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Abstract

Sphingosine kinase-1 is known to mediate Mycobacterium smegmatis induced inflammatory responses in macrophages, but
its role in controlling infection has not been reported to date. We aimed to unravel the significance of SphK-1 in controlling
M. smegmatis infection in RAW 264.7 macrophages. Our results demonstrated for the first time that selective inhibition of
SphK-1 by either D, L threo dihydrosphingosine (DHS; a competitive inhibitor of Sphk-1) or Sphk-1 siRNA rendered RAW
macrophages sensitive to M. smegmatis infection. This was due to the reduction in the expression of iNOs, p38, pp-38, late
phagosomal marker, LAMP-2 and stabilization of the RelA (pp-65) subunit of NF-kB. This led to a reduction in the generation
of NO and secretion of TNF-a in infected macrophages. Congruently, overexpression of SphK-1 conferred resistance in
macrophages to infection which was due to enhancement in the generation of NO and expression of iNOs, pp38 and LAMP-
2. In addition, our results also unraveled a novel regulation of p38MAPK by SphK-1 during M. smegmatis infection and
generation of NO in macrophages. Enhanced NO generation and expression of iNOs in SphK-1++ infected macrophages
demonstrated their M-1bright phenotype of these macrophages. These findings thus suggested a novel antimycobacterial
role of SphK-1 in macrophages.
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Introduction

Sphingolipids have recently been identified as crucial bioactive

molecules in several fundamental and patho-physiological pro-

cesses [1,2]. A novel therapeutic potential of sphingolipids has

been documented for the treatment of asthma, cystic fibrosis,

respiratory tract infection and acute lung injuries [3–6]. Sphingo-

lipids are known to regulate cellular functions differentially. Thus,

while sphingosine 1-phosphate (S1P) promotes cell survival and

cell division [7], ceramides and sphingosine inhibit them and

induce apoptosis [2,8]. The sphingolipids are interconvertible,

suggesting that sphingolipid metabolism is closely regulated.

Sphingosine kinases (SphKs), which catalyze the phosphorylation

of sphingosine to S1P, are enzymes crucial to sphingolipid

metabolism [9]. Two subtypes of SphKs have been identified to

date, namely SphK-1 and SphK-2 [10]. Among these, SphK-1 is a

well known regulator of intracellular calcium homeostasis, cellular

differentiation, innate immunity, apoptosis and cancer develop-

ment [8,11–17], while the role of SphK-2 remains unclear.

Recent reports have demonstrated the involvement of SphK-1

during mycobacterial infections in macrophages [18–20]. During

the course of infection, the mycobacteria containing phagosomes

are processed and mature to phagolysosomes. These organelles are

rich in hydrolytic enzymes and anti-mycobacterial mediators

which execute the killing of these mycobacteria in macrophages

[21–24]. It has been demonstrated that during mycobacterial

infection, SphK-1 translocates to the phagosomal membrane

where it creates a pro-inflammatory environment mainly by

inducing actin nucleation [25–27]. This is a prerequisite for the

efficient killing by a variety of macrophages of both non-

pathogenic and pathogenic mycobacteria [28–30] as demonstrat-

ed recently by our former co-workers [23,24]. Mycobacterium

smegmatis infections activate resting macrophages to pro-inflam-

matory and antibacterial M-1 macrophages [31]. Among various

mediators which are secreted by these macrophages, TNF-a and

inducible NO are critical for limiting mycobacterial infections

[32–34]. These are known to induce maturation of mycobacteria

containing phagolysosomes and intracellular killing of these

bacteria in macrophages [35,36].

Although the involvement of SphK-1 during M. smegmatis

infection in macrophages has been previously demonstrated [18],

its direct role in controlling infection has not been reported so far.

This study therefore demonstrates for the first time that inhibition

of SphK-1 rendered RAW macrophages sensitive to infection.
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This was due to the reduced expression of major anti-

mycobacterial proteins such as iNOs, p38, pp38 and late

phagolysosomal marker, LAMP-2 and reduced activation of NF-

kB in the infected macrophages. In addition, the generation of NO

and TNF-a secretion were also reduced upon Sphk-1 inhibition in

infected macrophages. Conversely and expectedly, SphK-1

overexpression conferred resistance to infection and enhanced

expression of iNOS, pp38 and LAMP-2 proteins in Sphk-1++
macrophages. Sphk-1 overexpression also led to an enhancement

in the generation of NO, but interestingly delayed secretion of

TNF-a. Our data also demonstrated the novel regulation of

SphK-1 over p38 for controlling infection and the generation of

NO in macrophages. Enhanced generation of NO and increased

expression of iNOs protein in SphK-1++ macrophages in response

to M. smegmatis and/or various innate stimuli demonstrated their

M-1bright phenotype. These findings thus suggest a new anti-

mycobacterial and immunostimulatory role of SphK-1 in

macrophages.

Results

SphK-1 controls M. smegmatis infection in macrophages
A recent report has shown the involvement of SphK-1 during

M. smegmatis induced pro-inflammatory responses in macrophages

[18]. Based on this information we presumed that Sphk-1 is an

important component of macrophage defense against infection

and predicted that Sphk-1 could also control M. smegmatis

infection. To demonstrate this, we used an M. smegmatis infected

RAW 264.7 murine macrophage model system. These macro-

phages were infected with M. smegmatis and bacterial killing was

monitored over a time period of 24 h. Indeed, we observed

efficient intracellular bacterial killing during the first 4 h of

infection (Fig. 1A, Fig. S1). In order to demonstrate the specific

role of SphK-1 in controlling M. smegmatis infection, we inhibited

SphK-1 in macrophages by D, L-threo-dihydrosphingosine
(DHS) [37–39], and Sphk-1 siRNA. These macrophages were

then infected with M. smegmatis. Indeed, inhibition of Sphk-1 either

by DHS (Fig. 1A, B) or by siRNA (Fig. 1D) inhibited bacterial

killing significantly and sensitized these macrophages to infection.

