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Abstract: Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides
exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical
applications. This inspiring chemical nucleus has promoted several research groups to investigate
the synthesis of new members exploring new clinical applications. In this study, a novel series
of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a–k were synthesized, and their antibacterial and
antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria
and fungi. Most of the tested compounds exhibited promising antibacterial activity against both
Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed
the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial
growth at the lowest concentrations were subjected to further evaluation for their anti-virulence
activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested
compounds reduced the biofilm formation and diminished the production of virulence factors in
both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate
their virulence. In this context, in silico study has been conducted to assess the ability of OBS to
compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS
receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system
that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for
such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f
and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials,
anti-virulence and anti-tumor agents.

Keywords: oxazolone; sulfonamide; antimicrobial; anti-virulence; antibiofilm; anticancer

1. Introduction

The increasing pervasiveness of microbial resistance represents a major issue globally.
Despite the discovery and significant development of several new antibiotics, multidrug-
resistant bacteria are still becoming more prevalent, and are creating a serious public health
risk for the population [1,2]. It has been estimated that 700,000 people in the world die every
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year from antibiotic-resistant infectious bacterial diseases. In the absence of new prevention
or treatment remedies, by 2050, it is estimated that 10 million people worldwide will die of
these infectious diseases each year [3]. Consequently, the development of a new, powerful
therapeutic approach to treat and kill Gram-negative, as well as Gram-positive, human
pathogens is urgently needed. It is well-recognized that antibiotics-resistant bacterial
infections are not due to free bacteria but rather to bacteria existing within a biofilm [4]. The
resistance of biofilm-forming bacteria to conventional antimicrobials is attributed to: (1) the
failure of the antimicrobial to penetrate the biofilm, (2) the evolution of complex drug
resistance properties, and (3) biofilm mediated inactivation or modification of antimicrobial
enzymes [5].

Conversely, heterocycles are a significant class of cyclic compounds that are considered
the prominent source of biologically active compounds due to their diverse structures [6–8].
Among them, oxazol-5-(4H)-one (2,4-disubstituted 5-oxo-4,5-dihydro-1,3-oxazole, also
known as azalactone or oxazolone) is one of the large varieties of interesting molecules
with numerous applications in chemistry and biology [9,10]. The exocyclic double bond in
position four of the oxazolone ring provides a new reactivity that allows the construction
of interesting derivatives [10]. Moreover, 2-phenyloxazol-5(4H)-ones with an additional
exocyclic double bond exhibits a wide range of biological activities such as antibacte-
rial [11], immunomodulatory [10,12,13], antidiabetic [14], antiviral [15], antifungal [16],
anticancer [17], anti-inflammatory [18], anti-HIV [19], anti-angiogenic [20], sedative [21],
and tyrosinase inhibitory activities [22], among others (Figure 1). Notably, there are nu-
merous drugs containing oxazolone motif in their structure such as the carbonate codrug,
CB-NTXOL-BUPOH (I), consisting of 6-β-naltrexol (the major active metabolite of naltrex-
one, a potent µ-opioid receptor antagonist used in the treatment of alcohol dependence
and opioid abuse) covalently linked by carbonate ester linkage to a modified form of hy-
droxybupropion (bupropion with oxazolone) [23]. Deflazacort (II) has anti-inflammatory
and immunosuppressive effects [24]. ZHD-0501 (III) is a metabolite of staurosporine
(STA) analog with an oxazolone scaffold, which inhibits the proliferation of several hu-
man and murine cancer cell lines [25]. Jadomycin (IV) is an antifungal with a unique
8H-benz[b]oxazolo [3,2-] phenanthridine pentacyclic skeleton produced by the bacterium
Streptomyces venezuelae ISP 5230 [26]. Posizolid (V) is an oxazolidinone antibiotic under
investigation by AstraZeneca for the treatment of bacterial infections [27]. Moreover, ox-
azolone scaffold is an attractive heterocyclic precursor which can be used as versatile
building blocks in organic synthesis, as they consist of “masked” amino acids and contain
numerous reactive sites allowing a diversity of possible modifications. Their reactivity
(nucleophilic attack to the carbon atom at position five of the oxazolone ring) makes them
excellent substrates for the preparation of structurally complex amino acids and highly
substituted heterocycles, enol acetate and benzoxazinone derivatives, phenylpyruvic acid,
imidazolinones, amino acids, amino alcohols, amides, dyes and triazinones [9,10,28]. The
azlactone transformations have allowed facile access to natural compounds and pharma-
ceutically and biologically intriguing molecules.

Furthermore, sulfonamide derivatives have evoked high favor and constitute privi-
leged structural motifs in medicinal chemistry because they exhibit a wide range of pharma-
cological activities [8] including anticancer [29,30], antibacterial [31], anti-tuberculosis [32],
anti-carbonic anhydrase [33], anti-fungal [34], anti-inflammatory [35], anti-diabetic [36],
antiviral [37], anti-oxidant [38], diuretic [36], antimalarial [39], and antithyroid [36], in
addition to protease inhibitory activity in vitro and in vivo, among others [36]. Obviously,
some sulfonamide derivatives have been approved by FDA for cancer therapy. For instance,
the third approved histone deacetylase (HDAC) inhibitor, Belinostat (VI), is approved to
treat T-cell lymphoma after Vorinostat and Romidepsin (Figure 2) [40]. The topoisomerase
II inhibitor, Amsacrine (VII), is approved to treat acute leukemias and malignant lym-
phomas through intercalating into the DNA of tumor cells (Figure 2) [41]. Additionally, the
highly selective Bcl-2 inhibitor, Venetoclax (VIII), is now approved for treatment of chronic
lymphocytic leukemia (CLL) patients with a 17p chromosomal deletion who have received
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at least one prior therapy (Figure 2) [42,43]. Moreover, sulfonamide moiety is usually
considered as an effective bioisostere of the carboxylic group because the distance between
two oxygen atoms is about similar in these two functional groups [44,45]. Therefore, sul-
fonamide motif could be engaged in a network of hydrogen bonds which are the same
as the carboxylic group with fewer drawbacks of the carboxylic group, such as metabolic
instability, toxicity, and limited passive diffusion across biological membranes [44,45].
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Motivated by the above information and based on bacterium being linked to cancer by
two mechanistic pathways—induction of chronic inflammation and production of carcino-
genic bacterial metabolites [46]—a series of new 5(4H)-oxazolone-benzene sulfonamide
derivatives were designed, synthesized and evaluated for their antibacterial, antifungal,
antibiofilm, anti-virulence and anticancer activities. Moreover, a molecular docking study
was carried out to investigate the binding mode and interaction of the most potent deriva-
tives into the active site of Pseudomonas aeruginosa quorum sensing (QS) receptor (PDB:
1ROS) that orchestrates the bacterial virulence [47,48].
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2. Results and Discussion
2.1. Chemistry

The chemical synthetic approach of the target compounds 9a–k is outlined in Schemes 1 and 2
As illustrated in Scheme 1. 4-Toluenesulfonyl anthranilic 3 was synthesized according
to the reported protocol via nucleophilic substitution reaction of anthranilic acid 1 with
p-toluensulfonyl chloride 2 in the presence of sodium hydroxide [47]. Compound 3 was
subjected to the same reaction with 1H-benzotriazole 4 in DCM using thionyl chloride
at room temperature to afford the benzene sulfonamide 5 in excellent yield. The latter
compound was further treated with glycine 6 in acetonitrile/H2O under basic conditions
to furnish (2-((4-methylphenyl)sulfonamido)benzoyl) glycine 7 (Scheme 1).
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Scheme 1. Synthesis of acid 7.

