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Abstract 

Background: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders in the world, but 
still lack of effective drug treatment. Gynostemma Pentaphyllum (Thunb.) Makino (GpM), a Chinese medicinal herb, 
plays important roles in anti-inflammation, anti-oxidative stress and anti-tumor, which has been reported to amelio-
rate cognitive impairment of AD. However, the neuroprotective mechanism of GpM remains unclear. This study aims 
to investigate the targets and possible signaling pathways of GpM in the treatment of AD.

Methods: Active compounds of GpM and their putative target proteins were selected from Traditional Chinese 
Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. AD-associated targets were identified from 
GeneCards, the Online Mendelian Inheritance in Man (OMIM) database and the Therapeutic Target Database (TTD). 
The intersecting targets of GpM and AD were identified and Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis were carried out to analyze the mechanism of them. Compound-target-pathway (CTP) 
network and protein–protein interaction (PPI) network were constructed and analyzed to elucidate the correlation 
between compounds, proteins and pathways. Molecular docking was performed to further demonstrate the possibil-
ity of GpM for AD.

Results: A total of 13 active compounds of GpM, 168 putative target proteins of compounds and 722 AD-associated 
targets were identified. Eighteen intersecting targets of GpM and AD were found and the epidermal growth fac-
tor receptor (EGFR), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), nitric oxide synthase in endothelial (NOS3) and 
serum paraoxonase/arylesterase 1 (PON1) were selected as the primary targets of GpM in the treatment of AD. The 
neuroprotective effect of GPM was related to a variety of pathways, including amoebiasis, HIF-1 signaling pathway, 
cytokine-cytokine receptor interaction and so on.

Conclusions: Our findings elucidate the active compounds, targets and pathways of GpM involved in effects of anti-
AD. The novel mechanism of GpM against AD provides more treatment options for AD.

Keywords: AD pathology, Molecular mechanisms, Alzheimer’s disease, Gynostemma pentaphyllum (Thunb.) Makino, 
Network pharmacology
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Background
Alzheimer’s disease (AD) is a neurodegenerative dis-
ease with progressive dementia which is characterized 
by neuronal loss, neuroinflammation and pronounced 
memory decline. Epidemiological findings show that 
the incidence rate of AD is increasing with age. Taking 
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care of AD patients require a lot of time and financial 
resources, which brings huge burden and impact to 
society and family [1]. Current studies have demon-
strated that extracellular accumulation of amyloid beta 
(Aβ) peptide [2], dysfunction of cholinergic system [3], 
neurofibrillary tangles (NFTs) of hyper-phosphorylated 
tau protein [4], and multiple genes including ABCA7, 
BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1 and 
DSG2 are involved in the occurrence and progression of 
AD [5]. Substantial studies and clinical trials have dem-
onstrated that it is difficult to develop one medicine for 
the treatment of AD, because the pathogenesis is very 
complex, including neurochemicals, amyloid and tau 
pathological processes, mitochondria, inflammatory 
pathways and neuroglia [6]. Chinese herbal medicine 
has a long history and plays a great role in the treat-
ment of nervous system diseases. Its neuroprotective 
effect in AD has been confirmed by previous studies 
[7]. In a recent review, the authors believe that Chinese 
herbal medicine may be beneficial in improving cogni-
tive function of AD patients. However, a largescale and 
multi-center research should be conducted to evaluate 
its benefits in the treatment of AD [8]. Therefore, the 
development of traditional Chinese medicine in the 
treatment of AD should be a long-term exploration.

Gynostemma pentaphyllum (Thunb.) Makino (GpM) 
is one of Chinese medicinal herbs, mainly distributed in 
northeast and southeast of Asia. Previous studies have 
shown that GpM has various effects, such as anti-inflam-
mation [9], anti-oxidative stress [10], immune regula-
tion [], anti-cancer [12], anti-aging [13] and prevention 
of cardiovascular diseases [14]. In recent years, GpM has 
been shown to alleviate brain lesion in chronic cerebral 
hypoperfusion [15] and process neuroprotection against 
1-methyl-4-phenylpyridinium [16]. It is worth noting that 
GpM has been shown strong neuroprotective effects in 
the treatment of AD [1718]. However, the neuroprotective 
mechanism of GpM in AD has not been fully studied.

In the present study, in order to investigate the 
potential pharmacological and molecular mecha-
nisms of GpM in the treatment of AD, multiple data-
bases and bioinformatics analysis were applied. The 
results showed that multiple pathways and targets were 
involved in the neuroprotection of GpM in the treat-
ment of AD.