Both macrophage viability and metabolic activity remained

unaffected by the doses of DHS used (Fig. S2) and siRNA (data

not shown) knockdown. In order to demonstrate the specific effect

of Sphk-1 inhibition on bacterial killing, the macrophages were

infected in the presence of other sphingosine derivatives which

have no SK inhibitory activity, e.g. D- sphingosine and D, L-
erythro–dihydrosphingosine. Bacterial killing remained

unaffected by the treatment of macrophages with these lipids

(Fig. S3).

To further substantiate whether an upregulation of SphK-1

would counteract bacterial killing, SphK-1 was overexpressed in

macrophages (Fig. 2A) and these macrophages (Sphk-1++) were

infected with M. smegmatis. Interestingly and expectedly, SphK-1

overexpression conferred resistance to infection in Sphk-1++
macrophages in comparison to WT infected macrophages

(Fig. 2B). The increased resistance of SphK-1++ infected

macrophages was abolished by DHS treatment (Fig. 2C).

Treatment of both WT and Sphk-1++ infected macrophages with

S1P (SK reaction product) enhanced bacterial killing in both WT

and SphK-1++ infected macrophages. This effect was found more

pronounced in SphK-1++ infected macrophages than in WT

infected macrophages (Fig. 2D). These observations confirmed

the involvement of SphK-1 in controlling M. smegmatis infection in

macrophages.

SphK-1 regulates antimycobacterial response in
macrophages

Sensitization of Sphk-1 depleted macrophages and increased

resistance of Sphk-1++ macrophages to M. smegmatis infection

clearly indicated the involvement of SphK-1 in the antimycobac-

terial defense of macrophages. To address this, we analyzed the

expression of the late phagolysosomal marker LAMP-2 (Fig. 3A)

and anti-mycobacterial proteins- pp38 and iNOs (Fig. 3B, C)

competitively among WT and SphK-1++ infected macrophages.

Immunostaining revealed an increase in the expression of these

markers in SphK-1++ infected macrophages in comparison to WT

infected macrophages during the course of infection. Indeed,

Sphk-1 inhibition by DHS reduced expression of these proteins in

infected macrophages (Fig. 3A, B and C). Remarkably, siRNA

knockdown of Sphk-1 also reduced M. smegmatis induced

expression of iNOs, p38, p-p38, LAMP-2 and pp65 (Rel A)

subunit of NF-kB (Fig. 3D) in comparison to mock (scrambled)

transfected or untransfected macrophages. These results revealed

the influence of SphK-1 on antimycobacterial defenses of

macrophages. Enhanced expression of LAMP-2, pp38 and iNOs

proteins in SphK-1 ++ infected macrophages over WT infected

macrophages demonstrated the increased antimycobacterial

response of Sphk-1++ macrophages, which rendered them

resistant to the infection.

SphK-1 is involved in nitric oxide generation in
macrophages

In order to clarify the potential reason for sensitization of Sphk-

1 inhibited macrophages to infection, we investigated the effect of

SphK-1 inhibition on M. smegmatis infection induced NO

generation in macrophages due to the fact that NO is a well

known marker for classically activated M-1 professional macro-

phages and is involved in antibacterial defenses [40–45]. In

macrophages, NO is produced by the iNOs enzyme and capable

of neutralizing a wide variety of mycobacterial membrane lipids

and other components and indeed is involved in maturation of

phagosomes during mycobacterial infection [46–48]. During the

first 4 h time period of infection, no significant increase in NO was

observed in the infected macrophages. The NO titre increased

slightly at the 9th h post infection and significantly at the 24th h

post infection in comparison to the uninfected control (Fig. 4A).

Inhibition of SphK-1 significantly reduced M. smegmatis induced

NO titre during the course of infection (Fig. 4A). siRNA

knockdown of Sphk-1 also reduced infection induced NO titre

significantly in comparison to mock (scrambled) transfected or

untransfected control (Fig. 4B). Interestingly, Sphk-1++ macro-

phages, in comparison to WT macrophages, produced signifi-

cantly higher NO in response to infection (Fig. 4C). Moreover,

SphK-1 overexpression replenished DHS mediated loss of NO in

macrophages (Fig. 4C). As expected, control sphingolipids could

not modulate infection induced NO titre in macrophages

(Fig. S3C).

The above results prompted us to investigate the role of Sphk-1

on the functional competence of these infected macrophages. To

demonstrate this, we infected WT and Sphk-1++ macrophages

with different multiplicities of M. smegmatis infection and quantified

the NO titre. Interestingly, M. smegmatis infection inhibited NO

generation in WT macrophages in a dose-dependent manner

(Fig. 4D). In contrast, SphK-1++ macrophages were found to be

resistant to such toxicity of infection and the NO titre in Sphk-1++
infected macrophages remained significantly higher than WT

infected macrophages (Fig. 4D). M. smegmatis interacts with

macrophages and activates them through TLR2 and MyD88

Sphk-1 Controls M. smegmatis
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adaptor proteins [49]. Our NO data suggested a possible

association of SphK-1 with these innate receptors for activating

macrophage. In order to validate this, we stimulated these

macrophages with unrelated bacterial LPS (positive control) [50–

52] and NO was measured. The NO titre in Sphk-1++ infected

and LPS stimulated macrophages consistently remained higher in

comparison to WT macrophages (Fig. 4D). These observations

explicitly demonstrated that SphK-1 is critical for NO response

and sustained activation of macrophages even under conditions of

supra-lethal infection.

To further demonstrate the involvement of SphK-1 in NO

generation via innate signaling pathways, we investigated the effect

of Sphk-1 inhibition on LPS induced NO generation. To show

this, WT and SphK-1++ macrophages were stimulated with LPS

in the presence of DHS and/or S1P and the NO titre was

quantified. Treatment of LPS stimulated macrophages with DHS

inhibited LPS induced NO generation significantly (Fig. 5A). The

NO titers remained consistently higher in SphK-1++ stimulated

macrophages in comparison to WT macrophages (Fig. 5A).

