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Summary

A statistical method was developed to test for equiv-
alence of microbial communities analysed by next-
generation sequencing of amplicons. The test uses
Bray–Curtis distances between the microbial com-
munity structures and is based on a two-sample
jackknife procedure. This approach was applied to
investigate putative effects of the antifungal biocon-
trol strain RU47 on fungal communities in three ara-
ble soils which were analysed by high-throughput
ITS amplicon sequencing. Two contrasting work-
flows to produce abundance tables of operational
taxonomic units from sequence data were applied.
For both, the developed test indicated highly signifi-
cant equivalence of the fungal communities with or
without previous exposure to RU47 for all soil types,

with reference to fungal community differences in
conjunction with field site or cropping history. How-
ever, minor effects of RU47 on fungal communities
were statistically significant using highly sensitive
multivariate tests. Nearly all fungal taxa responding
to RU47 increased in relative abundance indicating
the absence of ecotoxicological effects. Use of the
developed equivalence test is not restricted to evalu-
ate effects on soil microbial communities by inocu-
lants for biocontrol, bioremediation or other
purposes, but could also be applied for biosafety
assessment of compounds like pesticides, or geneti-
cally engineered plants.

Introduction

The emergence of high-throughput sequencing tech-
niques now allows a detailed analysis of how microbial
communities are influenced by the environmental appli-
cation of microbial inoculants (Trabelsi and Mhamdi,
2013), pesticides (Jacobsen and Hjelmsø, 2014), trans-
genic crops (Verbruggen et al., 2012) or other human
activities with a potential risk for microbial ecosystem
services. The effect on the microbial community structure
has to be assessed on the basis of high-dimensional
abundance data, typically considering several hundreds
or thousands of different operational taxonomic units
(OTUs), while the number of samples in typical studies
is small. Statistical methods for such high-dimensional
data are available (DeSantis et al., 2007; Kropf et al.,
2007; Kropf and Adolf, 2009; Ding et al., 2012) but are
usually directed to detect differences between groups
representing treatments, soil types, cultivars, etc.. In con-
trast, statistical methods to show that differences among
microbial communities are negligible still have to be
established for ecological risk assessment of human
activities to support decision making (Heuer et al., 2002;
Suter, 2006; Weinert et al., 2009). This inversed problem
is investigated in statistical equivalence tests. In univari-
ate equivalence tests, a tolerance threshold for the
dependent (target) variable is defined that is just accept-
able as difference for the mean expected outcome of the
two groups to be considered as sufficiently similar. Then,
modifications of the classical tests for difference are
used to show that the real differences are smaller than
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this limit with probability of at least 1 – a (a is the signifi-
cance level of the test). That method can be extended to
the case of several target variables (low-dimensional
multivariate data). One available method would be the
so-called intersection–union principle, where univariate
tests are performed for each dependent variable at the
unadjusted alpha level, and multivariate equivalence is
accepted if equivalence could be proven in each of the
univariate tests. In high-dimensional data, it would, how-
ever, be difficult to define appropriate tolerance thresh-
olds for each variable. Moreover, the claim to prove
equivalence in each dependent variable is hard to meet
in the high-dimensional case. Therefore, we utilize multi-
variate distance measures between the high-dimensional
sample vectors (e.g. Euclidean distances). Chervoneva
et al. (2007) have carried out this before in a different
way. Our approach is more versatile as it allows using
non-Euclidean distances and even dissimilarity mea-
sures that do not satisfy the metric axioms of distances.
Therefore, we use the term dissimilarity measure in the
rest of the article. An ecologically justified limit has to be
fixed that defines which distance can be tolerated. The
derivation of such an appropriate limit is an essential
part of the statistical procedure proposed here.
The application of microbial inoculants is an important

component of an environmentally sustainable crop pro-
duction system. There is an increasing demand for
healthy food without chemical residues. In the last years,
the market for products based on microbial inoculants,
including biofertilizers, plant strengtheners and biocontrol
agents, is growing by 10% per year (Berg, 2009). Bio-
control, as part of an integrated pest management, is well
suited to partially replace synthetic pesticides which have
led to increasing problems with pesticide resistance and
which often affect human health and environmental qual-
ity (Hajek, 2004; P�erez-Garc�ıa et al., 2011). It is well
documented that the treatment of plants with microbial
inoculants originated from plant-associated microenviron-
ments (e.g. soil, rhizosphere, phyllosphere) can efficiently
protect plants from pathogens or pests (Berg, 2009; Hall-
mann et al., 2009; Lugtenberg and Kamilova, 2009;
Andrews et al., 2010; P�erez-Garc�ıa et al., 2011; Kupfer-
schmied et al., 2013; Adam et al., 2014). However, the
application of microbial inoculants to agricultural soils
can lead to changes in the indigenous microbial commu-
nities, which raises concerns regarding their biosafety
(Trabelsi and Mhamdi, 2013). The biocontrol strain Pseu-
domonas jessenii RU47 was isolated from a disease-
suppressive soil and showed antagonistic activity against
different phytopathogenic strains of the fungal species
Rhizoctonia solani and Fusarium oxysporum (Adesina
et al., 2007, 2009). Efficient biocontrol of the important
pathogen R. solani AG1-IB was shown in three different
soil types, which makes this strain a promising biocontrol

agent (Schreiter et al., 2014a). Inoculation experiments
with strain RU47 gave evidence for at least temporary
effects on indigenous bacterial communities in soil
(Schreiter et al., 2014b). As the control targets of strain
RU47 are fungal pathogens, and the observed antibiosis
of RU47 against two species of fungi makes non-target
effects likely, it should be evaluated to what extent fungal
communities in the agroecosystem are affected. Deep
sequencing of barcoded fungal rDNA-ITS regions ampli-
fied from soil DNA (Vo�r�ı�skov�a et al., 2014) provides an
excellent opportunity to approach the ecological risk
assessment of microbes introduced into agroecosystems
to promote cultivated plants. Microorganisms selected for
biological control of phytopathogens typically have the
potential to produce biocidal compounds like sidero-
phores, antibiotics, biocidal volatiles or lytic enzymes
(Saraf et al., 2014), which raises concerns in the
approval procedure (EC regulation 1107/2009 concerning
the placing of plant protection products on the market).
However, this physiological potential for non-target
effects might not be ecologically relevant in the environ-
ment so that an ecological risk should rather be experi-
mentally assessed in situ. Such an experimental
approach is impeded by the lack of experimental designs
and statistical methods to test for tolerable effects of bio-
control agents on microbial communities.
The objective of this study was the development of a

statistical method to test for equivalence of fungal com-
munity structures in soil with and without application of a
biocontrol agent. This approach was applied to investi-
gate putative effects of the antifungal biocontrol strain
RU47 on fungal communities in three arable soils. The
effects of RU47 were statistically evaluated with refer-
ence to fungal community differences in conjunction with
field site or cropping history. Application of such an
equivalence test is not restricted to environmental risk
assessment of biocontrol agents, but could be widely
applied to evaluate effects of strains released for biore-
mediation or other purposes, of pesticides applied on
agricultural fields, or effects of genetically engineered
plants on soil microbial communities.