Methods
Screening for active compounds, putative target proteins 
and AD‑associated genes
The active compounds of GpM and their putative tar-
get proteins were obtained from the Traditional Chinese 
Medicine Systems Pharmacology (TCMSP) Database and 
Analysis Platform (https:// old. tcmsp-e. com/ tcmsp. php) 

[19]. As a unique database containing a large number of 
herbs, active ingredients, and their targets, TCMSP con-
tains pharmacokinetic properties of active compounds, 
such as oral bioavailability (OB), drug-likeness (DL) and 
so on. Oral bioavailability, as one of the most crucial 
pharmacokinetic parameters, shows the rate at which 
drugs enter the blood circulation. The greater the OB 
value of a compound, the more likely it is to become an 
effective drug. The drug-likeness (DL) represents the pos-
sibility of the compound becoming a drug. Due to poor 
pharmacological activity, most compounds in Traditional 
Chinese Medicine (TCM) cannot become effective drugs. 
OB ≥30% and DL ≥0.18 are considered as the criteria for 
screening clinical drugs [20]. The putative target proteins 
of active compounds were collected from TCMSP data-
base, because the database contains the target proteins of 
each active compound. All information about the active 
compounds and putative target proteins of GpM was 
obtained from TCMSP database.

The AD-associated genes in this study were collected 
from 3 databases, which are GeneCards (http:// www. genec 
ards. org/) [21], Online Mendelian Inheritance in Man 
(OMIM) (https:// omim. org/) [22] database and Therapeu-
tic Target Database (TTD) (http:// db. idrbl ab. net/ ttd/) [23].

Gene ontology (GO) analysis and Kyoto encyclopedia 
of genes and genomes (KEGG) pathway enrichment 
analysis
Eighteen overlap targets between 168 putative com-
pound target proteins and 722 AD-associated genes were 
considered as therapeutic targets for AD. In order to 
elucidate the pathogenesis of AD and clarify the mecha-
nism and function of GpM, 18 intersecting targets were 
analyzed by Metascape (http:// metas cape. org/) [24]. 
Metascape is a website integrating gene annotation and 
analysis resources with more than 40 databases, com-
bined with GO analysis and KEGG pathway enrichment 
analysis. Results were considered significant at P < 0.01.

Compound‑target‑pathway network establishment
The information of the components, targets and path-
ways was intuitively analyzed and shown a compound-
target-pathway network by using Cytoscape 3.8.2 
software (http:// www. cytos cape. org/) [25].

Protein‑protein interaction (PPI) networks establishment
PPI data were obtained from the STRING database 
(https:// string- db. org/) [26], and the result of PPI data 
was visualized by Cytoscape software.

Molecule docking
By using Discovery Studio Client v19.1.0.18287, 
AutoDockTools-1.5.6 and PyMOL, the binding sites, 

https://old.tcmsp-e.com/tcmsp.php
http://www.genecards.org/
http://www.genecards.org/
https://omim.org/
http://db.idrblab.net/ttd/
http://metascape.org/
http://www.cytoscape.org/
https://string-db.org/
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capacities and interactions between compounds and 
proteins were analyzed [27–29]. The crystal struc-
tures of core targets were obtained from the Pro-
tein Data Bank (http:// www. pdb. org/) [30, 31]. The 
3D chemical structural formulas of quercetin were 
obtained from PubChem (https:// pubch em. ncbi. nlm. 
nih. gov/) [32].

Results
Active compounds and putative target proteins
We used system pharmacology to find potential phar-
macological mechanisms, and each step in defining 
the role of GpM on AD is shown in Fig.  1. Based on 
the TCMSP database, 13 compounds were selected as 

active compounds from GpM (Table-S1), as shown in 
Fig. 2.

The putative target proteins were screened by docking 
and binding scores. A total of 168 putative target proteins 
along with the 13 active compounds were captured by 
using TCMSP (Table-S2). The value of score represents 
the relationship between the active compound and the 
target protein. The higher the score is, the closer the rela-
tionship is. The 13 active compounds, 168 putative target 
proteins and their relationships were shown in Fig. 3.