Although exogenous supplementation of macrophages with S1P

did not affect LPS induced NO generation in either of these

macrophages (Fig. 5A), it inhibited M. smegmatis induced NO

significantly in both (Fig. S4A). SiRNA knockdown of Sphk-1 also

inhibited either LPS (Fig. 5B) or TNF-a (Fig. 5C) induced NO

titre significantly as well as expression of iNOs proteins in

comparison to either mock transfected (scrambled siRNA) or

untransfected control macrophages (Fig. 5D). Simultaneous

treatment of LPS stimulated/infected and S1P supplemented

macrophages with DHS again diminished NO titre in both these

hosts (Fig. S4A). In comparison to WT macrophages, SphK-1++
macrophages produced significantly higher NO upon their

stimulation with TNF-a and IFN-c both in the presence or

absence of iNOS modulators (Fig. S4B, C). Immunoblot analysis

also revealed a downregulation in the expression of iNOs proteins

by DHS in LPS/TNFa/IFN-c stimulated macrophages (Fig.
S4D). Control sphingolipids were unable to modulate either LPS

(Fig. S5A) or TNF-a (Fig. S5B) induced NO titre in macrophages

and excluded the Sphk-1 unspecific effect on NO generation. Next

we additionally validated the role of Sphk-1 in NO in mouse

primary macrophages. For that purpose we isolated Mac-1+
mouse peritoneal macrophages from C57BL6/j mice as per the

method described. Treatment of LPS stimulated (Fig. 6A) or

infected (Fig. 6B) CD11b+ mouse peritoneal macrophage with

DHS reduced NO titre in these macrophages. To further confirm

Figure 1. Sensitization of SphK-1 inhibited RAW macrophage to M. smegmatis infection. The macrophages were treated with DHS and the
effect of DHS treatment on M. smegmatis killing was evaluated up to 4 h (A) and 24 h (B) post infection. (C) siRNA knockdown of Sphk-1 in
macrophages. The macrophages were transfected with SphK-1 specific and control, siRNA’s and knockdown was confirmed by western blot 24 h post
transfection. Shown here is the representative blot from two independent experiments. (D) Sensitization of Sphk-1 knockdown macrophages to M.
smegmatis infection. Control, scrambled siRNA and Sphk-1 siRNA transfected macrophages were infected with M. smegmatis at MOI-1 and their killing
was monitored up to 24 h post infection. Data are represented as a mean of CFU 6 SEM from three independent experiments. ** Indicates p#0.01;
* indicates p#0.05.
doi:10.1371/journal.pone.0010657.g001

Sphk-1 Controls M. smegmatis
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the novel role of SphK-1 on NO generation, we compared the NO

titre among stimulated WT and SphK-1 KO Mac-1+ peritoneal

macrophages. As expected, Sphk-1 KO peritoneal macrophages

produced significantly less NO in comparison to WT macrophages

upon their stimulation with either LPS or TNF-a (Fig. 6C). These

results verified and confirmed the novel and specific regulation of

SphK-1 in the generation of NO in macrophages.

SphK-1 regulates p38 MAPK in macrophages during
mycobacterial infection

Previous studies have demonstrated the critical role of p38 in

controlling mycobacterial infection in macrophages other than RAW

[24,53]. The p38 activation during M. smegmatis infection was

shown to be dependent either on the cell type and/or the bacterial

load [54]. Here we found that in opposition to J774 macrophage

[24], p38 inhibition in RAW macrophages surprisingly reduced

both bacterial uptake and viability (Fig. 7A). This revealed the

different fate of p38 in RAW macrophages upon infection, since

similar inhibition in J774 macrophages promoted intracellular

growth of these bacteria. Based on the results obtained from RAW

macrophages, we predicted a possible connection of SphK-1 with

p38 for regulating bacterial infection. In order to investigate this,

we treated an infected RAW macrophage with SB 203580

(p38kinase inhibitor) with and without DHS (Sphk-1 inhibitor) and

bacterial killing was monitored. Surprisingly, co-inhibition of p38

and SphK-1 increased both bacterial uptake and their growth

significantly (Fig. 7A) in comparison to infected macrophages

treated with SB 203580 alone.

Besides regulating mycobacterial infection [53], p38 are also

potent regulators of inducible NO generation [55,56]. Our data

(Fig. 4, 5, 6) clearly demonstrated the regulation of NO by Sphk-

1 in macrophages. We therefore predicted the probable connec-

tion of Sphk-1 and p38 for NO generation in macrophages. In

order to clarify this, the macrophages were infected with and

without p38 and Sphk-1 inhibitors and NO titre was quantified.

Treatment of infected macrophages with SB 203580 surprisingly

enhanced infection induced NO titre significantly in comparison

to infected controls (Fig. 7B). Treatment of SB+ infected

macrophages with DHS strongly inhibited NO titre in these

macrophages. These results strongly suggested that Sphk-1

regulates p38 during M. smegmatis induced NO generation in

macrophages. These results demonstrated a novel regulation of

p38 by Sphk-1 in macrophages during the course of infection.

SphK-1 regulates TNF-a secretion in macrophages
TNF-a is a well known trigger of acute inflammatory response

during mycobacterial infection and largely secreted by activated

macrophages [57,58]. Therefore, we investigated the effect of

Figure 2. SphK-1 overexpression confers resistance to M. smegmatis infection in macrophages. (A) Sphk-1 was overexpressed in
macrophages and validated by western blot, immunofluorescence and competitive S1P titers in WT and SphK-1++ macrophages. (B) Sphk-1
overexpression confers resistance to infection. Both WT and SphK-1 ++macrophages were infected with M. smegmatis and mycobacterial killing was
observed up to 24 h post infection. (C) The cells under section (B) were treated with DHS and the effect on M. smegmatis killing was again evaluated
up to 24 h post infection. (D) S1P regulates mycobacterial growth in macrophages. The cells under section (B) were supplemented with S1P (5 mM)
and the effect of S1P on mycobacterial infection was monitored during the first 4 h time period. Data are represented as mean of CFU 6 SEM from
three independent experiments. ** Indicates p#0.01; * indicates p#0.05.
doi:10.1371/journal.pone.0010657.g002

