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Abstract: Critical defects of the mandibular bone are very difficult to manage with currently available
materials and technology. In the present work, we generated acellular and cellular substitutes
for human bone by tissue engineering using nanostructured fibrin-agarose biomaterials, with and
without adipose-tissue-derived mesenchymal stem cells differentiated to the osteogenic lineage using
inductive media. Then, these substitutes were evaluated in an immunodeficient animal model of
severely critical mandibular bone damage in order to assess the potential of the bioartificial tissues to
enable bone regeneration. The results showed that the use of a cellular bone substitute was associated
with a morpho-functional improvement of maxillofacial structures as compared to negative controls.
Analysis of the defect site showed that none of the study groups fully succeeded in generating
dense bone tissue at the regeneration area. However, the use of a cellular substitute was able to
improve the density of the regenerated tissue (as determined via CT radiodensity) and form isolated
islands of bone and cartilage. Histologically, the regenerated bone islands were comparable to control
bone for alizarin red and versican staining, and superior to control bone for toluidine blue and
osteocalcin in animals grafted with the cellular substitute. Although these results are preliminary,
cellular fibrin-agarose bone substitutes show preliminary signs of usefulness in this animal model of
severely critical mandibular bone defect.

Keywords: bone; tissue engineering; fibrin-agarose; mandible; regeneration

1. Introduction

Several conditions and diseases may significantly affect the oral and maxillofacial
region, including congenital malformations, trauma, infection, tumors, osteonecrosis, and
other relevant pathologies [1] that can lead to significant loss of bone tissue [2]. How-
ever, large critical-size defects affecting the mandible are very difficult to manage, due to
the unique histological and physiological characteristics of this bone [3]. In most cases,
defects are repaired using bone grafts that can be obtained autologously [4] or from ca-
daveric donors [5,6], with variable results, although numerous inert biomaterials have
also been tested. Specifically, several types of biomaterials based on calcium phosphate
bioformulations—especially tricalcium phosphate and hydroxyapatite—have been ex-
tensively used for the reconstruction of critical mandibular defects, with promising re-
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sults [7–9], although none of these biomaterials was fully efficient as an inductor of bone
regeneration [10].

In general, reports related to the treatment of large critical-size bone defects are rare,
as these conditions are very difficult to treat, and results are typically suboptimal [10]. A
recent review of the literature related to critical mandibular bone defects demonstrated
that the currently available evidence is very heterogeneous in terms of the animal models,
defect size, follow-up time, and biomaterials used to treat the bone defects [10]. Promising
results were described in rat calvarial defects using different types of biomaterials—such as
hydroxyapatite combined with poly-lactic-co-glycolic acid [11], or composites containing
wollastonite and β-tricalcium phosphate [12]—especially when biomaterials were com-
bined with bone morphogenetic proteins (BMPs) [13]. In the human mandible, large critical
defects were treated with an allogeneic bone matrix impregnated in BMP combined with a
titanium mesh, but bone induction was only found only in one-third of the patients [14].
Overall, further research is needed in order to elucidate the usefulness of biomaterials used
in large-defect bone tissue engineering [13].

An ideal graft should be highly biocompatible and able to induce bone regeneration
without generating any significant side effects on the host, and it should allow host cells
to remodel the graft and replace it with newly formed bone tissue [6,15]. However, the
biocompatibility and regenerative potential of most currently available biomaterials is
limited, and novel types of grafts capable of inducing effective bone regeneration are
needed. One of the possible alternatives is the use of organic biomaterials based on natural
components—such as human fibrin—which are known to have high biocompatibility, and
have been successfully used in multiple regenerative applications, such as for the human
cornea [16,17], oral mucosa [18], nerves [19], and skin [20,21]. Another possibility is the
use of cells immersed in the biomaterial, since previous reports have demonstrated that the
combination of biocompatible biomaterials with living cells is associated with a significant
improvement in results in terms of the formation of bone tissue [10]—especially when stem
cells are used [22]. Interestingly, the use of adipose tissue mesenchymal stem cells (ADSCs)
pre-differentiated ex vivo to the osteogenic lineage was shown to increase the regenerative
potential of several biomaterials as compared to native ADSC [23].

