 –0.9868

Second Moment = 0.0166 × year + 83.298 0.8896

Third Moment = 1.87764 × year – 1638.7420 0.9987

Fourth Moment = 63.91 × year – 84333.98 0.9992

Fifth Moment = 1,833.981 × year – 2700238.35 0.9983

Sixth Moment = 50,686.80 × year – 78541760.12 0.9969

Seventh Moment = 1,406,766.07 × year – 2.249 109 0.9954

Eighth Moment = 39,776,871.2 × year – 6.5099 × 1010 0.9939

Ninth Moment = 1,149,338,351 × year – 1.9164 × 1012 0.9925Entropy 2019, 21, 1172 16 of 22 
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Figure 9 presents the results for the period between 2011 and 2015, where acceptable goodness-of-fit
is observed. The average relative error value was 6.55%, which is quite close to the calibration relative
error of 5.95%.Entropy 2019, 21, 1172 17 of 22 
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Figure 9. Estimated pi versus real pi (bars), between 2011 and 2015. TU’s index from 1 to 33 on the
horizontal axis. Values of pi on the vertical axis. Real pi in colored bars and estimated pi in colored lines.

The mean quadratic error was below 0.0008, which gives a reasonable idea of the model error.
Observing Figure 9, a good fit in estimated data is evident. However, for TU with a very small
population, the model showed less precision in the estimation and errors were relatively larger
compared with more populated TUs. In the case of Bogotá (pi = 0.16), the Root Square Mean Error -
RMSE implies an uncertainty associated population between 7,196,400 and 7,203,600 inhabitants. That
is a variation of 3600 inhabitants or ± 0.05%. In the same exercise for Caquetá, a low populated TU
(pi = 0.01), the variation in the number of inhabitants would be ± 0.8%.

4. Discussion

Aiming to explore the hypothesis of finding an informational variable and relating it with matter
and energy, we proposed a new model choosing population distribution as the central variable.
That was motivated by the idea of profiting from the “information” availability to contribute to SES
dynamics’ modeling and understanding. Variables related to energy, matter, and information, called
physical variables, were identified and integrated under the structure of MaxEnt, to represent the
human population distribution in Colombia. The specific variables selected were students in higher
education, water demand, and energy consumption, and statistical moments were also included to
involve previous states of population distribution.

The goal of identification of an informational variable was successful and it was effectively
integrated into a model with the other variables. For the informational variable, a linear relation can be
observed between technical/scientific information production and the quantity of higher education
students in Colombia. This is a valuable finding that can lead to a wider description of relations among
scientific products, amount of students and population, and in general to information dynamics in
human systems and SES. The proposed model was able to reproduce the human population distribution
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and its dynamics in Colombian regions. However, the incidence of the physical variables over the
population distribution was not predominant and statistical moments of the population data itself
were included in the model.

The first exploration of variables’ combinations was carried out with physical variables, but a
significant error on the estimations of population distributions was found, especially in low-populated
regions. To explain this behavior, a conjecture was that physical selected variables describe
well-organized societies with access to public services and education. Precisely, low-populated
regions in Colombia have a lack of these conditions and, in consequence, the population is not
determined by access to the selected variables. The inclination to reside in low-populated regions can
be attributed, among other causes, to social bonds and traditions as driving forces. In consequence,
restrictions related to the inner population state in a previous time aimed to represent lifestyle traditions
were included in the form of statistical moments, obtaining the improved performance described in
the model.

Population dynamics showed a causal relation with each defined variable, but as mentioned, the
marginal results were not satisfactory. On its own, the model exclusively with statistical moments was
able to reproduce population distribution with ten moments and a relative error of 10%. The integrated
model with physical and statistical restrictions was able to improve relative errors up to 5.9%, and the
results suggest some degree of consistency, enough to not reject the hypothesis of an informational
variable capable to add in an integrated model. From a technical perspective, statistical moments
can be considered as an informational variable. However, this is extracted from the central variable,
and the expectation was to understand and explore information as a physical entity interacting in
the system.

There is no extended research exploring how to address information as the main variable on
SES analysis. Dolgonosov, however, estimated a global human population dynamic model, based on
information content [57]; we proposed a model of population distribution in a single country, and
unlike Dolgonosov, the informational variable did not depend exclusively on the information content
contributed by each individual; in our case, the informational variable arises and is enriched by the
interactions of individuals.

Vihervaara et al. [16] remark on the importance of information content in biodiversity and its
relationship with energy content (biomass). They suggest a manner to instrumentalize the information
accounting by biodiversity under the ecosystem service approach. In parallel, the conceptual framework
we used to build the model has the premise that richer informational exchange will be surrounded
by greater energy and matter transformation and flows in an SES. The model results reinforce that
hypothesis when cities and regions with more intense information dynamics, represented by students
and institutions, attract more population and increase water and energy exchanges. However, more
studies implementing either this model in different countries/contexts or different measures/indicators
of social informatic interactions in the current model are necessary.

It was possible to adapt the MaxEnt principle and methodology, to perform a dynamic population
distribution model. The model results showed a performance useful to explore variables or relevant
aspects in regional or national management in a time span from five to ten years. Analysis of population
distribution scenarios could be made for resource management and regional planning; for example,
in the case of regional transport, population distribution and growth, demand for services, health,
education, or market studies.

MaxEnt is an extended statistical tool, but is scarcely used to study human population dynamics.
Hernando et al. [36] showed a model in which MaxEnt was used to study the human population in
Spanish municipalities. Different from our work, they considered Q-growth functions as restrictions
inside the MaxEnt structure. Their model could account for migrations towards big cities; even if our
model could not account for that phenomena, it offers the possibility to explore dynamics and relations
with physical variables allowing SES analysis in further studies.
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As far as the model development and information flow involvement was the goal of this work, no
extended analysis was done over the results or scenarios. Anyhow, this model development is still
descriptive and gross, is the first approach, and is specifically arranged for the variable selected. It
is necessary to do future investigations as a sensitivity analysis, in order to understand the internal
dynamics of the integrated physical variables or include new ones.

In the long term, the consolidation of the information production model is of interest. This requires
metrics or methods for clearer quantification in various processes. Interactions between society and
the ecosystem, for instance, could not be approached in this work, because the informational variable
chosen is only slightly related to these fluxes. It is expected that, by better quantification of information
in complex processes, the integrated model can be widely applied.

This research attempted to show how social structures represent different levels of information
refinement, similar to the idea of embodied energy, which conditions the social–environment
relations, and points the possibility of better characterizing information, knowledge, organization, and
system successfulness.
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