Sphk-1 Controls M. smegmatis
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SphK-1 modulation on TNF-a secretion also. Treatment of

infected macrophages with DHS significantly reduced M. smegmatis

induced TNF-a secretion in WT infected macrophages in

comparison to infected controls (Fig. 8A). This observation

explained to some extent the most probable reason for the

sensitization of Sphk-1inhibited macrophages to infection. On the

basis of increased resistance to infection, we predicted enhanced

TNF-a secretion in Sphk-1++ infected macrophages over WT

infected macrophages. While we were able to detect higher TNF-a
secretion in SphK-1++ infected macrophages over WT infected

macrophages at 1 h post infection, this remained insignificant

(data not shown). Interestingly, and contrary to our expectations,

the TNF-a secretion in Sphk-1++ infected macrophages was

significantly reduced in comparison to WT infected macrophages

during later time points of infection (Fig. 8A). This observation

revealed negative regulation of Sphk-1 over-expression on TNF-a
secretion. In order to complement Sphk-1 inhibition mediated loss

in TNF-a secretion in macrophages, we supplemented infected

macrophages exogenously with S1P (SK reaction product).

Surprisingly, this supplementation delayed TNF-a secretion in

the infected macrophages at 9 h (Fig. 8B), which was restored at

24 h post infection (Fig. 8C).

In order to understand the role of SphK-1 in TNF-a secretion

in macrophages more precisely, we stimulated WT and Sphk-1++
macrophages with bacterial LPS to stimulate TNF-a secretion.

Consistent with NO, DHS treatment inhibited LPS induced TNF-

a secretion significantly in WT macrophages, but contrary to NO

generation, we found negative regulation of SphK-1 overexpres-

sion on TNF-a secretion in LPS stimulated SphK-1++ macro-

phages (Fig. 8D). Like before, S1P treatment delayed LPS

induced secretion of TNF-a also in SphK-1++ macrophages

significantly in comparison to WT macrophages at 9 h (Fig. 8D),

which was restored at 24 h (Fig. 8E). Co-stimulation of infected

macrophages with LPS enhanced TNF-a secretion synergistically

in WT macrophages (Fig. 8F), whereas SphK-1++ macrophages

remained resistant to such co-stimulation and TNF secretion in

their culture supernatant remained lower in comparison to WT

macrophages. These observations revealed the dual fate of SphK-1

modulation upon TNF-a secretion from macrophages and were

found to be consistent with other recent findings [59,60].

M. smegmatis infection induces S1P production
SphK activity induces the formation of S1P, which is known for

its antimycobacterial characteristics [61]. Therefore, we quantified

S1P titers among WT and SphK-1++ infected macrophages at 1 h

and 4 h post infection. M. smegmatis infection induced S1P

production significantly in both WT and SphK-1++ macrophages

(Fig. 9), suggesting an increase of SphK activity in these

macrophages. This observation was found to be in agreement

Figure 3. SphK-1 regulates the expression of major antimycobacterial proteins in macrophages. WT and SphK-1++ macrophages were
infected with M. smegmatis with and without DHS. Expression of LAMP-2 protein was monitored at 1 h and 4 h (A) and 24 h (C) post infection. The
cells under sections (A) and (C) were also analyzed for the expression of pp38 at 1 h and 4 h (A) and iNOs at 1 h, 4 h (B) and 24 h (C) post infection
time intervals. Shown here are the representative immunofluorescence pictures from two independent experiments. (D) Sphk-1 knockdown reduces
the expression of major antimycobacterial proteins in macrophages. Both control and Sphk-1 siRNA knockdown macrophages were infected with M.
smegmatis and expression of major antimycobacterial proteins was analyzed by western blot. Shown here is the representative blot from two
independent experiments. (E) The blots were normalized against actin.
doi:10.1371/journal.pone.0010657.g003

Sphk-1 Controls M. smegmatis
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with recent finding [18]. As expected, the S1P titre was found to

be elevated in the infected SphK-1++ macrophages. The S1P titers

in both control and infected macrophages were inhibited

significantly by treatment with DHS (Fig. 9), reflecting a decrease

in SphK activity in these macrophages. This observation also

validated the inhibition of sphingosine kinase activity by DHS in

these macrophages. In WT and Sphk-1++ infected macrophages,

the S1P levels expectedly remained higher in Sphk-1++ macro-

phages even after their treatment with DHS. This indicated the

significance of the elevation of S1P levels upon activation of

macrophages, since S1P is known to contribute to the survival of

macrophages [62–64].

Discussion

Mycobacterial infections represent the third major cause of

worldwide annual mortalities [65–68] and have raised serious

concerns about the development of effective therapies for

controlling infection. Recent reports have shown the involvement

of SphK-1 during mycobacterial infections in macrophages [18],

but the key question of whether SphK-1 can actually control

mycobacterial infections remains unanswered.

We observed the increased sensitivity to infection of macro-

phages deprived of SphK-1 (both DHS treated and Si-Sphk-1

knockdown), demonstrating a novel antimycobacterial role of

SphK-1 in infected macrophages. Sphk-1 is known to induce a

pro-inflammatory environment [69,70] and phagolysosome mat-

uration [71] in macrophages. Reduced expression of major

phagocytic and antimycobacterial proteins in Sphk-1 knockdown

macrophages clearly indicated their poor innate immune defense

against mycobacteria, which rendered these macrophages sensitive

to infection, Reduced activation of the RelA subunit (pp65) of NF-

kB in Sphk-1 knockdown and infected WT macrophages further

suggested a possible regulation of Sphk-1 of both NF-kB itself and

NF-kB mediated signaling (iNOs proteins, NO generation, TNF

secretion and LAMP-2), which are important and involved in

mycobacterial killing in macrophages [21]. Increased expression of

LAMP-2, iNOs and p-p38 in SphK-1++ macrophages in response

to M. smegmatis infection suggested increased antimycobacterial

potential of Sphk-1++ macrophages, providing the most probable

evidence of increased resistance of these macrophages to infection.

As predicted, control sphingolipids did not affect macrophage

response either to M. smegmatis infection or LPS/TNF stimulation.