The former acid 7 was reacted with the appropriate aldehydes 8a-j using acetic
anhydride in the presence of anhydrous sodium acetate to give the desired oxazolone-
benzenesulfonamide derivatives 9a–k (Scheme 2). All the synthesized compounds were
in accordance with their expected structures which have been elucidated by various spec-
troscopic techniques such as 1H NMR and 13C NMR spectra and elemental analyses (see
Supplementary Materials).

2.2. Biological Screening
2.2.1. In Vitro Antimicrobial Activity
Minimum Inhibitory Concentrations (MICs) of Synthesized Compounds against Different
Gram-Positive and -Negative Bacteria

In order to evaluate the antimicrobial activities of synthesized compounds, their MICs
were determined against different Gram-positive and -negative bacteria, and fungi (Table 1).
Most of the tested compounds exhibited promising antibacterial activity. Compounds 9a,
9b, 9c, 9e and 9f were the most active derivatives with broad spectrum of activity against
Gram-positive and Gram-negative bacteria. Among them, 9a (with unsubstituted phenyl
group), 9b (4-methoxy) and 9f (4-NO2) were the most potent. The result of antifungal
activity screening showed that most of the tested derivatives had moderate, or weak
activity, or were inactive against the used fungal strains, as illustrated in Table 1. Ongoing
throughout the details, 9a (with unsubstituted phenyl group) showed a broad spectrum of
activity against all bacterial strains, in particular against Escherichia coli. However, 9a had
weak antifungal activity against Aspergillus niger and moderate antifungal activity against
Candida albicans.
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Table 1. Minimum inhibitory concentration (MIC) by µg/mL against standard strains of different microorganisms.

Compound

Gram-Positive Bacteria Gram-Negative Bacteria Fungi

Staphylococcus
aureus

ATCC 6538

Staphylococcus
epidermidis
ATCC 12228

Micrococcus
spp.

ATCC 10240

Pseudomonas
aeruginosae
ATCC 47085

Klebsiella
pneumoniae
ATCC 27736

Salmonella
typhimurium
ATCC 14028

Escherichia coli
ATCC 10536

Aspergillus
niger

ATCC 16404

Candida
albicans ATCC

10231

9a 4 4 4 8 4 4 2 32 16
9b 2 1 1 4 4 4 2 >32 >32
9c 8 4 4 16 8 8 4 8 4
9d 4 2 2 32 16 16 4 >32 >32
9e 2 2 2 8 2 4 4 16 8
9f 2 2 2 4 2 2 4 >32 >32
9g 2 2 2 16 8 16 2 >32 >32
9h >32 >32 >32 >32 >32 >32 >32 4 2
9i 2 2 2 >32 >32 >32 >32 >32 >32
9j 16 8 8 >32 >32 >32 >32 >32 >32
9k 4 4 2 >32 >32 >32 16 >32 >32

Amoxycillin 0.5 0.5 0.25 2 1 1 0.5 - -
Cefotaxime 0.5 0.25 0.25 1 0.5 1 0.125 - -

Sulphamethoxazole 2 2 1 4 2 2 1 - -
Nystatin - - - - - - - 4 4
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Replacement of hydrogen with the electron donating methoxy group, i.e., OBS 9b,
resulted in a 2-fold increase in the activity against Staphylococcus aureus, Staphylococcus
epidermidis, Micrococcus spp. and Pseudomonas aeruginosae and retained the same activity as
OBS 9a against Klebsiella pneumonia, Salmonella typhimurium and Escherichia coli. Introduction
of 2,5-dimethoxy group, as in OBS 9c, retained the same activity against S. epidermidis, and
Micrococcus spp. with a 2-fold decrease against S. aureus, P. aeruginosa, K. pneumonia, S.
typhimurium and E. coli. Replacement of hydrogen with trimethoxy groups, i.e., OBS 9d,
retained the same activity as 9a against S. aureus and improved (2-fold) activity against
S. epidermidis and Micrococcu89s spp. against compound 9a. Moreover, compound 9d
exhibited a slight decrease in activity (2-fold) against E. coli and a marked decrease in the
antibacterial activity against P. aeruginosa, K. pneumonia, and S. typhimurium. Introduction
of the weakly deactivating Cl group, as in compound 9e, retained the broad spectrum of
activity against all Gram-positive and -negative bacteria with improved potency (2-fold
increase in activity) against all Gram-positive organisms: S. epidermidis, and Micrococcus
spp. Additionally, compound 9e displayed more potency (2-fold increase) than 9a against
K. pneumonia and showed the same activity as 9a against P. aeruginosa and S. typhimurium,
while showing a 2-fold decrease in activity than 9a against E. coli. Introduction of the
strongly electron withdrawing NO2 group as in compound 9f, retained the broad spectrum
of activity against Gram-positive and -negative organisms with improved potency (2-fold)
against all strains except against E. coli (2-fold decrease in activity than 9a). Replacement
of phenyl group with benzyloxy group (9g) resulted in an improvement of antibacterial
activity against all Gram-positive organisms, S. epidermidis, and Micrococcus spp. Although
OBS 9g showed the same antibacterial activity as compound 9a against the Gram-negative
organism E. coli, it exhibited moderate antibacterial activity against K. pneumonia and weak
antibacterial activity against P. aeruginosae and S. typhimurium. Replacement of phenyl
group with naphthyl group (9h) resulted in a loss of activity against all bacterial strains but
surprisingly displayed the highest antifungal activity against Aspergillus niger and Candida
albicans with MIC 8 and 4 µg/mL, respectively. Replacement of naphthyl group in 9h with
heterocyclic moieties led to retaining the activity against Gram-positive organisms only.
On comparing these derivatives with compound 9a, we noticed that introducing 2-furyl
moiety (OBS 9i) led to a 2-fold increase against the three test Gram-positive strains S. aureus,
S. epidermidis, and Micrococcus spp. Installment of 2-thienyl group (9j) instead of the phenyl
group displayed a decrease in the activity of nearly 4-fold against Staphylococcus aureus
and 2-fold against S. epidermidis, Micrococcus spp. Shifting from phenyl group to 2-pyridyl
group (9k) led to an increase in the antibacterial activity by 2-fold against Micrococcus spp.
and retained the same activity as in compound 9a against S. aureus and S. epidermidis.

Antifungal Activity of Synthesized Compounds

Notably, compound 9h exhibited potent antifungal activity with MIC 4 and 2 µg/mL
against Aspergillus niger and Candida albicans, respectively. Compound 9c was second in
potency compared with 9h, and showed moderate antifungal activity with MIC 8 and
4 µg/mL against Aspergillus niger and Candida albicans, respectively. Compound 9k showed
moderate activity against Candida albicans and was weak against Aspergillus niger with MIC
8 and 16 µg/mL, respectively. Compound 9a displayed weak antifungal activity against
Candida albicans and very weak antifungal activity against Aspergillus niger with MIC 16
and 32 µg/mL, respectively. The rest of the compounds were inactive as antifungal agents,
with MIC more than 32 µg/mL.

Antibiofilm Activity of Synthesized Compounds

Prior to the investigation of the anti-biofilm and anti-virulence activities of tested com-
pounds, the effect of compounds at sub-MIC (= 1

2 MIC) on P. aeruginosa and S. aureus growth
was evaluated to exclude any effect on bacterial growth [49,50]. There were no significant
differences between bacterial growth in the presence or absence of tested compounds at
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sub-MIC. It is worth mentioning that the sub-MIC concentrations of tested compounds are
used in all the next experiments.