In the present work, we evaluated the bone regeneration potential of nanostructured
fibrin-agarose biomaterials and fibrin-agarose biomaterials containing human ADSC dif-
ferentiated to the osteogenic lineage in a model of severely critical bone defects of the rat
mandible, and we determined their potential usefulness as biomaterials for bone repair.

2. Materials and Methods
2.1. Generation of Acellular and Cellular Bone Substitutes by Tissue Engineering

Acellular bone substitutes were generated in the laboratory using nanostructured
fibrin-agarose biomaterials. Briefly, to generate 1 mL of hydrogel, 760 µL of human plasma
obtained from plasma donors was mixed with 75 µL of DMEM (Dulbecco’s modified
Eagle’s medium, Merck Life Science, Darmstadt, Germany), 15 µL of tranexamic acid
as an antifibrinolytic agent (Amchafibrin 5 mg/mL, MEDA Pharma SL, Madrid, Spain)
and 50 µL of a 2% solution of type VII agarose (Merck Life Science) dissolved in PBS.
Then, 100 µL of 1% CaCl2 (Merck Life Science) was added in order to trigger the fibrin
polymerization reaction. This mixture was aliquoted in 6-well plates and allowed to jellify
in a cell culture incubator. 24 h later, hydrogels were carefully extracted from the culture
plates and subjected to plastic compression nanostructuration to obtain a thin, consistent
layer of biomaterial, as previously described [24]. Then, this structure was wound on itself
to generate a consistent, multilayered, rod-shaped cylinder [19].

To generate cellular bone grafts—considered as human tissue-engineered bone substitutes
—we first obtained human adipose tissue mesenchymal stem cell (ADSC) cultures. These
cultures were established from small adipose tissue biopsies harvested from healthy donors
subjected to programmed surgery, and digested with 0.3% type I collagenase (Gibco BRL
Life Technologies, Waltham, MA, USA) at 37 ◦C. Then, 50,000 ADSCs were obtained
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and mixed with the fibrin-agarose mixture described above before inducing the hydrogel
polymerization, and biomaterials were aliquoted and allowed to jellify in a cell culture
incubator. Hydrogels were incubated for 21 days in an osteogenic induction medium
composed of basal DMEM medium (Merck Life Science) supplemented with 10% fetal
bovine serum (FBS, Sigma-Aldrich Inc. St. Luis, MO, USA), 1% antibiotic–antimycotic
(100 U/mL penicillin G, 100 mg/mL streptomycin and 0.25 mg/mL amphotericin B),
and different growth factors and inductive reagents (100 nM dexamethasone, 10 mM
b-glycerol phosphate, and 50 mM L-ascorbic acid), as previously reported [25]. Finally,
these biomaterials were subjected to nanostructuration and rolled up as described for the
acellular grafts.

This study was conducted in accordance with the guidelines of the Declaration of
Helsinki and approved by the Institutional Ethics Committee of the Province of Granada for
research with human samples (Comité Ético de Investigación, CEIM/CEI), ref. 0018-N-19,
and informed consent was obtained from tissue donors.

2.2. Analysis of Biomechanical Properties

The biomechanical properties of the fibrin-agarose bioartificial tissues generated in
the present work were evaluated using an Instron Model 5943 biomechanical analyzer
(Norwood, MA, USA) with Bluehill 3 software. Bioartificial tissues were subjected to
nanostructuration and rolled up as described above, and rod-shaped cylinders were placed
on the holding clamps of the device, leaving a distance of 1 cm between both clamps.
The biomechanical analyzer was programmed to run with a strain rate of 5 mm/min of
continuous traction, until rupture of the sample. The following parameters were analyzed
in each sample using the Instron Bluehill 2 materials testing software: Young’s modulus,
stress at fracture, break load, and strain at fracture. Five samples were analyzed (n = 5).