This was due to the fact that the same lipid (including other related

Figure 4. SphK-1 regulates M. smegmatis infection induced NO generation in macrophages. (A) WT macrophages were infected with M.
smegmatis with and without DHS for indicated time intervals and their culture supernatants were collected to measure inducible NO as NO2 as
described. (B) Sphk-1 knockdown inhibits M. smegmatis induced NO generation. Both control and Sphk-1 siRNA knockdown macrophages were
infected with M. smegmatis and NO was quantified in their culture supernatant at indicated time intervals. (C) Complementation of NO by SphK-1
overexpression in macrophages. Both WT and SphK-1++ macrophages were infected with M. smegmatis with and without DHS and NO was
quantified in the culture supernatants at indicated time points. (D) SphK-1 overexpression restores the functional integrity of NO response in infected
macrophages. Both WT and SphK-1++ macrophages were infected with increasing doses of M. smegmatis and co-stimulated with LPS (positive
control). The culture supernatants were collected at indicated time intervals and NO was quantified. The dotted line in all figures represents the
constitutive NO titre in macrophages. The values above this line represent the actual titre of NO being induced by various treatments. ** Indicates
p#0.01; * indicates p#0.05.
doi:10.1371/journal.pone.0010657.g004

Sphk-1 Controls M. smegmatis
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control lipids) did not alter translocation of CD69 (b-actin

receptor) and Nf-kB activation in macrophages in response to

M. smegmatis infection [72], which are required for the bacterial

killing and stimulation of macrophages.

The antimycobacterial role of NO has been documented in

macrophages [32–34]. Reduced generation of NO in macrophag-

es deprived of SphK-1 demonstrated their poor activation since

NO is a well-known and potent marker of activated M-1

macrophages [73,74]. Transcriptional regulation of iNOS is very

complex and more than 15 different consensus binding sites for

transcription factors have been identified in the promoter region of

the iNOS gene. One of the major factors regulating iNOS

transcription is NF-kB. Reduced activation of NF-kB indeed

provided a potential reason for reduced NO titre in Sphk-1

knockdown macrophages. Reduction of M. smegmatis infection or

LPS induced NO generation by DHS and its complementation by

SphK-1 overexpression clearly indicated that SphK-1 is indis-

pensable for the generation of NO in macrophages. Increased NO

titre and expression of iNOs proteins in SphK-1++ macrophages

demonstrated moreover their M-1bright phenotype, which are

more competent and bear efficient antibacterial defenses [31].

Reduced bacterial uptake, growth and enhanced NO genera-

tion in SB 203580 treated and infected macrophages over infected

macrophages could possibly be due to the regulatory role of

p38MAPK over mycobacterial growth [53,56], negative regula-

tion of expression of the early endosomal marker (EEA-1) [75] and

generation of NO [55]. Increased uptake and enhanced bacterial

growth in infected and SB treated macrophages by DHS revealed

a novel regulation of infection by SphK-1 over p38 in infected

macrophages. The similar regulation of SphK-1 over p38 was also

shown by the inhibition of M. smegmatis and SB 203580 induced

titre of NO by DHS. These results clearly depicted the novel

regulation of SphK-1 over p38 MAPK, which is quite important

for host innate immunity [76,77].

DHS mediated inhibition of TNF-a secretion in infected WT

macrophages rendered an anti-inflammatory environment [59]

and provided the second major reason for the sensitization of

Sphk-1 inhibited macrophages to infection. Reduced TNF-a levels

in SphK-1++ infected macrophages also reflected the anti-

inflammatory effect of SphK-1 overexpression in the macrophages

as observed earlier.[78] The dual regulation of SphK-1 on TNF-a
secretion was explicitly demonstrated by the inhibition of either

LPS or M. smegmatis induced TNF-a secretion in both WT and

SphK-1++ RAW macrophages by both S1P and DHS and was

found to be in agreement with other recent finding [60].

Despite the low TNF-a titre in the infected SphK-1++
macrophages, their increased resistance to infection was found to

be due to the enhanced expression of LAMP-2, iNOs, p-p38 and

Figure 5. Sphk-1 are also involved in LPS/TNF induced NO generation in macrophages. (A) WT and SphK-1++ macrophages were
stimulated with LPS with and without S1P/DHS and NO was quantified at indicated time intervals. (B, C) Sphk-1 knockdown inhibits LPS and TNF-a
induced generation of NO in macrophages. Both control and Sphk-1 knockdown macrophages were stimulated with LPS (B) and TNF-a (C) and NO
was quantified at indicated time intervals. (D) The effect of Sphk-1 knockdown was validated in LPS or TNF-a induced generation of NO and
expression of iNOs proteins at different time intervals. Shown here is the representative blot from two independent experiments. Data in all figures
are represented as mean of mM 6 SEM from three independent experiments. The dotted line in all figures represents the constitutive NO titre in
macrophages. The values above this line represent the actual titre of NO induced by various treatments. **Indicates p#0.01; * indicates p#0.05).
doi:10.1371/journal.pone.0010657.g005
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the elevated S1P titre, which all together conferred optimum

defenses in these macrophages against M. smegmatis in a TNF

independent manner. Due to the antimycobacterial nature of S1P

[61], the elevated S1P titre in infected SphK-1++ macrophages

over infected WT macrophages provided yet more compelling

evidence for their enhanced antimycobacterial potential. These

findings thus demonstrate that SphK-1 is capable of controlling

mycobacterial infection in macrophages.