Bacterial virulence is regulated via a quorum sensing (QS) system in an inducer/receptor
manner [51,52]. Diminishing bacterial virulence is an advantageous strategy to decrease
the development of bacterial resistance [47,53–56]. In this direction, anti-virulence and
anti-QS activities have been explored in several studies as reviewed [51]. The ability of
P. aeruginosa or S. aureus to form biofilms was assayed in the absence or presence of tested
compounds at sub-MIC. Significantly, most of the compounds were able to reduce the
formation of biofilm, especially compounds 9a, 9b and 9f (Figure 3A,B). The experiment
was conducted in triplicate and a one-way ANOVA test was employed to test the statistical
significance using Graphpad Prism 8 software. The results were significant statistically
where p values < 0.05. Moreover, microscopic visualization of biofilm under the effect of
tested compounds was also performed by light microscopy. Representative images for the
inhibitory effects on S. aureus and P. aeruginosa biofilm formation are shown (Figure 3C,D).
The microscopic images show a marked reduction in both the thickness of and surface area
covered by the biofilms in presence of the tested compound.
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Figure 3. Antibiofilm activities of the synthesized compounds. The antibiofilm activities of the
synthesized compounds were evaluated at their sub-MIC concentrations to avoid any influence
on the bacterial growth. The crystal violet method was used to quantify the inhibition activity of
compounds on (A) S. aureus and (B) P. aeruginosa. The synthesized compounds showed variable
abilities to inhibit the biofilm formation, however, compounds 9a, 9b and 9f showed the highest
abilities to inhibit biofilm formation in both tested bacterial strains. Representative image for the
inhibitory effect of compound 9e on the biofilm formation by (C) S. aureus and (D) P. aeruginosa were
taken. The formed biofilms were markedly reduced showing scattered thinner layers of bacterial
biofilms. (*** = p < 0.001; ** = p < 0.01; * p < 0.05; ns = non-significant).
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Tested Compounds Diminish the Production of Bacterial Virulence Extracellular Enzymes

Bacteria establish their infection into the host cells by utilizing a diverse arsenal of
virulence factors [57,58]. Extracellular enzymes play crucial roles in the bacterial invasion
and spread, for instance, protease and hemolysins [48,53,54]. Herein, the proteolytic and
hemolytic activities of selected compounds 9a, 9b and 9f were assayed in P. aeruginosa and
S. aureus (Figure 4). The tested compounds 9a, 9b and 9f at sub-MIC showed significant
ability to diminish the production of extracellular enzymes. The experiments were con-
ducted in triplicate and the significance was analyzed using one-way ANOVA (Graphpad
Prism 8 software). The results were significant statistically where p values <0.05. The results
were presented as the percentage of inhibition from untreated bacterial.
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Figure 4. Selected active synthesized compounds decreased the production of extracellular enzymes.
The anti-virulence activities were assessed for the selected compounds 9a, 9b and 9f at their sub-MIC
against P. aeruginosa and S. aureus. The three tested compounds significantly diminished the hemolytic
activity of (A) S. aureus and (B) P. aeruginosa. Moreover, the tested compounds significantly reduced
the production of protease of (C) S. aureus and (D) P. aeruginosa. (*** = p < 0.001, ** = p < 0.01).

Tested Compounds Diminish the Production of Bacterial Virulence Factors

S. aureus pigment staphyloxanthin is an important virulence factor due to antioxidant
action that helps in overcoming the host immune defense [59]. Additionally, pyocyanin has
emerged as an important virulence factor produced by P. aeruginosa [47,48]. The inhibitory
effects of tested compounds 9a, 9b and 9f at sub-MIC on the production of bacterial
virulence factors staphyloxanthin in S. aureus and pyocyanin in P. aeruginosa were evaluated
(Figure 5). The tested compounds showed a significant ability to reduce the production
of bacterial pigments. The experiments were conducted in triplicate and the significance
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was analyzed using one-way ANOVA (Graphpad Prism 8 software). The results were
significant statistically where p values < 0.05.
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Figure 5. Anti-virulence activities of the active synthesized compounds. Selected compounds 9a, 9b
and 9f at sub-MIC were tested for their ability to decrease the production of QS-controlled bacterial
virulence factors. The tested compounds significantly decreased the production of (A) S. aureus
pigment staphyloxanthin and (B) P. aeruginosa pigment pyocyanin. (*** = p < 0.001).

SAR Study

SAR of the synthesized candidates are summarized as follows (Figure 6):

1. Introduction of 4-methoxy group (9b) resulted in a 2-fold increase in the activity
against Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus spp. and Pseu-
domonas aeruginosae, while retaining the same activity as compound 9a against Kleb-
siella pneumonia, Salmonella typhimurium and Escherichia coli;

2. Introduction of 2,5-dimethoxy group (9c) retained the same activity against Staphylo-
coccus epidermidis and Micrococcus spp., and a 2-fold decrease against Staphylococcus
aureus, Pseudomonas aeruginosae, Klebsiella pneumonia, Salmonella typhimurium and
Escherichia coli;

3. Replacement of hydrogen with trimethoxy groups (9d) resulted in the same activity
against Staphylococcus aureus, improved activity (2-fold) against Staphylococcus epider-
midis and Micrococcus spp., slightly decreased activity (2-fold) against Escherichia coli,
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and significantly decreased the antibacterial activity against Pseudomonas aeruginosae,
Klebsiella pneumonia, and Salmonella typhimurium;

4. Introduction of the weakly deactivating Cl group (9e) improved potency (2-fold in-
crease in activity) against all Gram-positive organisms, Staphylococcus epidermidis, and
Micrococcus spp., improved potency (2-fold increase) against Klebsiella pneumonia, re-
sulted in the same activity against Pseudomonas aeruginosae and Salmonella typhimurium,
and a 2-fold decrease in activity against Escherichia coli;

5. Introduction of the strongly activating NO2 group (9f) improved potency (2-fold)
against all strains except against Escherichia coli (2-fold decrease);

6. Replacement of phenyl group with benzyloxy group (9g) led to the improvement
of antibacterial activity against all Gram-positive organisms, the same antibacterial
activity against the Gram-negative organism Escherichia coli, moderate antibacterial ac-
tivity against Klebsiella pneumonia, and weak antibacterial activity against Pseudomonas
aeruginosae and Salmonella typhimurium;

7. Replacement of phenyl group with naphthyl one (9h) resulted in loss of activity
against all bacterial strains, whereas it displayed the highest antifungal activity against
Aspergillus niger and Candida albicans;

8. Introduction of 2-furyl moiety (9i) led to a 2-fold increase against the three test Gram-
positive strains Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus spp.;

9. Introduction of 2-thienyl group (9j) resulted in a decrease in activity by 4-fold against
Staphylococcus aureus, and 2-fold against Staphylococcus epidermidis and Micrococ-
cus spp.;

10. Shifting from phenyl group to 2-pyridyl group (9k) increased the antibacterial ac-
tivity by 2-fold against Micrococcus spp., while retaining the same activity against
Staphylococcus aureus and Staphylococcus epidermidis.

Collectively, it could be concluded that the presence of unsubstituted phenyl group
(9a), presence of one donating methoxy group (9b), or the presence of the strongly deacti-
vation NO2 group (9f), is the optimum for antibacterial activity. On the other hand, it could
be concluded that the presence of bulky naphthyl group (9h) is the optimum for antifungal
activity. Replacement of naphthyl group with any other group resulted in either decreasing
or abolishing the antifungal activity.