Results

Analysis of fungal community structures in three arable
soils

To evaluate the influence of the biocontrol strain
P. jessenii RU47 on the fungal soil community, bulk soil
samples were taken from three soils in separated plots
that were treated with strain RU47 in the previous sea-
son and from soil untreated with RU47 (experimental
station IGZ in Großbeeren, GB), as indicated in Fig. 1.
Soil types were diluvial sand (DS), alluvial loam (AL) and
loess loam (LL). The three soils have been translocated
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40 years ago. Soil LL was also sampled from the original
field near Klein Wanzleben (KW; Germany), 150 km
apart from GB. The difference in the fungal community
structure in soil LL between the two sites reflected an
acceptable deviation caused by different weather condi-
tions, crop rotation and agricultural practice. Two blocks
in GB were sampled to determine the deviation of the
fungal community structure of each soil caused by
slightly different cropping histories or random drift due to
spatial separation. The differences between these two
blocks are considered as alternative approach for defin-
ing a threshold for acceptable deviations here.
Fungal ITS regions were amplified and analysed by

barcoded high-throughput pyrosequencing. The amplicon
sequencing data were processed by two contrasting
strategies to reduce the risk of missing putative effects
due to biased assembly of OTUs. The first approach
aimed to reliably assign as many sequences as possible
to a minimal number of OTUs by a database-dependent
strategy (DBDS). For that, all ITS sequences were
assigned to the most similar species hypothesis (SH) in
the UNITE database (Koljalg et al., 2013). If a sequence
had the same similarity to more than one SH, then it was
assigned to the more frequent SH in the dataset. OTUs
with low similarity to any fungal ITS were discarded.
Thereby, 97.9% of 407 239 sequences were assigned to
1607 OTUs. The 585 OTUs with sequences from at least
five samples were further analysed, representing 95.5%
of all sequences. The second strategy applied a strict
quality control of the sequences and a database-indepen-
dent assignment of sequences to OTUs using the pipe-
line SEED (V�etrovsk�y and Baldrian, 2013). In the final
SEED dataset, 61.4% of all sequences were retained that
were assigned to 2688 OTUs. The 828 OTUs with
sequences from at least three samples were further anal-
ysed, representing 59.1% of all sequences.
The method to generate the OTU-abundance table,

either by DBDS or by SEED, did hardly affect the repre-
sentation of the fungal community structure (Figs 2 and

3). The fungal communities in the three soils in site GB
and in soil LL in sites GB and KW were clearly sepa-
rated in principal component analysis (Fig. 2). The fungal
communities from the loamy soils LL and AL in GB were
highly similar on the first and second principal compo-
nents, but well separated on the third principal compo-
nent with the exception of a single sample from LL
which clustered with the AL samples. Communities of
soils DS (GB) and LL (KW) were least similar, as these
were best separated on the first principal component
which explained more of the variance than the second
and third principal component. The first three principal
components explained slightly less of the variance for
the SEED dataset compared to DBDS. The long-term
spatial separation of the two blocks in GB (15 m apart)
is reflected by differences in fungal community structure
(Fig. 3, where site KW is omitted from the analysis). The
block effect is most evident in the third principal compo-
nent. The soil type has a much stronger influence on the
fungal community structure, as this effect is reflected by
the first and second principal components (Fig. 3). The
block effect is stronger when phylogenetic information is
used as additional source of information. Then, it is visi-
ble also with inclusion of soils from both sites even
though this spatial effect is not evident for the field site
LL (KW) where the soil is mixed by tillage (Fig. 4).
Most of the fungal ITS in all three soils analysed

belonged to the Ascomycota, which comprised about
72% in the loamy soils AL and LL and considerably less
(60%) in the sandy soil DS (Table 1). Basidiomycota and
Zygomycota were also major phyla in these soils with on
average 14% or 11% respectively. Their relative abun-
dances significantly differed between soils with specifi-
cally low abundance of Basidiomycota in soil LL and
Zygomycota in soil AL. Chytridiomycota, Glomeromycota
and Rozellomycota were rather minor components of the
fungal communities (Table 1). The most abundant fami-
lies in all three soils were Nectriaceae and Mortierel-
laceae. Their relative abundance significantly differed

Fig. 1. Scheme of the experimental plot
systems in Großbeeren (Germany) with
three soil types in two blocks, and the
field near Klein Wanzleben (Germany),
where soils from inoculated and control
plots were sampled.
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among soils and was negatively correlated (R2 = 0.38).
On genus level, fungal ITS assigned to Cryptococcus and
Mortierella were most frequently detected in all three
soils, but with significant differences between soils
(Table 2). Mortierella was especially abundant in the
loamy soils AL and LL, while Cryptococcus was highest in
the sandy soil DS. The abundance of the phytopathogenic
species Rhizoctonia solani, which was the target of the
biocontrol strain RU47, was below detection limit.

Equivalence of fungal communities in soils with and
without exposure to RU47

To objectively evaluate whether putative effects of the
inoculated biocontrol strain RU47 on non-target fungi are

acceptable in a risk evaluation, a tolerable fungal com-
munity change was biologically defined and a statistical
test procedure was developed to test whether effects
exceed this range or whether the fungal communities
are equivalent in this respect. In this study, the tolerable
community deviation was defined by two criteria, first the
community deviation in the same soil LL between the
original field KW and the field plots in GB where the soil
was translocated. The second stricter criterion was
defined by the deviation between fungal communities in
the same soil at the same site GB in two equally treated
separated blocks which had slightly different cropping
histories.
To statistically prove that an effect is below the thresh-

old at 5% significance level, a one-sided confidence

Fig. 2. Principal component analysis of
fungal communities at two sites, Klein
Wanzleben (KW) and Großbeeren (GB),
and in three soils (LL for both sites, AL
and DS for site GB). Fungal OTU tables
were retrieved by two contrasting
strategies for sequence assignment,
DBDS (upper plot) or SEED (lower plot),
as explained in the text. The first principal
component (PC1) is indicated by a colour
gradient.
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interval for a meaningful statistic S expressing the dis-
similarity between treated and untreated soils can be
constructed. The interval must lie completely below that
threshold. For each soil type, a separate test was carried
out as it would not be acceptable to have very similar
samples in one soil type overrule dissimilar samples in
another type of soil. Given a boundary, the test used
OTU counts from soil GB only. Counts from site KW
were just used to compute this boundary for the accept-
able region that the statistic S has to be guaranteed to
fall into with a given probability. To calculate that proba-
bility a normal distribution-based approach was used
because bootstrap methods did perform too liberal in
simulation studies with the given sample sizes. This put

a constraint on the choice of dissimilarity measure that
can be used in the test procedure as the resulting distri-
bution of the test statistic has to match well enough. The
relative Bray–Curtis distance was chosen as dissimilarity
measure. The details of the procedure are given in the
Experimental procedures section.
Application of the statistical test for equivalence

showed with high significance that fungal communities in
RU47 treated and in control plots had smaller dissimilari-
ties than the reference thresholds (Table 3). This equiva-
lence was significant for both boundary criteria, the site
differences in community structure for untreated LL soils
and the stricter block differences. For the latter, the
boundary is on average half as high as for the site