Materials and Methods

Reagents and antibodies
DMEM with high glucose, Lipopolysaccharide (LPS) from

Salmonella typhimurium, Gentamycin, Geniticin (G418), NaNO2,

D-Sphingosine, Sphingosine 1 phosphate, D, L erythro dihydro-
sphingosine and the SphK-1 inhibitor D, L-threo-Dihydro-
sphingosine (DHS) were purchased from Sigma (Taufkirchen,

Germany). The TNF-a OptEIATM ELISA kit was purchased from

BD Pharmingen (Heidelberg, Germany). SB 203580 (p38

inhibitor) was purchased from Cal-Biochem (Darmstadt, Ger-

many). 7H9 medium was purchased from Difco (Karlsruhe,

Germany). Sulphanilamide and N-(naphthyl) ethylene-diaminedi-

hydrochloride were purchased from E-Merck (Darmstadt, Ger-

many). Rabbit anti-mouse Sphingosine kinase-1 polyclonal

antibody was purchased from Cayman chemicals (Hamburg,

Germany). Mouse monoclonal iNOs antibody was purchased from

BD transductions (Heidelberg, Germany). Rabbit anti-mouse

pp38 antibody was purchased from Santa Cruz (Heidelberg,

Germany). Rat anti-mouse LAMP-2 was purchased from Iowa

Hybridoma Bank. Rabbit anti-mouse pp65 (RelA) antibody was

purchased from Cell signaling. Goat anti-rabbit Alexa flour 488,

Goat anti-rat-Cy3 and Goat anti-mouse-Cy3 conjugated antibod-

ies were purchased from Di-nova (Koenigswinter, Germany).

Mouse Sphk-1 specific siRNA duplex was purchased from Santa

Cruz Biotechnology. Control siRNA duplex was purchased from

Qiagen.

Sphk-1 knockout mice
Sphk-1 KO mice (C57Bl6/j background) were established,

housed and bred at the animal housing facility at SUNY

Downstate and VA Medical Center, NewYork, in a pathogen-

free environment. These mice were originally developed by

Richard Proia, NIDDK Bethesda, USA [79] and further

characterized by Wadgaonkar et al., SDVAMC, New York,

USA, in their lung injury model [80].

Cell culture
RAW 264.7 macrophages were maintained in Dulbecco

Modified Eagle Medium supplemented with 4.5 g/l of glucose,

10% FCS, penicillin and streptomycin (1%). The SphK-1++
RAW 264.7 macrophages were maintained in G418 containing

DMEM medium. For mycobacterial infection, (0.56106) macro-

phages were cultured overnight in antibiotic free medium and

infected the next day at the density of 16106. Unless otherwise

mentioned, all experiments were conducted in medium contain-

ing DHS. Mouse peritoneal macrophages were isolated by a

standard procedure from WT C57Bl6/j and SphK-1 KO mice.

To isolate peritoneal macrophages, the mice were injected 4%

thioglycolate medium intraperitoneally and peritoneal lavage was

collected 72 h post injection. Next, the CD11b+ macrophages in

peritoneal lavage were purified by MACS based positive selection

method using CD11b+ magnetic micro beads (Miltenyi Biotech).

16106 CD11b+ peritoneal macrophages per well were cultured

in a final volume of 200 ml RPMI 1640 medium in flat-bottom

96-well polystyrene microtitre plates (Corning) and incubated at

37uC and 5% CO2 overnight for adherence to plastic surface.

Next day the adherent macrophages were used for various

experiments.

Sphk-1 overexpression
SphK-1 was overexpressed in RAW macrophages. For this

purpose, SphK-1 gene was sub-cloned into pEGFP-N1 vector.

The primers which were used for cloning had the following

sequences: 59-CCCGAATTCATGGAACCAGAATGCCCTC-

GA. 39-primer: GCGTCTAGATTATGGTTCTTCTGGAGT-

TGG. The macrophages were transfected with SK-1-GFP using

EcoR1/Xba1 bearing neomycin resistant cassette. The cells were

positively selected Geniticin G418 (600 mg/ml) containing medi-

um. The GFP expression was validated by FACS, and SphK-1

overexpression was confirmed by western blot, immunofluores-

cence staining and competitive S1P titre (Fig. 2A).

SiRNA knockdown of Sphk-1
Sphk-1 in RAW macrophages was knocked down using

commercially available Sphk-1 siRNA duplex from Santa Cruz

(Sc-45446) with the following sequences: 59UTR CUGGU-

GUUAUGCAUCUGUU, GCAAGCAUAUGGAACUUGA

and CCUUCCAGUUAGAGUAACA, together with scrambled

siRNA duplex (Qiagen). The cells were transfected with these

duplexes using siRNA transfection reagent (Santa Cruz Biotech) as

recommended by the manufacturer in serum and antibiotic-free

medium. The knockdown was confirmed 24 h post transfection by

western blot (Fig. 1F).

Cell survival and metabolic activity
The survival of macrophages under experiments was evaluated

by the MTT dye reduction method. After each incubation time

the cells were incubated with yellow MTT dye [3-(4, 5-

dimethylthiazol-2-yl)-2, diphenyl-tetrazolium bromide (Sigma,

Taufkirchen, Germany) (20 ml/well of 5 mg/ml) for 1 h at 37uC
in a CO2 incubator. The Formazone crystals (reduction product of

dye by mitochondrial reductase) were dissolved in DMSO and

ethanol and OD was measured at 570 nm in a spectrometer

Spectra max 250 (Molecular Devices, Munich, Germany).

Similarly, the metabolic activity of macrophages was determined

by WST-1 assays (Roche Diagnostics, Mannheim, Germany).

20 ml of reagent was added to a 0.2 ml volume of cell culture and

incubated for 1 h and the absorbance was measured at 440 nm in

a spectrometer, Spectra max 250 (Molecular Devices, Munich,

Germany).