AD‑associated targets and the intersecting targets 
between GpM and AD
We searched three databases and obtained 722 genes 
entries as AD-associated targets. Then, 18 overlap 
targets between 168 putative target proteins of GpM 

Fig. 1 Network pharmacology for identifying mechanisms of Gynostemma pentaphyllum (Thunb.) Makino (GpM) in treating Alzheimer’s disease

Fig. 2 The two-dimensional (2D) molecular structures of 13 active compounds of GpM

http://www.pdb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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and AD-associated targets were regarded as intersect-
ing targets (Fig.  4), including ATP-binding cassette 
sub-family G member 1 (ABCG1), acetylcholinest-
erase (ACHE), alcohol dehydrogenase 1C (ADH1C), 
cytochrome P450 1A2 (CYP1A2), cytochrome P450 
3A4 (CYP3A4), epidermal growth factor receptor 
(EGFR), estrogen receptor beta (ESR2), heat shock 
protein beta-1 (HSPB1), Interleukin-10 (IL10), inter-
leukin-1 beta (IL-1β), interleukin-6 (IL-6), Insulin 
receptor (INSR), potassium voltage-gated channel 
subfamily H member 2 (KCNH2), neutrophil cyto-
sol factor 1 (NCF1), nitric oxide synthase, endothe-
lial (NOS3), urokinase-type plasminogen activator 
(PLAU), serum paraoxonase/arylesterase 1 (PON1), 
peroxisome proliferator-activated receptor delta 
(PPARD), listed in Table-S3.

Fig. 3 The construction of Compound-Target network. Different active compounds (the circular nodes with orange) were presented in circle. The 
size of the circular node represents the targets number of compounds. The putative target proteins (the circular nodes with blue) were listed inside 
the circle made by active compounds

Fig. 4 The Venn diagram. The Venn diagram showed the overlap of 
putative target proteins of GpM and AD-associated targets
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By screening the active components corresponding to 
the intersecting targets, three compounds, rhamnazin 
(GpM2), isofucosterol (GpM7) and quercetin (GpM9), 
were selected to be as the main compounds.

Enrichment analysis of intersecting targets
GO and KEGG enrichment analyses were performed 
to identify biological functions and metabolic path-
ways associated with intersecting targets. Filtering 
with P value < 0.01, a minimum count of 3, 337 GO 
entries and 47 KEGG pathway entries were identi-
fied (Table-S4, Table-S5). Of the 337 GO entries, 
there were 314 for biological processes, 8 for cellular 
components, and 15 for molecular function. Next, we 
used bubble diagram to visually display the results of 
GO analysis and KEGG pathway enrichment analysis 
(Figs. 5, 6, 7 and 8).

As shown in Fig.  5, the results showed that the 15 
molecular functions of the intersecting targets of 
GpM and AD mainly concentrated in steroid binding 

(GO:0005496), monooxygenase activity (GO:0004497), 
protein homodimerization activity (GO:0042803), 
oxidoreductase activity (GO:0016491), heme bind-
ing (GO:0020037), growth factor receptor binding 
(GO:0070851), tetrapyrrole binding (GO:0046906), 
oxidoreductase activity, acting on paired donors, 
with incorporation or reduction of molecular oxygen 
(GO:0016705), signaling receptor regulator activ-
ity (GO:0030545), cytokine activity (GO:0005125), 
cytokine receptor binding (GO:0005126), protein 
domain specific binding (GO:0019904), phospho-
lipid binding (GO:0005543), receptor ligand activity 
(GO:0048018) and signaling receptor activator activity 
(GO:0030546).

As shown in Fig.  6, the 8 cellular components 
of the intersecting targets of GpM and AD were 
mainly involved in plasma membrane protein com-
plex (GO:0098797), endocytic vesicle (GO:0030139), 
membrane raft (GO:0045121), membrane microdo-
main (GO:0098857), focal adhesion (GO:0005925), 

Fig. 5 The molecular functions of Gene Ontology (GO) analysis. The significantly enrichment of molecular functions (MF) with P < 0.01
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cell-substrate junction (GO:0030055), recep-
tor complex (GO:0043235) and Golgi membrane 
(GO:0000139).