Fig. 3. Principal component analysis of
fungal communities in three soils sampled
at the experimental plot systems in
Großbeeren (Fig. 1).
Samples from plots treated with the
bacterial inoculant strain RU47 are
indicated by a cross. Full or open circles
indicate samples from adjacent blocks.
The first principal component (PC1) is
indicated by a colour gradient. The
underlying OTU tables were generated by
two contrasting strategies for sequence
assignment, DBDS (upper plot) or SEED
(lower plot), as explained in the text.
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difference, but still the measured relative Bray–Curtis
distance between RU47 treated and control plots is only
half of the boundary on average as well. Equivalence of
the fungal communities was shown with both datasets,
SEED and DBDS.
To validate the method further, we reversed the roles

of the block factor and the control/RU47 factor for
another analysis. This has not been carried out for bio-
logical reasons but to demonstrate the sensitivity of the
procedure on the choice of the boundary. Now it is
tested if the different blocks of the same kind of soil and
the same treatment (control/RU47) can be proven

equivalent. The boundary criterion that is constructed
from differences among sites remains unchanged. The
second boundary criterion now is constructed from the
differences between control and RU47 plots. The tests
are significant for the loam soils LL und AL when the site
differences are used as criterion. All other tests are not
significant (Table 4).
Even though the blocks of each of the loam soils have

to be considered equivalent if site differences are con-
sidered a negligible difference, they are different enough
that RU47 treated soils and their controls have to be
considered equivalent in comparison to them.

Testing for (tolerable) effects of strain RU47 on fungal
communities in the three soils

Although the equivalence tests above have shown that
the putative effects of RU47 on the fungal communities
are tolerable, that does not mean that they do not exist
at all. Therefore, we looked with multivariate methods for
differences between fungal communities at location GB
with and without previous exposure to RU47. Principal
component analysis suggested small differences
between the fungal composition of inoculated and non-
inoculated soils, albeit much smaller than those between
different soils or blocks (Fig. 3).
To test these putative differences for significance, we

used two different recently developed tests for high-
dimensional data. The first one (called PCuniRot) uses
principal components in a very condensed test statistic
(Ding et al., 2012). Significance is assessed in repeated
computations of the test statistic in rotated samples.
The second test version (called Pearson test here,
Kropf and Adolf, 2009) uses a multivariate similarity
measure, in this case the Pearson correlation coeffi-
cients. Both tests have been applied to the DBDS ver-
sion of the OTU table as well as to the SEED version,
always using the log-transformed abundances and

Fig. 4. Rotated principal component analysis of fungal communities
at two sites, Klein Wanzleben and Großbeeren, and in three soils
(LL red–black in Klein Wanzleben, AL blue and DS green).
Triangles indicate RU47-treated plots and circles controls. Full or
open symbols indicate samples from adjacent blocks. Fungal OTU
tables were retrieved by sequence assignment strategy DBDS, as
explained in the text.

Table 1. Structure of the fungal communities on phylum level in soils treated with the biocontrol strain RU47 or controls (C) based on the
assignment of ITS sequences by DBDS.

Phylum

Percentages of sequences assigned to phylum � SE (n = 8)

Soil DS (GB) Soil AL (GB) Soil LL (GB)
Soil LL (KW)

C RU47 C RU47 C RU47 C

Ascomycota 59 � 5 65 � 3 73 � 2 70 � 1 75 � 2 75 � 1 73 � 1
Basidiomycota 23 � 5 13 � 2 17 � 2 18 � 2 10 � 1 8 � 1 13 � 2
Zygomycota 14 � 2 16 � 2 6.5 � 0.4 7.9 � 0.6 11 � 1 12 � 1 12 � 1
Chytridiomycota* 2.6 � 0.4 3.4 � 0.6 2.3 � 0.3 3.2 � 0.8 2.4 � 0.3 3.4 � 0.6 1.2 � 0.1
Glomeromycota 1.0 � 0.8 0.1 � 0.0 0.2 � 0.1 0.2 � 0.1 0.7 � 0.4 0.5 � 0.3 0.1 � 0.0
Rozellomycota* 0.3 � 0.1 1.3 � 0.2 0.1 � 0.0 0.2 � 0.0 0.1 � 0.0 0.3 � 0.1 0.1 � 0.0
Unidentified 1.3 � 0.1 1.9 � 0.5 1.0 � 0.5 0.7 � 0.1 0.8 � 0.1 1.2 � 0.3 0.4 � 0.1

*. Significantly different abundance in RU47-treated samples compared to controls (univariate stratified permutation tests, unadjusted P < 0.05).
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including all three soils in a common analysis. We used
factorial models with three factors for the effects of soil
type, block and inoculation (Table 5). As can be seen

from the P-values of all test versions and from the R2

values for the Pearson versions, the soil type was the
major influence on the fungal community. The block

Table 2. Relative abundances of the most frequent genera of the fungal communities in the analysed soils based on the assignment of ITS
sequences by DBDS.

Genus

Percentages of sequences assigned to the genus � SE (n = 8)

Soil DS (GB) Soil AL (GB) Soil LL (GB)
Soil LL (KW)