Figure 6. Verification of the role of Sphk-1 on the generation of NO in primary mouse macrophages. (A) Mac-1+ peritoneal
macrophages were isolated from WT mice and stimulated with LPS/TNFa/IFN-c with and without DHS and the NO was quantified at 24 and 48 h post
treatment. (B) The Mac-1+ peritoneal macrophages were infected with M. smegmatis as described both in the presence or absence of DHS and NO
was quantified at indicated post infection time intervals. (C) Mac-1+ peritoneal macrophages were isolated from both WT and Sphk-1 KO mice and
stimulated with both LPS and TNF-a. NO was quantified in their culture supernatant at indicated time intervals. Data in all figures are represented as
mean of mM 6 SEM from three independent experiments. The dotted line in all figures represents the constitutive NO titre in macrophages. The
values above this line represent the actual titre of NO induced by various treatments. ** Indicates p#0.01; * indicates p#0.05.
doi:10.1371/journal.pone.0010657.g006
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Figure 7. Sphk-1 regulates p38 MAPK in infected macrophages. (A) The macrophages were treated with p38MAPK inhibitor (SB 203580;
2 mM) with and without DHS and infected with M. smegmatis and mycobacterial killing was monitored over a 4 h period. Data are represented as a
mean of CFU 6 SEM from three independent experiments. ** Indicates p#0.01; * indicates p#0.05. (B) SphK-1 is involved in p38 and M. smegmatis
mediated generation of NO in macrophages. The macrophages were infected with M. smegmatis with and without SB 203580 and DHS, either
separately or together. The LPS was used as positive control and NO was quantified. Data are represented as mean mM 6 SEM from three
independent experiments. The dotted line represents the constitutive NO titre in macrophages. The values above this line represent the actual titre of
NO induced by various treatments. ** Indicates p#0.01; * indicates p#0.05.
doi:10.1371/journal.pone.0010657.g007
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M. smegmatis infection
Log phase cultures of M. smegmatis were used for infecting

macrophages. The bacterial cultures were maintained in 7H9

medium supplemented with 0.2% glycerol. Before infecting

macrophages, the bacterial clumps were removed by repeatedly

washing and sonicating bacterial suspension mildly for 15 min at

room temperature in a mild water sonicater bath as described

previously [23,24,81]. Before infecting cells with these bacteria, the

viability of single bacterial cell suspension was checked under a

light microscope. WT, SphK-1 KD (knockdown) and SphK-1++
macrophages were infected with M. smegmatis in antibiotic free

medium for 1 h. After 1 h infection period, the medium was

replaced with medium containing Gentamycin (10 mg/ml) to get

rid of extracellular bacteria. The cells were incubated further for

various time intervals. After each incubation interval, the cells

were washed twice with PBS to remove extracellular bacterial and

cellular debris and lysed in distilled H2O. The infection was

quantified by a CFU (colony forming unit) based method as

previously described [16,23]. For this purpose, serially diluted cell

lysates were platted on LB agar plates in triplicate. The bacterial

colonies were counted after 2–3 days and infection was

documented as colonies (CFU) per milliliter.

Western blotting
The cells were lysed in 50 mM Tris-HCl (pH 7.4), 150 mM

NaCl, 2 mM EDTA, 1% Nonidet P-40 and complete protease

inhibitor cocktail (Roche) and sonicated with 35 pulses of 50

milliseconds. Protein concentrations in samples were determined by

the Bradford method (Bio-Rad, Munich, Germany). 20 mg of

proteins per sample were separated on gradient gel (Nu-PAGE) and

blotted on PVDF membrane by wet electro-blotting method. The

membranes were blocked with 5% non-fat dry milk in TBS-T;

pH 7.5 (20 mM Tris base, 137 mM NaCl, and 0.1% T-ween20)

and incubated with primary antibody overnight at 4uC. This was

followed by incubation with the HRP conjugated secondary

antibody. Blots were developed by ECL reagent (Amersham, Life

Sciences Freiburg, Germany) and normalized against actin.

Immunofluorescence staining
The expression of SphK-1, iNOs, pp38 and LAMP-2 markers

in macrophages were visualized by immunofluorescence staining.

For immunostaining, both WT and SphK-1++ macrophages were

infected on cover slips. The cells were fixed with 4% PFA for

15 min and washed once with 16TBS. The cells were then

permeabilized by TBST-Triton 6100 (0.1%) for 5 min and

blocked with TBS + 1% BSA+ 1% fish gelatin for 30 min. After

three washes with TBS, cells were incubated with primary

antibodies for 1 h at RT. This was followed by incubation of

cells with secondary antibody for 1 h in the dark. The cells were

counter stained with DAPI to stain nucleus. The cells were

mounted and analyzed under fluorescent microscope (Axivort,

Carl Zeiss) under 1006magnification.

Figure 8. SphK-1 regulates TNF-a secretion in macrophages. (A) Both WT and SphK-1++ macrophages were infected with M. smegmatis with
and without DHS. The TNF-a titre was quantified in their culture supernatants until 4 h post infection. (B,C) Delay in the secretion of TNF-a by S1P in
macrophages. The macrophages were infected with M. smegmatis with and without DHS (20 mM) and S1P (5 mM), and their culture supernatants
were collected at 9 h (B) and 24 h (C) post infection and TNF-a titre was quantified. (D) The macrophages were stimulated by LPS with and without
S1P and DHS, TNF titre was quantified at 9 h (D) and 24 h (E) post treatment. (F) Sphk-1 overexpression delays in the secretion of TNF-a by infected
macrophage upon LPS co-stimulation. Both WT and Sphk-1++ macrophages were infected with M. smegmatis and co-stimulated with LPS for
indicated time intervals. The TNF titre was quantified. Data are represented as a mean rg/ml 6 SEM from three independent experiments.
** Indicates p#0.01; * indicates p#0.05.
doi:10.1371/journal.pone.0010657.g008

Figure 9. M. smegmatis infection enhances S1P production in macrophages. Both WT and SphK-1++ were infected with M. smegmatis with
and without DHS and S1P titres were quantified. Data are represented as a mean of rmoles of S1P 6 SEM produced in each group from two
independent experiments. ** Indicates p#0.01; * indicates p#0.05.
doi:10.1371/journal.pone.0010657.g009
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NO quantification
Supernatants from macrophages under observation were used

to determine NO as NO2 by standard Griess reagent assay. Equal

volumes of the culture supernatants and Griess reagent (1%sul-

phanilamide/0.1%N-(naphthyl) ethylene-diaminedihydrochloride

prepared in 5% o-phosphoric acid) were mixed and absorbance

was measured at 550 nm by Spectra max spectrometer (Molecular

Devices ORT). The NO titres in samples were quantified against a

NaNO2 standard curve generated using software provided with

the Spectra max spectrometer (Molecular Devices).

TNF-a measurement
TNF-a titre in culture supernatants of macrophages was

quantified by using the standard OptEIATM ELISA kit (BD

Pharmingen, USA) as per the instruction manual. The TNF titers

in samples were calculated by SPF software using a cytokine

standard generated standard curve.