2.2.2. The Antitumor Activity of the Tested Compounds
Cell Viability Assay

Firstly, to determine the cell viability, HPDE cell lines were treated with all new
synthesized compounds 9a–k for 96 h using sulforhodamine B (SRB) assay. All newly
synthesized compounds were proven non-toxic with IC50 more than 50 mg/mL (Table 2).

Table 2. IC50 values of synthesized compounds in different cancer cell lines. Data are presented as
mean ± SD (n = 3).

Compounds IC50 (µg/mL)

HepG-2 Panc-1 BxPC-3 HPDE

9a 10.96 ± 2.39 11.95 ± 0.76 14.39 ± 0.73 >50 mg/mL
9b 8.53 ± 1.10 13.63 ± 1.16 14.88 ± 4.19 >50 mg/mL
9c 19.08 ± 3.23 15.13 ± 4.13 21.47 ± 1.08 >50 mg/mL
9d 22.71 ± 2.30 25.32 ± 1.91 18.05 ± 3.56 >50 mg/mL
9e 15.04 ± 2.89 12.15 ± 1.29 13.28 ± 1.57 >50 mg/mL
9f 6.39 ± 1.25 12.60 ± 1.20 14.18 ± 1.87 >50 mg/mL
9g 32.53 ± 1.45 29.26 ± 4.23 25.70 ± 4.89 >50 mg/mL
9h 17.34 ± 0.96 14.72 ± 2.87 12.60 ± 0.62 >50 mg/mL
9i 27.017 ± 5.32 16.13 ± 1.820 21.83 ± 2.98 >50 mg/mL
9j 25.54 ± 0.144 16.04 ± 3.18 21.42 ± 2.15 >50 mg/mL
9k 33.11 ± 5.12 19.878 ± 3.35 7.27 ± 1.49 >50 mg/mL

Doxorubicin 5.11 ± 0.98 6.90 ± 0.93 7.31 ± 1.12 >50 mg/mL
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Tested Compounds Suppress Cellular Proliferation of Cancer Cell Lines

The tested compounds’ effects on cellular proliferation of different cancer cell lines
BxPC-3, Panc-1, HepG-2, and the normal immortalized cell line HPDE have been evaluated.
SRB colorimetric assays have been conducted to evaluate cellular proliferation (Table 2).
The tested compounds have varied anticancer activity ranging from moderate to very
weak activity. Among all, compounds 9b and 9f displayed good anticancer activity against
HepG2 cancer cell line with IC50 values = 8.53 and 6.39 µg/mL, respectively. Additionally,
compound 9k exhibited good anticancer activity against PC3 cancer cell line with IC50
value = 7.27 µg/mL, in contrast with the normal HPDE cells that were the least affected
after treatment (IC50 > 50 µg/mL). The remaining new synthesized compounds showed
weak or very weak anticancer activity against the three cancer cell lines used.

Tested Compounds Can Induce Apoptotic Cell Death

Apoptotic cascade induction is a main chemotherapy-induced cell death procedure [60].
The apoptotic effects of selected compounds 9a, 9b and 9f on pancreatic resistant cell lines
and Panc-1 were assessed by quantification of caspase 3/7 levels (Figure 7). Our findings
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revealed that tested compounds triggered apoptosis through increasing the amounts of
activated caspases 3/7 in Panc-1cell line compared with untreated controls. The apoptotic
effect was dose-dependent, and the experiment was conducted in triplicate. The signifi-
cance was analyzed using two-way ANOVA (Graphpad Prism 8 software) to compare the
caspase levels at different concentrations. The results were significant statistically where
p values < 0.05.
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Figure 7. Apoptotic effect of the active synthesized compounds. Quantification of caspase 3/7 levels
was used to assess the apoptotic activities of tested compounds on cancer cells. The tested compounds,
particularly 9b, significantly triggered the cancer cells’ apoptosis by increasing the dose. The exper-
iment was conducted in triplicate and the date are shown as mean ± error values. (*** = p < 0.001,
** = p < 0.01).

2.3. Docking Study into Pseudomonas aeruginosa QS Receptors

The process in which bacterial populations are controlled is called quorum sensing (QS)
in which cells communicate with each other using signaling molecules called autoinducers
that are produced by bacterial cells and detected by receptors on other bacterial cells. The
QS signaling system orchestrates numerous physiological functions in both Gram-positive
and Gram-negative bacteria [51,61]. Targeting bacterial virulence is a promising approach
to decreasing the development of bacterial resistance [51,54]. In this approach, we used
synthesized compounds at their sub-MIC which did not affect the bacterial growth and
hence will not increase the possibility of resistance development [47,53]. In this context, it
was necessary to evaluate the ability of tested compounds to antagonize the QS, which is
the key regulator of bacterial virulence.

To explore the binding interactions and the capability of the most potent derivatives
9a, 9b and 9f to antagonize the QS receptors, the interactions between 9a, 9b, 9f and QS
proteins were evaluated. Escherichia coli QS receptor was retrieved from the protein data
bank (PDB: 1ROS) and molecular docking was carried out [62]. First, validation of the
docking protocol was conducted by redocking of the ligand into the active site of the
Pseudomonas aeruginosa QS receptor (PDB: 1ROS) (Figure 8). The RMSD value was less than
2 (0.835) which confirmed the validity of the docking results.
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4-(4-ethoxy [1,1-biphenyl]-4-yl)-4-oxobutanoic acid (yellow) into the active site active site of the
Escherichia coli QS protein (PDB: 1ROS). (A) 3D structure of the ligand (yellow), (B) 2D structure of
the ligand (yellow).

The results, as illustrated in Figure 8, displayed that derivatives 9a, 9b and 9f were
well-accommodated inside the binding cavity of the receptor. From the docking results,
compound 9a was incorporated into the formation of two hydrogen bonds, the oxygen of
the sulfonamide group with Leu181, and the proton of sulfonamide nitrogen group with
Pro238 amino acids. Additionally, it formed many hydrophobic interactions with Ile180,
Leu181, His218, His222, His228 and Tyr240 amino acid residues (Figure 9A,B).

Similarly, compound 9b engaged in the formation of two hydrogen bonds but with
different amino acids, the oxygen of sulfonamide group with Ser230, and the carbonyl
oxygen of oxazolone ring with Tyr240. 9b formed many hydrophobic interactions with
Ile180, Leu214, His218, Leu226 and His228 amino acid residues (Figure 9C,D).
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Figure 9. Docking and binding mode of 9a (blue), 9b (cyan) and 9f (red) into the active site of the
Escherichia coli QS protein (PDB: 1ROS). (A) 3D structure of 9a (blue), (B) 2D structure of 9a (blue),
(C) 3D structure of 9b (cyan), (D) 2D structure of 9b (cyan) (E) 3D structure of 9f (red), and (F) 2D
structure of 9f (red).

Finally, compound 9f was involved in the formation of three hydrogen bonds; the
oxygen of sulfonamide group incorporated in the formation of two hydrogen bonds with
Gly106, and Leu181, while the oxygen of NO2 group engaged in the third hydrogen bond
with Ala182. Additionally, compound 9f was involved in many hydrophobic interactions
with His172, Ile180, His183, His218, Thr239 and Tyr240 amino acid residues (Figure 9E,F).
These results are almost in agreement with the biological evaluation and may explain the
possible reasons for enhanced anti-QS activity of compounds 9a, 9b and 9f, suggesting
these three compounds for further study as novel promising antibiofilm and antimicro-
bial candidates.