C RU47 C RU47 C RU47 C

Cryptococcus 9 � 1 8 � 1 15 � 2 15 � 2 6.2 � 0.9 4.8 � 0.4 3.3 � 0.9
Mortierella 13 � 2 15 � 2 6.4 � 0.4 7.7 � 0.6 11 � 1 12 � 1 12 � 1
Pseudeurotium 0.7 � 0.3 0.4 � 0.3 0.4 � 0.1 0.4 � 0.1 5 � 1 5 � 1 0.9 � 0.2
Humicola 3.9 � 0.5 4.5 � 0.4 3.0 � 0.6 2.4 � 0.3 2.0 � 0.4 1.8 � 0.3 1.3 � 0.1
Tetracladium 3.8 � 0.5 3.7 � 0.7 3.3 � 0.5 3.6 � 0.5 4.4 � 0.6 3.8 � 0.6 0.7 � 0.1
Guehomyces 7 � 4 1.5 � 0.5 0.5 � 0.1 0.4 � 0.1 2.2 � 0.7 1.6 � 0.3 6 � 1
Chaetomium 1.9 � 0.3 1.7 � 0.3 1.0 � 0.1 0.7 � 0.1 2.5 � 0.3 3.1 � 0.4 0.7 � 0.1
Cladorrhinum 1.8 � 0.6 1.4 � 0.3 2.8 � 0.6 2.0 � 0.4 1.8 � 0.3 1.6 � 0.4 0.1 � 0.0
Fusarium 0.6 � 0.1 0.5 � 0.1 2.2 � 0.2 2.2 � 0.3 2.5 � 0.5 2.2 � 0.3 2.5 � 0.3
Ascobolus 0.8 � 0.4 2.5 � 2.1 0.0 � 0.0 0.0 � 0.0 0.1 � 0.0 0.1 � 0.1 0.0 � 0.0
Stachybotrys 0.1 � 0.0 0.4 � 0.1 1.1 � 0.1 1.2 � 0.1 2.2 � 0.2 2.2 � 0.2 0.1 � 0.0
Rhizophlyctis* 0.08 � 0.03 0.3 � 0.1 0.04 � 0.02 0.1 � 0.0 0.2 � 0.1 0.2 � 0.1 0.1 � 0.0

*. Significantly different abundance in RU47-treated samples compared to controls (univariate stratified permutation tests, unadjusted P < 0.05).
This was also shown for the low abundant genera (< 0.05%) Entoloma, Ascochyta, Candida, Scytinostroma, Amylocorticium, Pholiota, Serpula,
Calonectria, Coccidioides, Hymenoscyphus and Dichotomomyces.

Table 3. Equivalence of fungal communities in RU47-treated and non-treated soils.

Assessment of upper boundary Soil Dataset Boundary Bray–Curtis (SD)
Equivalence test
(P-value)

Difference among sites (soil LL) DS DBDS 0.61 0.24 (0.03) 4.1E-08
SEED 0.66 0.26 (0.03) 1.1E-08

AL DBDS 0.61 0.15 (0.02) 3.7E-12
SEED 0.66 0.17 (0.02) 1.2E-12

LL DBDS 0.61 0.16 (0.03) 1.1E-09
SEED 0.66 0.19 (0.03) 6.0E-10

Difference among blocks at site GB DS DBDS 0.38 0.24 (0.03) 4.8E-04
SEED 0.40 0.26 (0.03) 3.9E-04

AL DBDS 0.22 0.15 (0.02) 9.8E-04
SEED 0.22 0.17 (0.02) 7.4E-03

LL DBDS 0.25 0.16 (0.03) 4.9E-03
SEED 0.26 0.19 (0.03) 1.2E-02

Table 4. Equivalence of fungal communities in different blocks.

Assessment of upper boundary Soil Dataset Boundary Bray–Curtis (SD)
Equivalence test
(P-value)

Difference among sites (soil LL) DS DBDS 0.61 0.38 (0.03) 8.9E-01
SEED 0.66 0.40 (0.03) 2.6E-01

AL DBDS 0.61 0.22 (0.03) 2.6E-05
SEED 0.66 0.22 (0.03) 4.7E-04

LL DBDS 0.61 0.25 (0.03) 7.6E-04
SEED 0.66 0.26 (0.03) 1.1E-03

Difference among control/RU47 at site GB DS DBDS 0.24 0.38 (0.03) 1.0E-00
SEED 0.26 0.40 (0.03) 1.0E-00

AL DBDS 0.15 0.22 (0.03) 9.9E-01
SEED 0.17 0.22 (0.03) 9.3E-01

LL DBDS 0.16 0.25 (0.03) 1.0E-00
SEED 0.19 0.26 (0.03) 9.8E-01
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effects were also highly significant but distinctly smaller
in the effect measure R2. Inoculation effects of RU47
were by a magnitude smaller in the effect measure.
Nevertheless, they were statistically significant in nearly
all versions with exception of the SEED version of the
PCuniRot test. Interactions between soil type and inocu-
lation were significant only in the DBDS versions with
only very small effect measures. The latter fact is also
illustrated in Fig. 3, where for soil LL, the dots with
crosses (RU47-treated plots) are shifted a bit compared
to the dots without crosses in the third principal compo-
nent, whereas this effect is not seen so clearly in the
other soils.
To identify putative responders to RU47, multiple uni-

variate stratified permutation tests on effects of RU47 on
fungal groups on different taxonomic levels were carried
out. The low abundant phyla Chytridiomycota and Rozel-
lomycota tended to increase in RU47-treated plots,
resulting in unadjusted P-values below 0.05 (Table 1).
None among the abundant families and only Rhizophlyc-
tis among the abundant genera gave some evidence for
a response to RU47 albeit not a decrease (Table 2).
Table 6 shows the OTUs with most probable responses
to RU47 as revealed by stratified permutation tests.
Responding OTUs from SEED were assigned to the
genera Mortierella, Cylindrocarpon, Cryptococcus,
Myrothecium and an unidentified SH of the Ascomycota.
Responding OTUs from DBDS were assigned to Crypto-
coccus terricola, Spizellomyces dolichospermus and an
unidentified SH of the Rozellomycota. Less abundant
responders (< 0.1%) did not contribute much to the
result of the multivariate tests. The P-values either
decreased or hardly changed when they were removed
from the SEED OTU table (0.023 or 0.004 for PCUniRot
or Pearson test, respectively), while removing the high
abundant responders resulted in higher P-values (0.33
or 0.09 for PCUniRot and Pearson test, respectively),
indicating that changes in the relative abundance of
these OTUs mostly contributed to the significance of the
putative RU47 effects.

Discussion

In this study, we developed a statistical procedure to test
whether an inoculated microbial strain has at most an
acceptable effect on the indigenous microbial commu-
nity. By the application of this test procedure, we
showed that the antifungal inoculant RU47 that targeted
the disease caused by R. solani had such a minor effect
on the fungal communities in the three soils that the
inoculation can be considered as practically equivalent.
The method of how the high-throughput amplicon
sequencing data were processed and assigned to OTUs
did hardly affect the results, although two highly contrast-
ing methods were chosen, SEED and DBDS. Probably
the most delicate part of the equivalence test is the
determination of the thresholds for a tolerable change in
the microbial community. We determined that boundary
experimentally. This presupposes the existence of an
influence of other factors on the sample elements or a
proper subset of the samples. The effect of this influence
must be acceptable from an ecological point of view. We
considered the deviation caused by having the same
type of soil in different locations and under different agri-
cultural practice as a starting point, as such influences
on fungal communities are generally accepted and have
never been associated with any risk. We were able to
make this difference easier to accept by not only having
the same type of soil but actually the same soil sepa-
rated years ago in a region of comparable climatic condi-
tions. We choose the difference between non-inoculated
LL soils at these two sites as a boundary for the accept-
able region. It might be reasonable to question the
acceptability of the difference between the LL soil sites
as boundary for the other types of soil. To back up the
evidence provided by this boundary, we constructed a
second type of boundary as well. The drift in fungal com-
munity structure due to separation of soils in two blocks
at the site GB and slight differences in cropping history
of these blocks provided us with a measurable boundary
for each type of soil that should be even more generally
acceptable.
Samples that are used to determine the boundaries

have to be checked to exclude effects of unusual varia-
tion. With increasing number of replicates, this becomes
less important. We found one replicate of soil LL in GB
that was more similar to soil type AL than to the samples
from soil LL in a principle component analysis (Figs 2 and
3). We decided to not exclude this replicate from the anal-
ysis since it equally influences the computation of the
boundary as well as the difference between control and
inoculated groups. As the latter has to be significantly
smaller than the former, its effect would in the case of a
failure of the first kind increase the distance between the
test groups more than it would increase the boundary,

Table 5. Multivariate statistical tests on the effects of RU47, soil
type or block on the fungal community structure.