2.3. Animal Models

To evaluate the efficiency of each bone graft in inducing bone tissue regeneration,
acellular and cellular grafts were implanted at the defect site of Foxn1rnu nude rats in
which a severely critical bone defect was generated at the right side of the mandible
(Figure 1). The left side was left untouched and used as a control in each animal. Four
study groups were included in the present work:
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Figure 1. Generation of a severely critical-size bone defect in Foxn1rnu nude rats: (A) The mandibular body was surgically
exposed. (B) A titanium microplate was fixed, and a 1-cm-long bone segment was sectioned. (C) The sectioned bone
segment was excised. (D): A tissue-engineered bone substitute was implanted at the defect site.

(1) P-CTR group (n = 2): Native normal animals used as positive controls. These
animals were not subjected to any surgical procedures;
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(2) N-CTR group (n = 4): Animals subjected to surgical removal of a fragment of the
right mandible, used as negative controls. First, animals were deeply anesthetized with
ketamine and acepromazine (Boehringer Ingelheim, Ingelheim am Rhein, Germany). The
base of the mandibular body was then surgically exposed, and a 1-cm-long fragment was
sectioned and extracted using a bone saw. To stabilize the mandible and enable mandibular
function, a titanium microplate was previously fixed with 2 screws at each side of the defect.
Finally, the soft tissues were repaired, and the skin incision was closed using surgical suture
material;

(3) ACELL group (n = 4): Animals subjected to surgical removal of a fragment of the
right mandible, as described for the N-CTR group, but an acellular bone graft generated as
described above was implanted at the defect site;

(4) HTEB group (n = 8): Animals subjected to surgical removal of a fragment of
the right mandible, with a cellular bone graft (human tissue-engineered bone substitute)
generated as described above implanted at the defect site.

In all animals subjected to surgical procedures, analgesia was used for 7 days after
surgery, and soft rat chow was provided to the animals to facilitate chewing. All animals
were kept at the animal facility of the University Hospital Virgen de las Nieves and Instituto
de Investigación Biosanitaria ibs.Granada, Spain, under veterinary supervision. Rats were
euthanatized after 4 months of follow-up.

Animal experimentation was approved by the animal ethics and research committee
of the University of Granada (CEEA) and the Regional Ministry of Agriculture (Consejería
de Agricultura, Ganadería, Pesca y Desarrollo Sostenible), Junta de Andalucía, Spain
(ref. 08/07/2019/122).

2.4. CT Scan Analysis of Cranial Bone Structure and Morphology

Immediately after euthanasia, animals were analyzed using a Pointnix Point 3D Combi
500 CT scanner, as previously reported [26]. For this purpose, the head of each animal was
placed and fixed on the analysis surface, and high-resolution images were obtained from
all cranial structures. For each animal, 3D reconstruction images were obtained, and the
following variables were assessed:

(1) Morphological analysis of cranial structure and symmetry. The 3D reconstruction
images were evaluated by three independent researchers, and teeth morphology, bite
function (as determined by dental occlusion), and facial symmetry were evaluated as
normal or pathological;

(2) CT radiodensity of the regeneration tissue. For each animal, axial plane tomo-
graphic sections were obtained at the site of the defect at the right side of the mandible,
also including the control left mandible. Images were then analyzed by three independent
researchers to qualitatively determine the presence of regeneration tissue at the site of the
defect. Then, this regeneration tissue was quantitatively analyzed by measuring its radio-
density as determined by Hounsfield units (HU). Six independent points were randomly
selected within the regeneration site at the right side of the mandible, or its counterpart at
the left side of the mandible and in control animals, and radiodensity was automatically
calculated by the software of the equipment.