As represented in Fig.  7, the top 30 biological pro-
cesses from the intersecting targets of GpM and 
AD were principally linked to regulation of hor-
mone levels (GO:0010817), diterpenoid metabolic 
process (GO:0016101), terpenoid metabolic pro-
cess (GO:0006721), isoprenoid metabolic pro-
cess (GO:0006720), regulation of protein secretion 
(GO:0050708), cellular response to oxidative stress 
(GO:0034599), cholesterol metabolic process 
(GO:0008203), positive regulation of small molecule 
metabolic process (GO:0062013), response to wound-
ing (GO:0009611), positive regulation of cell migra-
tion (GO:0030335), secondary alcohol metabolic 

process (GO:1902652), sterol metabolic process 
(GO:0016125), response to inorganic substance 
(GO:0010035), cellular response to reactive oxy-
gen species (GO:0034614), positive regulation of cell 
motility (GO:2000147), positive regulation of cel-
lular component movement (GO:0051272), posi-
tive regulation of locomotion (GO:0040017), cellular 
response to chemical stress (GO:0062197), response 
to lipopolysaccharide (GO:0032496), alcohol met-
abolic process (GO:0006066), protein secretion 
(GO:0009306), establishment of protein localization 
to extracellular region (GO:0035592), response to 
molecule of bacterial origin (GO:0002237), protein 
localization to extracellular region (GO:0071692), reg-
ulation of lipid localization (GO:1905952), regulation 
of inflammatory response (GO:0050727), regulation 

Fig. 6 The cellar components of Gene Ontology (GO) analysis. The significantly enrichment of cellar components (CC) with P < 0.01
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of peptide hormone secretion (GO:0090276), response 
to drug (GO:0042493), regulation of peptide secre-
tion (GO:0002791) and regulation of peptide transport 
(GO:0090087).

As shown in Fig.  8, the top 30 KEGG signaling 
pathways of the intersecting targets were Amoe-
biasis (ko05146, hsa05146), HIF-1 signaling pathway 
(hsa04066), foxo signaling pathway (hsa04068), Afri-
can trypanosomiasis (ko05143, hsa05143), Malaria 
(ko05144, hsa05144), Inflammatory bowel disease (IBD) 
(ko05321, hsa05321), Retinol metabolism (hsa00830, 

ko00830), Drug metabolism - cytochrome P450 
(hsa00982, ko00982), Leishmania infection (hsa05140, 
ko05140), Metabolism of xenobiotics by cytochrome 
P450 (hsa00980, ko00980), Pertussis (ko05133, 
hsa05133), Chemical carcinogenesis (ko05204), 
Cytokine-cytokine receptor interaction (hsa04060, 
ko04060), Chemical carcinogenesis (hsa05204), Estro-
gen signaling pathway (ko04915), AGE-RAGE signaling 
pathway in diabetic complications (ko04933, hsa04933), 
Chagas disease (American trypanosomiasis) (ko05142, 
hsa05142) and insulin resistance (hsa04931).

Fig. 7 The biological processes of Gene Ontology (GO) analysis. The significantly enrichment of biological processes (BP) (Top 30) with P < 0.01
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The compound‑target‑pathway (CTP) and protein‑protein 
interaction (PPI) networks of the intersecting targets
The compound-target-pathway (CTP) and protein–pro-
tein interaction (PPI) networks were performed to dem-
onstrate the potential mechanism of GpM on AD. The 
CTP network showed that 18 proteins and 28 related 
KEGG pathways (after deleting redundancy) (Fig.  9). 
The PPI network demonstrated the interaction among 

the 15 intersecting target proteins (three stray nodes 
were hidden) (Fig.  10). According to the degree, epi-
dermal growth factor receptor (EGFR), interleukin-1 
beta (IL-1β), interleukin-6 (IL-6), nitric oxide synthase, 
endothelial (NOS3), serum paraoxonase/arylester-
ase 1 (PON1) were selected as the core target proteins 
to determine binding energy by means of a molecular 
docking analysis.

Fig. 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The KEGG pathway enrichment analysis with P < 0.01 (Top 
30) is showed in Fig. 8



Page 9 of 17Wang et al. BMC Complementary Medicine and Therapies           (2022) 22:57  

Molecular docking
To further verifying the function of GpM on AD, we 
selected quercetin, one of the three compounds, as the sig-
nificant compound for the all 5 core targets are part of its 
putative target proteins. With the utilization of AutoDock-
Tools-1.5.6, OpenBabel-2.4.1 and Pymol-2.2.0 software, the 
interactions between quercetin and the 5 core targets were 
analyzed. Figures 11 and 12 showed the molecule docking 
of 5 core targets with quercetin. The binding energy of each 
protein with quercetin was shown in Table  1. The lower 
binding energy is, the higher the affinity between quercetin 
and the target (protein) is. The hydrogen bonds were found 
between the active site of proteins and quercetin.