P-value from
PCUniRot test P-value (R²) from Pearson test

Effect
DBDS
data

SEED
data DBDS data SEED data

RU47 0.033 0.120 0.006 (0.014) 0.005 (0.013)
Soil < 0.001 < 0.001 < 0.001 (0.433) < 0.001 (0.723)
Block < 0.001 < 0.001 < 0.001 (0.066) < 0.001 (0.316)
RU47 9

Soil
0.043 0.368 0.008 (0.001) 0.775 (0.002)
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thereby decreasing the probability that this failure might
occur. All P-values for the test of equivalence stayed sig-
nificant when that one LL replicate was excluded from
boundary determination or from the whole analysis. Spe-
cial care was taken to not unnecessarily increase the com-
plexity of the computer program that was written to test
the data, simulate the experiment to guide the choices in
the construction of the algorithm and validate its non-liber-
ality on bootstrapped samples from the real data.
The relative Bray–Curtis distance was chosen as dis-

similarity measure because it was mostly conservative in
our studies that used random simulated data and was
completely conservative in our simulation studies that
used bootstrap samples from the real dataset. Apart
from its ecological explanation, the Bray–Curtis distance
also has meaning as an information theoretical diver-
gence and has the basic structure of some phylogeneti-
cally enhanced distances, as explained in the
supplement. While some authors prefer to use model-
based approaches (Warton et al., 2012), others show
that transformed data analysed with the usual methods
work just as well (ter Braak and �Smilauer, 2015). We
also believe that there is no theoretical framework that
describes ecological data perfect so far, although we
prefer to see the samples as empirical distributions of
OTUs when they are assessed in its entirety (instead of
assessed by their most characteristic OTU).
To estimate the standard deviation, a two-sample jack-

knife procedure avoiding systematic underestimation of
the real standard deviation under given conditions (Karlin
and Rinott, 1982) was used. The estimation of the quan-
tile of the statistic S (that also is used in the calculation
of the P-value) is the only step in the procedure that
depends on normality. Asymptotically that assumption is
met, but sample sizes are usually small in current eco-
logical studies. As it is the statistic S that has to be

normal and not the single OTU, it is not straight forward
to convince one selves of this property given a small
sample set. Because normality is only a sufficient condi-
tion for non-liberality of the confidence interval, we used
bootstrapped samples to test the coverage rate of that
interval directly. The coverage rate was 100% in 10 000
runs of simulation. We observed the first confidence
interval that missed its parameter once when we
dropped to 30% confidence. The situation was different
in the planning phase, where we used normal distributed
OTUs and saw liberal estimations for some sets of low-
dimensional simulation parameters although the Bray–
Curtis distance behaved relatively well and never
dropped below 90% coverage. Some statistically moti-
vated dissimilarities that we constructed dropped below
20%. We designed the procedure to be applicable to as
many meaningful measures as possible, including mea-
sures that utilize phylogenetical information (Fukuyama
et al., 2012).
Different equivalence tests can be combined without

the need to adjust the level of the tests. For instance, if
there were some OTUs known that should under no cir-
cumstances change in relative abundance beyond a
known limit, standard univariate equivalence tests could
be calculated for each of these OTUs additionally to the
community-based approach described here. Only if each
of the tests was significant with unadjusted P-value,
equivalence is proven. Each test added to that proce-
dure decreases the power of the procedure. Those
OTUs that are checked separately do not need to be
included in the community-based approach. This also
holds true for OTUs that are the intended targets of the
inoculated strain. The same principle can be used to
show equivalence in multiple kinds of populations like
bacteria or mesofauna depending on expected effects.
The results of the equivalence tests presented in this

Table 6. OTUs showing a response to RU47 inoculation as indicated by univariate stratified permutation tests (unadjusted P < 0.05) for fungal
OTUs with at least 0.1% abundance.

Data SH Unadjusted Genus, Phylum / Species BLASTN%
identity

No. of sequencesa

(07FU) P-value C RU47

SEED SH183635 0.002 Mortierella, Ascomycota 100.0 598 1231
SH202969 0.038 Cylindrocarpon, Ascomycota 100.0 370 498
SH183335 0.004 Geomyces, Ascomycota 98.6 311 346
SH190017 0.016 Cryptococcus, Basidiomycota 100.0 51 279
SH204317 0.002 Unidentified, Ascomycota 99.3 137 89
SH174294 0.023 Cylindrocarpon, Ascomycota 100.0 82 160
SH175276 0.039 Myrothecium, Ascomycota 99.5 78 155

DBDS SH190017 0.007 Cryptococcus terricola 100.0 133 679
SH183868 0.035 Spizellomyces dolichospermus 99.6 27 507
SH180899 0.038 Unidentified, Rozellomycota 96.8 64 177

aSum of fungal ITS sequences in all three soils (GB) adjusted according to the total numbers of sequences from RU47-treated and control
plots.
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paper would not change, but equivalence would only be
assumed if the tests results for bacteria or other groups
were significant, too. We did not consider this when we
planned the experiment, because RU47 targets fungi
and it is there where we suspect its strongest effects.
Although we believe that is true, statistically everybody
has the right to doubt it, because significant equivalence
tests only prove equivalence (in respect to the boundary
values) in those variables that actually are analysed.
This trivial fact is much more important in tests for equiv-
alence than it is in tests for difference, where a differ-
ence anywhere shows that groups differ. We do not
intend to propose focussing on single populations as a
standard for good agricultural research practices – espe-
cially given the dropping costs for analyses.
Logically related to the question what should be mea-

sured is the question when to measure it. The effect of a
treatment often is maximal shortly after it is supplied. In
terms of risk assessment, the interesting effects are
those that last. We chose a time to gather the samples
before a new crop is planted which might be affected by
a modified fungal community. We believe that this is the
most important point in time to know about any effects.
We tried to incorporate phylogenetic information in our