S1P quantification
S1P was measured as previously described [82]. Briefly, the cell

monolayers were scraped and washed once with ice cold PBS. The

cell pallets were dissolved in methanol containing concentrated

HCl. The lipids were extracted by a modified two-step extraction

method by addition of chloroform and 1N NaCl. For alkalization

a 3N NaOH solution was added. After centrifugation (300 g,

5 min), the alkaline aqueous phase containing S1P was transferred

into siliconized glass tubes. The organic phase was re-extracted

with methanol, 1N NaCl and 3N NaOH. The aqueous phase was

acidified with concentrated HCl and extracted twice with

chloroform. The combined organic phase was evaporated using

a vacuum system (Savant, Bethesda, Md., USA). The dried lipids

were then resolved in methanol/0.07 M K2HPO4 (pH-8.2) by

rigorous vortexing and sonicating on ice for 5 min. A derivatiza-

tion mixture of o-phthaldialdehyde, mercaptoethanol, ethanol and

boric acid solution (pH-10.5) was prepared and added to the lipid

fractions (resolved in methanol/0.07 M K2HPO4) for 15 min at

room temperature. The derivatives were analyzed using the Merck

Hitachi LaChrom HPLC system (Merck Hitachi, Darmstadt,

Germany). Fluorescence was measured at 340 nm after separation

on RP-18 Kromasil column (Chromatographie Service, Langer-

wehe, Germany). The flow rate was adjusted to 1.3 ml/min and a

gradient program was prepared with methanol and 0.07 M

K2PO4 as solvents and applied (Table 1). Dihydro S1P was used as

an internal control and S1P was quantified in each sample by

using the Merck system manager software.

Statistical analysis
The averages and standard errors of the mean as well as the

student’s t-tests have been calculated; significance is indicated with

** p,0.01 and * p,0.05.

Supporting Information

Figure S1 Killing of M. smegmatis by RAW macrophages.

16106 RAW macrophages were infected with M. smegmatis

(MOI-1 and 5) and mycobacterial killing was monitored up to 4 h

post infection. Data are represented as mean of CFU 6 SEM from

three independent experiments. ** Indicate p,0.01; * indicate

p,0.05.

Found at: doi:10.1371/journal.pone.0010657.s001 (0.92 MB TIF)

Figure S2 Effect of DHS on the survival and stimulation of

macrophages (A) Both WT and Sphk-1++ macrophages were

treated with varying doses of DHS and their survival was

monitored at different time intervals by MTT dye reduction

method as described. The OD was taken at 570 nm by a

spectrophotometer. (B) The metabolic activity of the macrophages

under section (A) was measured by WST-1 dye reduction method

as described. The OD was measured at 440 nm by spectropho-

tometer. Data are represented as mean of OD 6 SEM from three

independent experiments.

Found at: doi:10.1371/journal.pone.0010657.s002 (0.81 MB TIF)

Figure S3 Effect of control lipids on the killing of M. smegmatis

by RAW macrophages Macrophages were treated with control

sphingosine derivatives D-sphingosine (A) or D-erythro dihydro-

sphingosine (B) and infected with M. smegmatis and mycobacterial

killing was monitored up to 24 h post infection. Data are

represented as mean of CFU 6 SEM from three independent

experiments. (C) The macrophages were infected in the presence

of either sphingosine or D, L erythro- dihydrosphingosine (no SK

inhibitory activity) and NO was compared among different groups

at indicated time intervals. Data are represented as mean of mM 6

SEM from three independent experiments. The dotted line in the

figure represents and cuts-off the constitutive NO titre in

macrophages. The values above this line represent the actual titre

of NO induced by various treatments.

Found at: doi:10.1371/journal.pone.0010657.s003 (0.59 MB TIF)

Figure S4 S1P regulates M. smegmatis infection induced NO

generation in macrophages. (A) Both WT and SphK-1++
macrophages were infected with M. smegmatis with and without

S1P/DHS and NO was quantified at indicated time intervals. (B)

Both WT and SphK-1++ macrophages were stimulated with

various stimuli (LPS/TNF/IFN/SNP) with and without DHS for

indicated time intervals and NO was quantified in their culture

supernatants at 24 h post treatment. (C) Both WT and SphK-1++
macrophages were stimulated with (LPS/TNF/IFN/S1P) with

and without iNOs specific modulators (SNP/LNMA) and NO was

quantified at 24 h post stimulation. (D) SphK-1 overexpression

enhances the expression of iNOs proteins in macrophages. WT

and Sphk-1++ macrophages were stimulated with various stimuli

(LPS/TNF-a/IFN-c) with and without S1P/DHS: The expression

of iNOs proteins was analyzed at 24 h. Shown here is the

representative blot from two independent experiments. Data are

represented asmM 6 SEM from three independent experiments.

The dotted line in the figure represents and cuts-off the

constitutive NO titre in macrophages. The values above this line

represent the actual titre of NO being induced by various

treatments.

Found at: doi:10.1371/journal.pone.0010657.s004 (2.24 MB TIF)

Table 1. Gradient program for S1P and dihydro-S1P
separation utilized for the HPLC analysis of S1P.

Time (min) 0.07 M K2PO4 (%) Methanol (%)

0 24 76

10 24 76

30 16 84

40 8 92

46 0 100

56 0 100

58 24 76

doi:10.1371/journal.pone.0010657.t001
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Figure S5 Effect of control lipids on LPS and/or TNF-a
induced NO in macrophages. RAW macrophages were stimulated

with either LPS (A) or TNF-a (B) with and without d-sphingosine

and d, l-erythro dihydrophingosine (DHS-related sphingosine-

derivative without SK inhibitory activity) for indicated time

intervals. The NO was quantified in their culture supernatants.

The dotted line in the figure represents and cuts-off the

constitutive NO titre in macrophages. The values above this line

represent the actual titre of NO being induced by various

treatments. Data are represented as mM 6 SEM from two

independent experiments.

Found at: doi:10.1371/journal.pone.0010657.s005 (0.98 MB TIF)
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