3. Materials and Methods
3.1. Chemistry

Melting points were determined with a Gallenkamp (London, UK) melting point
apparatus and are uncorrected. IR spectra (KBr, cm−1) were recorded on Bruker Vector,
22FT-IR (Fourier Transform Infrared (FTIR), Ettlingen, Germany) spectrometer. Unless
otherwise specified, proton (1H) and carbon (13C) NMR spectra were recorded at room
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temperature in base filtered (CD3)2SO on a spectrometer operating at 400 MHz for proton
and 100 MHz and 300 MHz for proton and 75 MHz for carbon nuclei. The signal due to
residual (CH3)2SO appearing at δ H 2.5 and the central resonance of the (CD3)2SO “multi-
pet” appearing at δ C 39.0 were used to reference 1H and 13C NMR spectra, respectively.
1H NMR data are recorded as follows: chemical shift (δ) (multiplicity, coupling constant(s)
J (Hz), relative integral) where multiplicity is defined as s = singlet, d = doublet, t = triplet,
q = quartet, and m = multiplet or combinations of the above. Elemental analyses were
determined using a manual elemental analyzer Heraeus (Germany) and an automatic
elemental analyzer CHN Model 2400 Perkin Elmer (USA) at Microanalytical Center, Faculty
of Science, Cairo University, Egypt. All the results of elemental analyses corresponded
to the calculated values within experimental error. Progress of the reaction was moni-
tored by thin-layer chromatography (TLC) using precoated TLC sheets with ultraviolet
(UV) fluorescent silica gel (Merck 60F254, Merck, Darmstadt, Germany), and spots were
visualized by iodine vapors or irradiation with UV light (254 nm). All chemicals were
purchased from Sigma-Aldrich or Lancaster Synthesis Corporation (Welwyn Garden, UK).
Intermediate 3 [63] was prepared according to reported procedure.

3.1.1. General Procedure for the Synthesis of 2-((4-Methylphenyl)sulfonamido)benzoic
acid 3

Anthranilic acid 1 (0.10 mmol) was dissolved in 30 mL sodium hydroxide (2 N) in a
500 mL conical flask. The mixture was stirred vigorously with a mechanical stirrer until the
solid was almost completely dissolved. 4-toluenesulfonyl chloride 2 (0.10 mmol) was added
in five portions and stirred vigorously for a further 1 h. The crystallized 4-toluenesulfonyl
anthranilic was left in the refrigerator overnight. The crystals were filtered on a Buchner
funnel, washed with ice cold water and dried at 100 ◦C. The product was crystallized from
ethanol [63].

3.1.2. General Procedure for the Synthesis of N-(2-(1H-Benzo[d][1,2,3]triazole -1-carbonyl)
phenyl)-4-methylbenzenesulfonamide 5

Thionyl chloride (0.08 mL, 1 mmol) was added to a solution of 1H-benzotriazole 4
(0.48 g, 0.4 mmol) in DCM (10 mL) at room temperature, the reaction mixture was stirred
for 20 min, then acid 3 (0.2 g, 1 mmol) was added to the reaction mixture, which was stirred
for 3 h at 25 ◦C. The reaction was diluted with DCM (50 mL) then the organic layer was
washed with saturated Na2CO3 (3 × 20 mL), H2O (2 × 20 mL) and brine (1 × 10 mL), then
dried (sodium sulfate), and filtered. Hexane (50 mL) was added to the filtrate, the obtained
solid was dried under reduced pressure to give compound 5, which was crystallized
from ethanol.

Yellowish solid, yield (89%); m.p. 190–192 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 2.27
(s, 3H), 7.04 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 8.0
Hz, 2H), 7.56–7.50 (m, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.78 (dd, J = 7.6, 1.6 Hz, 1H), 7.85 (t,
J = 8.2 Hz, 1H), 8.29 (t, J = 8.2 Hz, 2H), 10.06 (s, 1H) ppm. 13C NMR (100 MHz, DMSO) δ:
20.9, 114.3, 119.9, 125.2, 125.5, 126.4, 126.6, 128.6, 129.4, 130.5, 131.3, 131.3, 132.62, 135.28,
136.15, 143.22, 145.35, 165.72 ppm. Anal. Calcd for C20H16N4O3S: C, 61.21; H, 4.11; N, 14.28.
Found: C, 61.39; H, 4.17; N, 14.45.

3.1.3. General Procedure for the Synthesis of (2-((4-Methylphenyl)sulfonamido)
benzoyl)glycine 7

To a solution of benzenesulfonamide derivative 5 (0.31 g, 1 mmol) in acetonitrile (5 mL),
a solution of glycine 6 (0.11 g, 1.5 mmol) in acetonitrile/H2O (7/3 mL) and triethylamine
(0.12 mL, 1 mmol) was added. The reaction mixture was stirred at 25 ◦C for 12 h then
monitored by TLC. After completion of the reaction, 6 N HCl (1 mL) was added, the
reaction mixture was concentrated under reduced pressure. The residue thus obtained was
partitioned between H2O (20 mL) and ethyl acetate (20 mL), and the separated organic
layer was washed with 4 N HCl (3 × 5 mL) and brine (10 mL), then dried (MgSO4), filtered



Molecules 2022, 27, 671 17 of 25

and concentrated under reduced pressure to deliver acid 6. The product was crystallized
from ethanol.

Yellow solid, yield (80%); m.p. 198–200 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.31 (s,
3H), 3.91 (d, J = 6 Hz, 2H), 7.10 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 8.4 Hz, 2H), 7.43–7.57 (m, 2H),
7.63–7.74 (m, 2H), 7.89 (d, J = 7.5 Hz, 1H), 9.13 (s, 1H), 11.48 (s, 1H), 12.74 (s, 1H) ppm. 13C
NMR (75 MHz, DMSO-d6) δ: 20.9, 41.2, 116.5, 118.3, 119.1, 126.8, 128.4, 129.8, 132.7, 135.8,
138.5, 139.9, 143.7, 144.0, 168.6, 170.7 ppm. Anal. Calcd for C16H16N2O5S: C, 55.16; H, 4.63;
N, 8.04. Found; C, 54.89; H, 4.67; N, 7.93.

3.1.4. General Procedure for the Synthesis of 9a–j

A mixture of (2-((4-methylphenyl)sulfonamido)benzoyl)glycine 7 (0.30 g, 1.10 mmol)
and the appropriate aldehydes 8a–j (1.00 mmol) in acetic anhydride (1 mL) and fused
sodium acetate (0.1 g, 1.2 mmol) was heated in an oil bath at 80 ◦C for 2 h. After cooling
down at room temperature the mixture was allowed to stand for 24 h at 0 ◦C. The precipitate
was filtered off and washed three times with ice-cooled ethanol (10 mL). The product was
crystallized from ethanol.

3.1.5. (E)-N-(2-(4-Benzylidene-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)-4-
methylbenzenesulfonamide 9a

Whitish solid, yield (87%); m.p. 214–216 ◦C. 1H NMR (300 MHz, DMSO-d6) δ 2.32 (s,
3H, CH3), 7.21–7.25 (m, 2H, ArH), 7.35 (d, J = Hz, 2H, ArH), 7.48 (s, 1H, ArH), 7.48–7.46 (m,
6H, ArH), 7.78 (d, J = Hz, 2H, ArH), 7.88 (d, J = Hz, 1H, CH=C), 11.57 (s, 1H, NH) ppm.
13C NMR (75 MHz, DMSO-d6) δ 20.9, 111.1, 117.5, 123.5, 126.9, 128.4, 129.1, 129.9, 130.0,
130.9, 131.1, 131.7, 132.0, 132.9, 134.8, 135.6, 139.0, 144.3, 162.8, 164.9 ppm. Anal. Calcd for
C23H18N2O4S: C, 66.02; H, 4.34; N, 6.69. Found; C, 65.99; H, 4.28; N, 6.92.