analysis. This performed poorly with the methods that try
to combine abundance and phylogenetic data directly as
was to be expected regarding the low correlation
(r ¼ 0:02) between the phylogenetic similarity of pairs of
OTUs and the correlation of their abundances in our
data. We therefore switched to thinking about how to
improve just the PCA plot that we already have. In factor
analysis, a given PCA result is sometimes rotated to
maximize the correlation of its components with the origi-
nal variables to increase interpretability. There are far
too many variables in this dataset for this strategy to be
useful. We thought of rotating the PCA result such that it
correlates maximally with phylogenetic information. We
found out that this can be carried out with an ordinary
canonical correlation analysis if advantage of the dual
problem of the PCA is taken and the input matrices are
reduced in their dimensions first. The result accentuates
the block effect to some extend and shows block, soil
and site effect in a two-dimensional plot (Fig. 4). The
types of soil now lay ordered as we would have initially
expected: the loamy soils are separated from DS, and
the KW samples are next to samples from the same
type of soil. We failed to produce a picture of equal qual-
ity by random rotations.
The RU47 treatment increased the abundance of the

members of the Chytridiomycota and Rozellomycota.
Chytridiomycota are typically saprobic fungi with flagel-
late gametes, degrading refractory materials such as
chitin and can also act as mycoparasites (Barr, 1990;
Kirk et al., 2008). Most of the diversity of the phylum

Rozellomycota is known only from environmental
sequences (Hibbett and Taylor, 2013). In the SEED
dataset, Nectria was the only genus that responded to
RU47 by decreasing abundance in the treated soils. The
members of this genus are typically saprotrophs or para-
sites of trees (Kirk et al., 2008). The increase in putative
responders indicated that effects of the inoculum on fun-
gal communities are rather due to the added nutrients
than caused by the antifungal activity of RU47.
Compared to the DBDS, the SEED-based data pro-

cessing resulted in a substantially lower number of
sequence reads that passed the quality control steps.
However, the representations of the fungal community
structure from both datasets were surprisingly similar
(Fig. 3). In multivariate statistical tests of RU47 effects
on fungal communities, the smaller SEED dataset was
less sensitive than DBDS (PCUniRot, Table 5). In both
datasets, SH190017 was identified as a responder to
RU47 which was based on 330 assigned sequences for
SEED and 812 sequences in DBDS. So DBDS might
allow for a better sensitivity using a higher percentage of
the sequences and assignment to less OTUs, but with a
higher risk of false assignments and thus might increase
the noise in the dataset.
The disease suppression effects of beneficial microbial

inoculants often are based on an antagonistic mode of
action which microbes use to establish in competition
with other microbes in a natural ecosystem. The majority
of commercially available microbial inoculants belong to
the genera Pseudomonas, Bacillus and Trichoderma
which are dominant representatives of the natural soil
and plant microbiome (Chet, 1987; Berg et al., 2005,
2006; Haas and D�efago, 2005). Still, the application of
microbial inoculants in the environment is an irreversible
process and, if applied to plant-associated microenviron-
ments such as the root zone in sufficient numbers, may
perturb indigenous microbial populations and the ecolog-
ical functions associated therewith (Bankhead et al.,
2004; Winding et al., 2004). To date, only a few cultiva-
tion-independent studies have focused on the effects of
beneficial microbial inoculants with disease-suppressive
activity (Scherwinski et al., 2007) or commercialized
plant stimulants (Chowdhury et al., 2013) on indigenous
microbes. The inoculant RU47 investigated in this study
showed in vitro weak antifungal activity against the tar-
get pathogen R. solani (Adesina et al., 2007) and did
not produce known antibiotic substances. We found only
minor effects on fungal communities in both soils which
were tolerable based on our boundary criteria. However,
dependent on the properties of the inoculant the non-tar-
get effects can be more severe. Hence, model studies
which assess the impact of various biocontrol strains
with different properties on non-target population are
needed for environmental risk assessment. Also, such
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studies should be part of the development process of
potential biocontrol strains and will support economically
meaningful decisions in the beginning of the product
development. Here, we provide the biometrical tools for
the data analysis of such an environmental risk assess-
ment of biocontrol strains, which could be analogously
applied to other environmental applications like plant
growth promoting microbes, biodegraders, genetically
modified organisms or ecotoxicological studies.

Experimental procedures

Experimental design, sampling and sample processing

Bulk soil samples were taken from experimental plot sys-
tems in Großbeeren (Germany, 52.4° N, 13.3° E) and a
field near Klein Wanzleben (Germany, 52.1° N, 11.4° E)
as indicated in Fig. 1. The plot systems in Großbeeren
contained three different soils which have been translo-
cated there in the year 1972 (Ruehlmann, 2013). Two
blocks of plots, 15 m apart from each other, were sam-
pled. Each block consisted of three plots, each of which
contained a different soil type and was divided into
2 m 9 2 m subplots. Soil types were Arenic-Luvisol
(diluvial sand, DS), Gleyic-Fluvisol (alluvial loam, AL)
and Luvic-Phaeozem (loess loam, LL) (R€uhlmann and
Ruppel, 2005). To evaluate the influence of the biocon-
trol strain P. jessenii RU47 on the fungal soil community,
samples were collected in spring from plots that were
treated with strain RU47 in the previous season and
from untreated control plots (n = 4 per treatment, soil
and block). In the preceding season, each lettuce seed-
ling was treated with 2 9 108 cells of RU47 one week
before planting and with 3 9 109 cells two days after
planting in the field (Schreiter et al., 2014b).
On the same day, samples were taken in the field

near Klein Wanzleben from where soil LL originated.
The difference in the fungal community structure in soil
LL between the two sites, Großbeeren and Klein Wan-
zleben, gives an estimate of acceptable deviation
caused by different weather conditions and crop rota-
tions. The two sites are 150 km apart. Deviation of the
fungal community structures of each soil between the
two blocks in Großbeeren, which were spatially sepa-
rated for 40 years, gives an estimate of random drift of
the fungal community or changes caused by slightly dif-
ferent cropping histories of the two blocks. Crops planted
in the years 2000 to 2012 were pumpkin, nasturtium,
nasturtium, phacelia, amaranth, wheat, pumpkin, nastur-
tium, wheat, broccoli, wheat, Teltow turnip, lettuce, let-
tuce for block 5, and pumpkin, nasturtium, pumpkin,
amaranth, wheat, wheat, pumpkin, nasturtium, wheat,
wheat, lettuce, lettuce for block 6.
Each subplot was sampled by mixing ten cores