The 3D model of quercetin in the active site of IL-6 was 
showed in the Ray tracing diagram in Fig. 11A. The binding 
energy of quercetin with IL-6 was found to be − 7.14 kcal/
mol. The type, distance and number of the binding com-
plexes of the active site of IL-6 and quercetin were shown 
in the enlarged drawing in Fig. 11B. The following atoms, 
ARG-179, SER-176, GLU-172, PHE-173, LYS-66 SER-169 
and MET-67 formed a pocket around quercetin by hydro-
gen bonding. Similarly, the binding interaction of querce-
tin and IL-1β was shown in Fig. 11C. The following atoms, 
GLU-37, GLN-39, MET-20 and LYS-63 were connected to 
quercetin by hydrogen bonding (Fig. 11D). The other three 
docking result were shown in Fig. 12.

Fig. 9 The compound-target-pathway (CTP) network. The 3 active compounds were presented by blue diamond nodes in the center. The target 
proteins (orange round nodes) which are associated with AD were situated as a round enclosing the 3 compounds. The pathways were listed at the 
outermost and presented by green round rectangles
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To further verify the results of molecular docking, 
we applied Discovery Studio Client to investigate other 
chemical bonds including Pi-Alkyl, Pi-Sigma and Pi-Pi 
interaction between quercetin and 5 core targets. The 
results were shown in Figs. 13 and 14.

Figure  13A showed the 3D model of quercetin and 
IL-6. To explicitly exhibit the binding environment, 
2D model was shown in Fig.  13B. Several bonds were 
obtained between quercetin and IL-6. There were Pi-
Alkyl interactions between quercetin and amino acid 
residues of IL-6 including LEU-165, LYS-66 and ALA-
58. Pi-Sigma interactions exited in active sites includ-
ing GLU-55 and LEU-64. Figure  13C showed the 3D 
model of quercetin and IL-1β. The binding environ-
ment between quercetin and IL-1β was shown in 
Fig.  13D. There were Pi-Alkyl interactions between 
quercetin and IL-1β at the active sites of LYS-209, 
PRO-118, ALA-117 and ARG-120. In addition, Pi-Pi 
interactions existed between quercetin and the active 
site of HIS-115.

The other three docking results were shown in Fig. 14. 
All the chemical bonds we found with their bond length 
were shown in Table  2. Multiple interaction sites and 
chemical bonds indicated that there was great affinity 
between quercetin and core targets.

Discussion
With the development of components analysis of Chinese 
herbs, TCM shows the characteristics of effective multi-
target and multi-component [34]. GpM or some of its 
components have been shown to possess clinical effects 

in cardiomyopathy [35], diabetes mellitus [36] and cancer 
[12]. In recent years, many clinical studies have shown 
that GpM plays a positive role in alleviating cognitive 
impairment and brain damage of AD [17, 18]. Although 
GpM has above medicinal value, the related mechanism 
remains unclear.

In this study, we explored the active compounds of 
GpM, and selected the intersecting targets between the 
compounds and AD. 18 targets from the 168 putative 
target proteins of compounds and 722 AD-associated 
targets were obtained. Furthermore, multiple signal-
ing pathways, biological processes, cellular components 
and molecular functions were identified by GO/KEGG 
pathway enrichment analysis. It is considered that seven 
pathways were closely related to the pathogenesis of 
AD including amoebiasis (ko05146, hsa05146), HIF-1 
signaling pathway (hsa04066), African trypanosomiasis 
(ko05143, hsa05143), foxo signaling pathway (hsa04068), 
malaria (ko05144, hsa05144), inflammatory bowel dis-
ease (IBD) (ko05321), retinol metabolism (ko00830, 
hsa00830). Five essential proteins (IL-6, IL-1β, NOS3, 
PON1 and EGFR) were screened out using CTP and 
PPI network. Due to good molecular docking results 
presented by Auto Dock Tools, it is theoretically proved 
they were target proteins for further study of the anti-AD 
effects of GpM.

Consistent with our results, HIF-1 signaling path-
way and foxo signaling pathway are involved in the 
occurrence and development of AD, which has been 
reported in previous studies [37, 38]. Inflammatory 
bowel disease (IBD) is considered to be closely related 

Fig. 10 The Protein-Protein Interaction (PPI) network. The top 15 intersecting target proteins were shown in circular nodes with different gradations 
of red. The gradation of red and size of the nodes expressed the interaction degree on the network
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to pathogenesis of AD, based on studies of gut-brain 
axis [39]. Additionally, vitamin A deficiency has been 
demonstrated in patients with AD [40], while vitamin 
A supplementation can alleviate the development of 
AD [41]. More interestingly, our study suggests that 
the AD-associated pathways may relate to amoebia-
sis, African trypanosomiasis and malaria, which are all 
caused by parasitic infections and may invade the cen-
tral nervous system. Existing studies have shown the 
existence of anti-parasitic infection and anti-AD drugs 

(such as GSK-3 inhibitors) [42], which imply that the 
incidence of AD may relate to parasitic infection. To a 
certain extent, it shows the credibility and innovation 
of our conclusion.