3.1.6. (E)-N-(2-(4-(4-Methoxybenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)-4-
methylbenzenesulfonamide 9b

Straw yellow solid, yield (88%); m.p. 190–192 ◦C.1H NMR (300 MHz, DMSO-d6) δ:
2.32 (s, 3H, CH3), 3.89 (s, 3H, OCH3), 7.09 (d, J = 9 Hz, 2H, ArH), 7.18–7.28 (m, 1H, ArH),
7.36 (d, J = 8.1 Hz, 2H, ArH), 7.46 (s, 1H, ArH), 7.61 (d, J = 7.6 Hz, 2H, ArH), 7.77 (d, J = 8.1
Hz, 2H, ArH), 7.86 (d, J = 7.8 Hz, 1H, CH=C), 8.23 (d, J = 9.0 Hz, 2H, ArH), 11.58 (s, 1H,
NH) ppm. 13C NMR (75 MHz, DMSO-d6) δ: 20.9, 56.0, 106.8, 117.5, 120.8, 121.3, 121.9,
123.3, 123.6, 126.7, 126.9, 127.1, 129.7, 130.0, 130.1, 130.3, 130.6, 135.3, 139.0, 144.4, 150.4,
161.8, 173.1 ppm. Anal. Calcd for C24H20N2O5S: C, 64.27; H, 4.50; N, 6.25. Found: C, 64.53;
H, 4.53; N, 6.34.

3.1.7. (E)-N-(2-(4-(2,5-diMethoxybenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)-4-
methylbenzenesulfonamide 9c

White solid, yield (85%); m.p. 220–222 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.32 (s,
3H, CH3), 3.85 (s, 3H, OCH3), 3.91 (s, 3H, OCH3), 7.13–7.25 (m, 2H, ArH), 7.26–7.34 (m, 3H,
ArH), 7.61 (s, 2H, ArH), 7.72 (d, J = 7.8 Hz, 2H, ArH), 7.85 (d, J = 7.8 Hz, 2H, ArH), 7.95
(d, J = 6.1 Hz, 1H, CH=C), 10.92 (s, 1H, NH) ppm. 13C NMR (75 MHz, DMSO-d6) δ: 20.9,
55.7, 56.4, 112.6, 113.1, 114.9, 118.9, 120.4, 120.5, 121.5, 124.0, 124.6, 126.9, 129.9, 130.0, 130.6,
134.5, 135.6, 138.3, 153.3, 153.6, 162.6, 165.3 ppm. Anal. Calcd for C25H22N2O6S: C, 62.75; H,
4.63; N, 5.85. Found; C, 62.89; H, 4.67; N, 5.93.

3.1.8. (E)-4-Methyl-N-(2-(5-oxo-4-(3,4,5-trimethoxybenzylidene)-4,5-dihydrooxazol-2-
yl)phenyl)be-nzenesulfonamide 9d

Yellowish solid, yield (78%); m.p. 230–232 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.31
(s, 3H, CH3), 3.80 (s, 3H, OCH3), 3.92 (s, 6H, 2OCH3), 7.15–7.35 (m, 3H, ArH), 7.41 (s, 1H,
ArH), 7.49–7.68 (m, 6H, ArH), 7.86 (d, J = 7.8 Hz, 1H, CH=C), 10.84 (s, 1H, NH) ppm. 13C
NMR (75 MHz, DMSO-d6) δ: 20.9, 55.9, 56.2, 60.3, 107.5, 109.9, 111.9, 116.4, 119.6, 124.3,
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126.9, 128.2, 129.9, 132.1, 134.4, 135.3, 138.1, 144.2, 153.1, 162.8, 165.9 ppm. Anal. Calcd for
C26H24N2O7S: C, 61.41; H, 4.76; N, 5.51. Found; C, 61.44; H, 5.02; N, 5.62.

3.1.9. (E)-N-(2-(4-(4-Chlorobenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)-4-
methylbenzenesulfonamide 9e

Yellow solid, yield (85%); m.p. 234–236 ◦C. 1H NMR (300 MHz, DMSO-d6) δ 2.33 (s,
3H, CH3), 7.24–7.38 (m, 3H, ArH), 7.57–7.69 (m, 3H, ArH), 7.79–7.94 (m, 3H, 2ArH + CH=C),
8.32 (d, J = 8.6 Hz, 2H, ArH), 8.45 (d, J = 7.8 Hz, 2H, ArH), 11.48 (s, 1H, NH) ppm. 13C
NMR (75 MHz, DMSO-d6) δ 20.9, 111.1, 117.6, 123.5, 127.0, 129.1, 129.4, 129.9, 130.1, 131.4,
131.8, 133.4, 134.9, 135.6, 136.2, 139.0, 144.3, 163.1 ppm. Anal. Calcd for C23H17ClN2O4S: C,
61.00; H, 3.78; N, 6.19. Found; C, 60.78; H, 3.67; N, 6.39.

3.1.10. (E)-4-Methyl-N-(2-(4-(4-nitrobenzylidene)-5-oxo-4,5-dihydrooxazol-2-
yl)phenyl)benzenesulfonamide 9f

Pale yellow solid, yield (88%); m.p. 250–252 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.31
(s, 3H, CH3), 7.26 (t, J = 7.8 Hz, 1H, ArH), 7.37 (d, J = 8.1 Hz, 2H, ArH), 7.53–7.72 (m, 3H,
ArH), 7.80 (d, J = 7.8 Hz, 2H, ArH), 7.92 (d, J = 8.1 Hz, 1H, CH=C), 8.32 (d, J = 8.4 Hz, 2H,
ArH), 8.45 (d, J = 8.7 Hz, 2H, ArH), 11.48 (s, 1H, NH) ppm. 13C NMR (75 MHz, DMSO-d6)
δ: 20.9, 111.0, 117.7, 119.0, 123.8, 126.9, 127.2, 129.2, 129.8, 130.3, 130.6, 132.5, 133.2, 135.4,
135.5, 139.2, 140.2, 144.4, 148.0, 164.5, 165.5 ppm. Anal. Calcd for C23H17N3O6S: C, 59.61; H,
3.70; N, 9.07. Found; C, 59.83; H, 3.79; N, 9.18.

3.1.11. (E)-N-(2-(4-(4-(Benzyloxy)benzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)-4-
methylbenzenesulfonamide 9g

Whitish solid, yield (88%); m.p. 235–237 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.32
(s, 3H, CH3), 5.25 (s, 2H, OCH2-) 7.18–7.37 (m, 3H, ArH), 7.35–7.50 (m, 8H, ArH), 7.61 (d,
J = 6.8 Hz, 2H, ArH), 7.77 (d, J = 8.3 Hz, 2H, ArH), 7.87 (d, J = 7.8 Hz, 1H, CH=C), 8.23 (d,
J = 8.8 Hz, 2H, ArH), 11.60 (s, 1H, NH) ppm. 13C NMR (75 MHz, DMSO) δ: 168.62, 162.64,
161.75, 161.36, 160.13, 144.38, 138.69, 136.45, 135.58, 134.56, 134.37, 131.51, 130.12, 129.74,
128.50, 128.05, 127.85, 126.99, 125.94, 123.61, 115.60, 111.40, 69.60, 20.97 ppm. Anal. Calcd
for C30H24N2O5S: C, 68.69; H, 4.61; N, 5.34. Found: C, 68.66; H, 4.64; N, 5.38.