(30 cm of top soil; 2 cm core diameter) of bulk soil. DNA

was extracted from 0.5 g of soil using the FastDNA
SPIN Kit for Soil after two 30 s lysis steps with a Fas-
tPrep FP120 bead beating system, and further purified
by the GENECLEAN SPIN Kit, as described by the man-
ufacturer (MP Biomedicals, Heidelberg, Germany). The
fungal ITS fragments were amplified using the primer
pair ITS1F (CTTGGTCATTTAGAGGAAGTAA) / ITS4
(TCCTCCGCTTATTGATATGC) as previously described
(Weinert et al., 2009). The products were purified with a
Minelute PCR purification kit (Qiagen, Hilden, Germany).
Barcoded amplicon pyrosequencing was performed at
the Biotechnology Innovation Center (BIOCANT, Cantan-
hede, Portugal) on a 454 Genome Sequencer FLX plat-
form according to standard 454 protocols (Roche – 454
Life Sciences, Branford, CT, USA). Briefly, the purified
PCR products were used as target to amplify the ITS1
region with fusion primers containing the Roche-454 A
and B Titanium sequencing adapters, an eight-base bar-
code sequence in adaptor A, and specific sequences
ITS1F / ITS2 (GCTGCGTTCTTCATCGATGC) targeting
fungal ribosomal genes. The data were submitted to
NCBI SRA with accession number SRP073893.

Generation of OTU-abundance tables from ITS
sequences

The amplicon sequencing data were processed by two
contrasting strategies. DBDS aimed to reliably assign as
many sequences as possible to a minimal number of
OTUs. For that, all ITS sequences were assigned to the
most similar species hypothesis (SH) in the UNITE ver-
sion 7.0 database (Koljalg et al., 2013) using Megablast
(Camacho et al., 2009). The SH database is available at
https://unite.ut.ee/repository.php. If a sequence had the
same bit score to more than one SH, then it was
assigned to the most abundant SH in the dataset. For
processing the MEGABLAST results, the java tool BLAST-

PARSER was written and integrated into a Galaxy workflow
(https://galaxyproject.org). It makes a unique assignment
of the sequences to an OTU and generates the OTU-
abundance table. OTUs were discarded when the
assigned sequences were < 95% similar to all SH, or
had < 100-bp alignment length or had highest similarity
to non-fungal ITS. The other approach applied the pipe-
line SEED 1.2.1 (V�etrovsk�y and Baldrian, 2013) to achieve
a strict quality control of the sequences and a database-
independent assignment of sequences to an OTU.
Briefly, pyrosequencing noise reduction was performed
using the DENOISER 0.851 (Reeder and Knight, 2010). Chi-
meric sequences were detected using USEARCH 7.0.1090
(Edgar, 2010) and deleted. Only sequences longer than
310 bases were retained, and full ITS2 regions of these
sequences were extracted using ITSX (Bengtsson-Palme
et al., 2013). Full ITS2 regions were clustered using
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UPARSE implemented within USEARCH (Edgar, 2013) at a
97% similarity level. Consensus sequences were con-
structed for each OTU, and the closest hits at a genus
or species level were identified using BLASTN against UNITE

version 7 and GenBank for fungi. Ecology was assigned
based on genus-level best hits to those taxa whose gen-
era show consistency in this respect using published
data (Tedersoo et al., 2014).

Statistical test for equivalence of fungal communities

The equivalence testing procedure is based on the rela-
tive Bray–Curtis distance between fungal communities
of the control group and the RU47-treated group. The
procedure computes a test statistic S which represents
the dissimilarity between two groups of samples. For
that statistic, a conservative approximation of its vari-
ance is constructed (Karlin and Rinott, 1982). Our sam-
ples consist of relative counts of OTUs which sum to
one for each sample, i.e. discrete empirical probability
densities on the space of all OTU types. We start by
separating our samples corresponding to their stratum
and group. We have two groups: treatment and control.
In our case, we also have two strata: samples from the
first block and samples from the second block. This
should not be confused with the distinction of the differ-
ent soil types, which was considered by completely sep-
arate analyses for each soil. All strata that are used in
that procedure must be allowed to compensate each
other’s results. The assumption is that if equivalence is
true for one stratum, it also is true for the others.
Although it is hard to find a realistic case where vari-
ances differ between strata while that assumption is
met, the variance estimator is guaranteed to be unbi-
ased or conservative for any statistic, always, but it
tends to be suboptimal in terms of power. For each stra-
tum, two discrete empirical probability densities are
computed by averaging all its samples that belong to
the treatment group for the first distribution and all that
belong to the control group for the second distribution.
From both empirical distributions, we calculated the rela-
tive Bray–Curtis distance as dissimilarity measure, sepa-
rately for all strata. This can be carried out by
calculating the sum of absolute values of the group dif-
ference and scaling the result by 0.5, as shown in the
supplements. The average of these values over all
strata is our test statistic S. We used an unweighted
average. Instead of averaging the samples, we could
have averaged pairwise Bray–Curtis distances. Both are
valid procedures, but the approach taken here has the
advantage of mitigating the difference between group
distance and average pairwise sample distance.
To estimate the variance of S, a stratified two-sample

jackknife procedure was used. Technically, a variance

for the test statistic with a reduced number of samples is
estimated. At the start of the procedure, a value r is
fixed that describes the proportion of sample elements
used in each step of the jackknife procedure. For each
group j 2 f1; 2g in each stratum i 2 1; . . .;mf g; a
reduced sample size qij ¼ _r � nij is calculated where nij
are the original sample sizes. We chose r ¼ 3=4, which
in our case means that in each combination of stratum
and group 3 of the 4 available sample elements are
used in a jackknife step. The procedure is repeated over
all possible combinations of samples with exactly qij

samples in stratum i and group j (yielding N ¼ Q
i ;j

nij
qij

� �
runs). In each run, a test statistic S�

k ðk ¼ 1; . . .;NÞ is
calculated as described above, starting with averaging of
the selected samples in each stratum-group-entity and
ending with averaging the relative Bray–Curtis distances
over the strata. No sample is allowed to switch group or
stratum. These N values of the jackknife test statistics
are averaged S� ¼ N�1 PN

k¼1 S
�
k ; and the square of the

difference between each value and that average is cal-
culated and averaged again and scaled by the fraction
of left out samples per entity. The final variance estimate
is given by the formula: cr2ðSÞ ¼ ð1� r Þ�1N�1PN
k¼1