Previous studies have shown that inflammatory 
cytokines are involved in AD [43, 44]. A recent study 
showed that elderly individuals with amyloid-beta deposi-
tion had higher levels of IL-1β and IL-6 [45]. In addition, 
it has been reported that higher level of Aβ42 can reduce 
endothelial NO synthase (eNOS, NOS3), cyclic GMP 

Fig. 11 The molecular docking diagrams of quercetin and IL-6, IL-1β using AutoDockTools. The active sites of the proteins, the binding distances, 
molecular docking model between the proteins and the quercetin were presented in Fig. 11. (A, B) quercetin and the protein IL-6 (− 7.14 kcal/mol); 
(C), (D) quercetin and the protein IL-1β (− 6.21 kcal/mol)
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(cGMP) and protein kinase G (PKG) activity [46]. This is 
consistent with our finding that GpM may prevent against 
AD by regulating the activity of NOS3 and the levels 
of IL-1β and IL-6. PON1 is a new factor associated with 
impaired cognition and may play a role in the development 
of AD [47]. It is reported that EGFR is related to AD, and 
EGFR inhibitors can be used as burgeoning therapeutic 

Fig. 12 The molecular docking diagrams of quercetin and NOS3, PON1, EGFR using AutoDockTools. The active sites of the proteins, the binding 
distances, molecular docking model between the proteins and the quercetin were presented in Fig. 12. (A) quercetin and the protein NOS3 
(− 5.59 kcal/mol); (B) quercetin and the protein PON1 (− 6.74 kcal/mol); (C) quercetin and the protein EGFR (− 5.52 kcal/mol)

Table 1 The binding energy of quercetin and 5 targets

Note: The binding energy < − 5 kcal/mol was considered as high affinity between 
quercetin and the target [33]

Binding energy
(kcal/mol)

IL‑6 IL‑1β NOS3 PON1 EGFR

quercetin −7.14 −6.21 −5.59 − 6.74 −5.52
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strategy for AD [48]. These data suggest that targeting on 
IL-1β, IL-6, NOS3, PON1 or EGFR may be effective in the 
treatment of AD, which supports our finding that proteins 
with good molecular docking are the important target pro-
teins for neuroprotection of GpM in the treatment of AD.

In conclusion, based on network pharmacology and 
bioinformatics, this study illustrated the key targets 
and molecular mechanisms of GpM, which will provide 
instructive suggestions for the further study of GpM in 
the treatment of AD.

Conclusions
In this study, we applied network pharmacology and 
bioinformatics to analyze the therapeutic effect of GpM 
on AD. The active components and putative targets of 
GpM were explored and discussed systematically. Com-
paring putative targets of GpM with known AD related 
genes, constructing and analyzing CTP/PPI networks, 
5 important proteins were identified, showing strong 
therapeutic potentials against AD. Through enrichment 
analysis, we further identified GpM as a promising drug 

Fig. 13 The molecular docking of quercetin and IL-6, IL-1β using Discovery Studio Client. (A) the 3D model of quercetin and protein IL-6, (B) the 2D 
model of quercetin and protein IL-6, (C) the 3D model of quercetin and protein IL-1β, (D) the 2D model of quercetin and protein IL-1β
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Fig. 14 The molecular docking of quercetin and NOS3, PON1, EGFR using Discovery Studio Client. (A) the 3D model of quercetin and protein NOS3, 
(B) the 2D model of quercetin and protein NOS3, (C) the 3D model of quercetin and protein PON1, (D) the 2D model of quercetin and protein 
PON1, (E) the 3D model of quercetin and protein EGFR, (F) the 2D model of quercetin and protein EGFR
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with multiple components, targets and pathways for the 
treatment of AD. In addition, we demonstrated the feasi-
bility of GpM in the treatment of AD by molecular dock-
ing. In conclusion, our findings provide a new idea for 
the neuroprotection of GpM and contribute to the devel-
opment of GpM in the treatment of AD. However, data 
mining and analysis alone is not enough. In future, we 
will conduct experiments to confirm our points and pro-
vide more effective treatment measures for AD patients.
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