3.1.12. (E)-4-Methyl-N-(2-(4-(naphthalen-1-ylmethylene)-5-oxo-4,5-dihydrooxazol-2-
yl)phenyl)benzenesulfonamide 9h

White solid, yield (76%); m.p. 226–228 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.31 (s,
3H, CH3), 7.25-7.36 (m, 3H, ArH), 7.62-7.75 (m, 7H, ArH), 7.76-8.42 (m, 3H, ArH), 8.45 (d,
J = 7.8 Hz, 2H, ArH), 8.75 (d, J = 7.5 Hz, 1H, CH=C), 11.60 (s, 1H, NH) ppm. 13C NMR (75
MHz, DMSO-d6) δ: 21.00, 118.87, 119.5, 123.3, 127.0, 127.2, 128.8, 129.1, 129.9, 131.5, 132.3,
132.4, 133.3, 134.0, 135.9, 138.8, 143.9, 165.9, 168.3 ppm. Anal. Calcd for C27H20N2O4S: C,
69.22; H, 4.30; N, 5.98. Found; C, 68.98; H, 4.07; N, 5.92.

3.1.13. (E)-N-(2-(4-(Furan-2-ylmethylene)-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)-4-
methylbenzenesulfonamide 9i

Yellow solid, yield (84%); m.p. 191–193 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.33 (s,
3H, CH3), 7.08–7.12 (m, 2H, ArH), 7.12-7.32 (m, 3H, ArH), 7.36–7.47 (m, 3H, ArH), 7.51–7.88
(m, 3H, ArH), 7.90 (d, J = 8.4 Hz, 1H, CH=C) ppm, exchangeable 1H due to NH. 13C NMR
(75 MHz, DMSO-d6) δ: 20.9, 116.8, 118.2, 118.8, 122.9, 123.1, 126.7, 126.8, 128.9, 129.8, 129.9,
131.5, 132.8, 134.3, 135.8, 139.2, 140.0, 143.7, 144.0, 169.7 ppm. Anal. Calcd for C21H16N2O5S:
C, 61.76; H, 3.95; N, 6.86. Found; C, 61.89; H, 3.67; N, 6.93.

3.1.14. (E)-4-Methyl-N-(2-(5-oxo-4-(thiophen-2-ylmethylene)-4,5-dihydrooxazol-2-
yl)phenyl)benzenesulfonamide 9j

Yellow solid, yield (90%); m.p. 196–198 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.32 (s,
3H, CH3), 7.24–7.35 (m, 1H, ArH), 7.38–7.50 (m, 2H, ArH), 7.58–7.63 (m, 1H, ArH), 7.77–7.87
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(m, 4H, ArH), 7.90–8.22 (m, 3H, ArH), 8.24 (d, J = 7.6 Hz, 1H, CH=C), 11.49 (s, 1H, NH)
ppm. 13C NMR (75 MHz, DMSO-d6) δ: 20.9, 111.1, 117.7, 123.5, 125.3, 126.9, 128.0, 128.7,
129.8, 130.0, 134.6, 135.6, 136.2, 136.8, 137.2, 138.6, 144.3, 161.3, 164.3 ppm. Anal. Calcd for
C21H16N2O4S2: C, 59.42; H, 3.80; N, 6.60. Found; C, 59.61; H, 3.87; N, 6.82.

3.1.15. (E)-4-Methyl-N-(2-(5-oxo-4-(pyridin-4-ylmethylene)-4,5-dihydrooxazol-2-
yl)phenyl)benzenesulfonamide 9k

Whitish solid, yield (78%); m.p. 210–212 ◦C. 1H NMR (300 MHz, DMSO-d6) δ: 2.32 (s,
3H, CH3), 7.21–7.38 (m, 5H, ArH), 7.59–8.19 (m, 7H, ArH), 8.20 (d, J = 7.8 Hz, 1H, CH=C),
11.27 (s, 1H, NH) ppm. 13C NMR (75 MHz, DMSO-d6) δ: 20.9, 111. 7, 117.7, 123.5, 125.3,
126.9, 128.7, 129.8, 130.0, 134.5, 135.3, 135.8, 136.2, 137.0, 138.7, 144.0, 163.3, 165.7 ppm. Anal.
Calcd for C22H17N3O4S; Calcd C, 63.00; H, 4.09; N, 10.02. Found: C, 63.31; H, 4.16; N, 10.21.

3.2. Biological Activity
3.2.1. Evaluation of Antimicrobial and Anti-Virulence Activities
Determination of Minimum Inhibitory Concentration (MIC)

The MICs of the synthesized compound were determined by agar dilution method
according to the Clinical Laboratory and Standards Institute Guidelines (CLSI, 2015) [55,64].
Briefly, the tested strains were incubated overnight in tryptic soy broth (TSB) (Oxoid, United
Kingdom) and then diluted in Muller–Hinton (MH) broth (Oxoid, United Kingdom) to
turbidity approximating to the equivalent of 0.5 McFarland standard [65]. The suspensions
were further diluted with sterile saline (1:10) and standardized inoculums (approximately
104 CFU per spot) were spotted on the surfaces of MH agar (Oxoid, United Kingdom)
plates containing different concentrations of tested compounds and a control plate. The
MICs were the lowest concentrations that inhibit growth on the plates after incubation at
37 ◦C for 20 h.

Excluding the Effect of Compounds on Bacterial Growth

To avoid any expected effect of tested compound on the bacterial virulence, the effect of
compounds at their sub-MIC ( 1

2 MIC) on bacterial growth was evaluated [50,58]. The tested
strains Pseudomonas aeruginosa ATCC 47,085 and Staphylococcus aureus ATCC 6538 were
grown in Luria–Bertani (LB) Broth (Oxoid, Hampshire, United Kingdom) overnight at
37 ◦C in presence of tested compounds at sub-MIC ( 1

2 MIC). The experiment was conducted
in triplicate, and the optical densities of bacterial growth were compared with control
untreated bacteria. It is worth mentioning that the tested compounds were used at sub-MIC
( 1

2 MIC) in all the next performed tests to evaluate the anti-virulence activities.

Assay of Biofilm Formation

In order to evaluate the ability of the tested compounds to inhibit the biofilm formation,
a strong biofilm forming P. aeruginosa ATCC 47,085 [47,66] and S. aureus ATCC 6538 [67]
strains were used. As described earlier [68,69], suspensions of tested strains were prepared
from overnight cultures in TSB and their optical densities were adjusted to OD600 of 0.4
(1×108 CFU/mL). Aliquots of 10 µL of the suspensions were added to 1 mL amounts of
fresh TSB with or without sub-MICs of tested compounds. Then, 100 µL of TSB with or
without tested compounds in sub-MIC were transferred into the wells of 96-well microtiter
plates and incubated at 37 ◦C overnight. The non-adherent cells were removed, the wells
were washed with sterile PBS, and left to dry. The attached biofilm forming cells were
fixed with methanol for 25 min and stained with 1% crystal violet for 30 min. The excess
dye was washed out and the crystal violet staining adhered biofilm forming cells were
eluted by glacial acetic acid (33%). The experiment was conducted in triplicate and the
absorbance was measured at 590 nm. The absorbances of tested strains treated with
different compounds were expressed as mean ± standard error of percentage change from
untreated tested strains control. The percentages of biofilm inhibition were calculated
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employing the following formula: (absorbance of control—absorbance in presence of tested
compounds)/absorbance of control.