ðS�
k � S�Þ2

The value of the test statistic and its standard devia-
tion can be used under assumption of normality to com-
pute the upper limit UL of the one-sided confidence

interval for S by ¼ S þ t1�a;n�2m �
ffiffiffiffiffiffiffiffiffiffiffiffifficr2 Sð Þ

q
. We used a

t-distribution instead of a normal distribution to be on the

conservative side. For degrees of freedom, we chose to

use n � 2m, i.e. the total sample size minus number of

groups times number of strata.
The boundary B is calculated in the same way as the

test statistic S. In our case where we chose the block
factor to compute the boundary, this was carried out by
switching the variable group with strata. In the other
case where we used the location (GB vs. KWL) for
untreated samples of LL soil instead, the location was
used in place of group in the procedure described
above. Concerning the equivalence test, this also is the
only place where samples from the second location
where used. There is no need to estimate the variance
of B. If S changes systematically with changing sample
sizes, B must have the same structure of sample sizes
as S has (or the resulting bias should be proved to be
conservative, i.e., decrease B in respect to S).
The equivalence test can be finalized by comparing

the upper limit UL of the one-sided 95% confidence
interval of the test statistic S with the boundary B. The
test is significant (i.e. equivalence is proven) if �B. The
probability of the set of points right to the equivalence
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boundary B is the P-value of the test (using the t-distri-
bution as described above).
We suggest using a balanced design, but the imple-

mented program does work for all designs for which it is
possible to define r as long as there is no empty resam-
pled entity and the maximal sample size in an entity is
below 64. Both latter limitations were introduced for com-
putational convenience and are unrelated to the algo-
rithm described. The first limitation is both for
computational and theoretical reasons. This jackknife
procedure is only guaranteed to be non-liberal if the ratio
r is constant over all group-strata combinations. A small
deviation from that ratio may be not too far away from
the theoretical results. The program accepts an input
parameter for a tolerance value to check if the ratio of
the number of chosen samples and the sample size is
approximately equal to r (e.g. if we would have excluded
the one LL sample that clustered with AL soil from the
analysis, there would be only 3 samples instead of 4).
When three-fourth of those three samples, i.e. 2.25, are
to be selected, only 2 would be selected and checked
that | 2=3 – 3=4 | < tolerance value.
The program code including a description (‘README’)

and the raw data of this study can be downloaded from
‘https://www.researchgate.net/publication/301770482_da
ta_Statistical_test_for_tolerability_of_effects’, doi: 10.13140/
RG.2.1.3287.6407.

Statistical testing for effects of RU47 on fungal
communities

Assignments of sequences to OTUs by DBDS and
SEED resulted in two tables representing the OTU-abun-
dance structure of the fungal communities of all sam-
ples. Relative abundances within each sample were log-
transformed (log[relative abundance * 1000 + 1]) to
ameliorate deviations from normal distribution. Samples
from plot systems in Großbeeren were analysed by mul-
tivariate statistics to test for significant effects of the
inoculated strain RU47 on fungal communities, while tak-
ing the additional factors soil and block into account.
Two factorial multivariate statistical tests with three fac-
tors were applied. PCUniRot is based on principal com-
ponent analysis combined with a modified ANOVA test
statistic for the framework of a general linear model
(Ding et al., 2012). This statistic uses a weighted combi-
nation of the sums of squares for the first q principal
components (q determined by the Kaiser criterion). Rota-
tion tests are then applied to derive the P-value. The
other test (called Pearson test here) is based on Pear-
son correlation coefficients used as multivariate similarity
measures for pairs of sample vectors (Kropf and Adolf,
2009). The test statistic describes the multiple correla-
tions between the similarity measures for all pairs of

sample vectors and the corresponding differences in the
factor level of the factor of interest for the same pairs of
sample vectors after eliminating the influence of all other
factors. The P-value for the test is again derived in rota-
tion tests. Additionally, the squared multiple correlation
coefficient R2 as effect measure can be interpreted as
the proportion of variability in the observed similarity
measures explained by the factor tested. These tests
are more powerful in high-dimensional settings with
small sample sizes than competing tests in many situa-
tions (Ding et al., 2012).
Individual OTUs which were likely influenced by the

inoculation of RU47 were determined by a stratified per-
mutation test (Good, 2000). In contrast to an ANOVA,
the concept of this type of test remains valid even for
groups with zero variance as was common in our data.
The data were not log-transformed as this test procedure
works correct on relative counts. As a test statistic, the
sums of the absolute differences between replicates in
each group and stratum were added. Stratification allows
pooling evidence. Soil type and block were chosen as
strata. Control/RU47 labels were randomly permutated
10 000 times. Permutations were restricted to stay inside
the same stratum.

PCA rotation by canonical correlation to phylogenetic
similarities

The phylogenetic similarities between all pairs of OTUs
are given as a p � p matrix M . The abundance table X
in this case is a p � n matrix of relative OTU abundan-
cies transformed using the logarithm and centralized for
each OTU afterwards. The motivation of the method sug-
gests double-centred data, but this would be limited to
PCAs on covariance matrices. The way described here
also works on top of correlation matrices. We use a
covariance matrix, but the results between double-
centred and centring OTUs only were hardly visible. The
n abundancy and p similarity columns are different kinds
of measurements for each OTU. A canonical correlation
between both matrices produces an orthonormal matrix
as a result, which can be used as generalized rotation
transformation. First, we have to reduce the dimensions
of matrices to get meaningful results. The reduced abun-
dance matrix used corresponds to the principle compo-
nents that were used in our plots. The PCA was
performed with the OTUs seen as variables resulting in
a n � r matrix Y of principle components. This matrix
cannot be used directly in our canonical correlation,
because there the OTUs are seen mainly as sample ele-
ments which correspond to a transposed view of the
problem. But for each PCA exists a dual PCA formula-
tion that we can use, such that ðp � 1ÞY ¼ X 0UK�1=2,
where the eigenvector column matrix U and eigenvalue
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diagonal matrix K are solutions to the eigenvalue equa-
tion XX 0U ¼ UK. The scaling constant ðp � 1Þ and the
column-scaling matrix K�1=2 are not important for our
current purposes, because we can standardize the com-
ponents afterwards as we like. The matrix U, we will use
as input for the canonical correlations, and the resulting
r � r orthonormal matrix R will be used to define the ‘ro-
tated’ PCAs ~Y :¼ X 0UR. The dimension of the phyloge-
netic matrix M has to be reduced, because it is so big
that the columns of U already lie in a subspace of the
column space of M , without any rotation. We use a PCA
on M as well (i.e. an eigenvalue equation on M 0M) to
reduce its dimension and take the k first eigenvectors as
input for the canonical correlations. We used Scree-plots
to determine r and k .
Rotating the eigenvectors rearranges the variance that

corresponds to each eigenvector (i.e. their eigenvalue).
It can be necessary to change the order of those vectors
after the procedure described above to choose the vec-
tors that contain the maximum of variance. Because the
columns of X 0 are centralized, and those of X 0U orthogo-
nal (as those of X 0UK�1=2 are), the columns of X 0U are
uncorrelated. X 0UR is a linear transformation of those
columns; therefore, the variances of its columns can be
calculated by adding the variances of the columns X 0U
times the squares of the corresponding factors which are
the squares of the entries of R. If k is the vector of col-
umn variances corresponding to Y (i.e. the diagonal
entries of K ) and R2 is the matrix R squared element-
wise, the rotated variances are equal to k0R2. The pro-
portion of total variance can be calculated by dividing
that vector by the total variance.
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