Assay of Protease Production

The effect of compounds 5, 7 and 10 on the production of protease was evaluated
using casein substrate as described earlier [47,48]. Briefly, overnight cultures of P. aeruginosa
and S. aureus were cultivated in LB broth in the presence or absence of compounds 5,
7 and 10 at 1

2 MIC for 24 h at 37 ◦C. The supernatants were collected, mixed (1:1) with
0.05 M casein in phosphate buffer (2%) and NaOH (0.1 M) at pH 7.0, and incubated for
15 min at 37 ◦C. The reaction was stopped by adding 2 mL of 0.4 M trichloroacetic acid for
30 min at 25 ◦C. Any precipitates were removed, and the optical densities were detected at
660 nm. The assays were performed in triplicate and the obtained optical densities of tested
strains treated with compounds 5, 7 and 10 were expressed as mean ± standard error of
percentage change from untreated tested strains control (positive control) and LB (negative
control). The protease inhibition percentages were calculated: (O.D control—O.D tested
compounds)/O.D control.

Assay of Hemolytic Activity

The anti-virulence effects of compounds 5, 7 and 10 on hemolytic activity of tested
P. aeruginosa and S. aureus strains were assessed as described previously [52,53]. Opti-
cally adjusted bacterial cultures treated or untreated with tested compounds at sub-MIC
were centrifuged, and 0.5 mL of supernatants were mixed with fresh 0.8 mL 2% erythro-
cyte (obtained from experimental animals) suspension in saline, and incubated for 2 h
at 37 ◦C. A complete hemolysis positive control was prepared by addition of sodium
dodecyl sulphate (SDS) to erythrocyte suspension, and negative control was prepared by
incubation of erythrocytes in LB broth under the same conditions. After centrifugation,
the absorbances of the lysed erythrocytes were measured at 540 nm by Biotek spectrofluo-
rometer (Biotek, Winooski, VT, USA). The experiment was performed in triplicate, and the
hemolysis of tested compound treated cultures were expressed as mean ± standard error
of percentages compared with those obtained from untreated control cultures using the
formula: (absorbance in presence or absence of tested compounds—absorbance of negative
control)/(absorbance of positive control—absorbance of negative control).

Quantification of Staphyloxanthin Pigment

Staphyloxanthin and intermediate carotenoids were extracted from S. aureus treated
or untreated with compounds 5, 7 and 10 at sub-MIC as described [59]. Bacterial cells were
cultivated in TSB at 37 ◦C for 24 h, then cells were collected by centrifugation, and washed
twice with phosphate-buffered saline (PBS). The obtained pellets were used to extract
staphyloxanthin with methanol. The pellets (5 gm of) were resuspended in 20 mL methanol,
and heated with gentle stirring at 55 ◦C in a water bath for 5 min. Then, the methanol
extract liquids were cooled and centrifuged, and the absorbances of the produced staphy-
loxanthin were quantified spectrophotometrically at 450 nm (Biotek, Winooski, VT, USA).
The experiment was repeated in triplicate, and the pigment absorbances in the presence of
tested compounds were expressed as mean ± standard error of percentage change from
untreated controls. The percentages of pigment production were calculated using the for-
mula: (absorbance of control − absorbance in presence of tested compounds)/absorbance
of control.

Quantification of Pyocyanin Pigment

The ability of selected compounds 5, 7 and 10 at sub-MIC to reduce the P. aeruginosa
pyocyanin pigment production was estimated as described earlier [47,48]. P. aeruginosa
overnight cultures were prepared and diluted in LB broth at 600 nm (O.D0.4), and 10 µL
of the bacterial suspensions were added to 1mL broth tubes containing, or not, tested
drugs at sub-MIC. After incubation for 48 h at 37 ◦C, the tubes were centrifuged and
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the pyocyanin in the supernatant was assayed spectrophotometrically at 691 nm by a
Biotek spectrofluorometer (Biotek, Winooski, VT, USA). The experiment was repeated
in triplicate, and the pyocyanin absorbances in the presence of tested compounds were
expressed as mean ± standard error of percentage change from untreated controls. The
percentages of pigment production were calculated using the formula: (absorbance of
control − absorbance in presence of tested compounds)/absorbance of control.

3.2.2. Evaluation of Antitumor Activities of Synthesized Compounds
Effect of Synthesized Compounds on Cellular Proliferation

The pancreatic human cancer cell lines BxPC-3 and Panc-1, the human hepatocellular
carcinoma (HepG-2), and the normal immortalized pancreatic cell line HPDE, that were
used in this study, were obtained from the American Type Culture Collection (Rockville,
USA). Cell lines were cultured and treated with the tested compounds or dimethyl sul-
foxide (DMSO) as previously described [70,71]. Cells were cultivated in DMEM medium
(Invitrogen, Carlsbad, CA, USA), supplemented with streptomycin, penicillin and fetal
bovine serum (FCS) (Invitrogen, Carlsbad, CA, USA).

The sulforhodamine B (SRB) assay was employed to assess the anti-proliferative effects
of tested compounds on cancer cells [60,72]. Cell lines were incubated and regularly treated
with DMSO or increasing doses of tested compounds for 48 h. The cells were fixed with 10%
trichloroacetic acid and stained with SRB fluorescent dye for 30 min. Then, the bounded
SRB dye to cellular proteins was dissolved in 10 mM Tris base after washing excess dye
with 1% acetic acid. The absorbance was measured at 510 nm in a reader (Biotek, Winooski,
VT, USA).

Evaluation of Caspase-3/7 Activity

Caspases play critical roles in apoptosis. The apoptotic effects of selected compounds
5, 7 and 10 on pancreatic cell line Panc-1 were tested by quantification of caspase 3/7 using
Caspase-Glo 3/7 assay kit (Promega, Fitchburg, MA, USA) as previously described [60,71].
Briefly, cells were treated with or without compounds 5, 7 and 10 ( 1

2 IC50, IC50, or 2 ×IC50)
for 6 h. The prepared reagent Caspase-Glo 3/7 was added in equal volumes to cells, gently
mixed, and incubated for 60 min at room temperature. The luminescence was measured,
and the activity of caspase was presented as a percentage change from the untreated control.

3.3. In Silico Docking Study

Docking simulation study was carried out using Discovery Studio 2.5 software (Accel-
rys Inc., San Diego, CA, USA) [73]. For more details, see Supplementary Materials.

4. Conclusions

In summary, eleven oxazolone-benzenesulfonamide compounds 9a–k, were synthe-
sized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title
compounds were evaluated for their in vitro antibiofilm, antimicrobial and anticancer
activities. The majority of the tested compounds displayed potent antibacterial activity
against both Gram-positive and -negative bacteria. Compounds 9a, 9b and 9f exhibited
considerable antibacterial activity. Compound 9h exhibited the most potent antifungal
activity. Compounds 9a, 9b, 9f and 9k showed good anticancer activity against different
cancer cell lines. Importantly, several synthesized compounds showed a significant abil-
ity to inhibit the formation of biofilm by Pseudomonas aeruginosa and Staph. aureus. The
compounds 9a, 9b and 9f displayed the most potent antibiofilm inhibition activity; that is
why these three compounds were subjected to further investigation for their anti-virulence
activities. The three compounds 9a, 9b and 9f significantly reduced the production of
QS-controlled virulence factors. These findings are in great compliance with the ability to
hinder the QS receptors in silico, indicating that these compounds can serve as anti-QS and
anti-virulence agents.
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Supplementary Materials: The following supporting information can be downloaded, 1H and 13C
NMR Spectra for Compounds 9a–k.
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