2.5. Histological Analysis

For histological analysis, the mandible of each animal was surgically dissected and
fixed for 24 h in 10% formalin. Tissues were then decalcified using Anna Morse reagent
consisting of 50% formic acid and 20% sodium citrate (both from Panreac Química S.L.U.,
Barcelona, Spain) until the bone became soft (around 5–6 days). Decalcified tissues were
sectioned using a surgical blade, and the defect site was photographed in order to macro-
scopically evaluate the presence of regeneration tissue at the defect site. Tissues were then
dehydrated and embedded in paraffin using routine methods, and tissue sections were
obtained with a microtome and mounted on glass slides.
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For histological analysis, tissue sections were dewaxed, rehydrated, and stained with
hematoxylin and eosin (H&E) following standard protocols. Images were obtained using a
Nikon Eclipse 90i light microscope (Nikon Corp., Tokyo, Japan). In each sample, the site of
the defect on the right side of the mandible and the equivalent site on the control left side
were analyzed.

To evaluate the presence of relevant components of the extracellular matrix (ECM) at
the site of the defect and in the control mandibular bone, tissue samples were subjected to
the following histochemical methods [27]: calcium deposits and mineralization were identi-
fied with alizarin red; collagen fibers were stained and evaluated with picrosirius red; and
proteoglycans were stained with alcian blue and toluidine blue histochemistry. Analysis
of the bone marker osteocalcin and the ECM component versican was performed via im-
munohistochemistry. With this purpose, samples were subjected to antigen retrieval using
pH 6 citrate buffer (0.01 M) at 98 ◦C for 5 min, and endogenous peroxidase was quenched
with 3% H2O2 (Panreac Química S.L.U.). After prehybridization, sections were incubated
at 37 ◦C with proteinase-k (ready-to-use solution, Agilent Dako, Santa Clara, CA, USA)
and chondroitinase ABC from Proteus vulgaris (0.2 U/mL, Merck Life Science) for 30 min
for osteocalcin and versican, respectively. Then, samples were incubated overnight with a
1:200 solution of anti-osteocalcin primary antibody (Abcam ref. 13420, Cambridge, UK)
and 1:100 of anti-versican (Abcam ref. 19345), washed, and incubated with a 1:500 solution
of secondary anti-rabbit antibody for 30 min. A 3,3′-diaminobenzidine solution (Vector
Laboratories, Burlingame, CA, USA) was used to reveal the positive signal, and tissues
were counterstained with Mayer’s hematoxylin and mounted using glass coverslips.

To determine the ECM composition in the different samples, the histochemical and
immunohistochemical results found for osteocalcin and versican were quantified by mea-
suring the ECM signal intensity using ImageJ multipoint analysis tools (National Institutes
of Health, Bethesda, MD, USA), as previously described [28]. For each sample, 10 dots
were randomly selected at the regeneration site at the right mandible (or at its counterpart
in normal bone), and the signal intensity was automatically calculated by the program. In
cases in which areas of ossification or chondrification were found at the regeneration area,
these areas were quantified independently. Quantification analyses were carried out by
blinded researchers.

2.6. Statistical Analysis

In order to identify statistical differences within the study group, quantification results
obtained for regeneration tissue radiodensity (in HU) and histochemical and immuno-
histochemical analysis (quantified as signal intensity) were statistically analyzed. First,
variables were evaluated with the Shapiro–Wilk test to determine whether they were nor-
mally distributed. As this test demonstrated that the distributions were not normal, we
used nonparametric statistics.

For radiodensity and histology, we compared the results obtained at the defect site
at the right side of the mandible of each group of animals with results corresponding to
the same area at the right side of the mandible of P-CTR (normal bone), and with results
obtained at this area in N-CTR. For radiodensity, values obtained at the defect site at the
right mandible were compared with those obtained at the homologous site at the left
mandible in the same group of animals (used as controls).

All of these comparisons were carried out using pairwise Mann–Whitney exact tests.
Data were statistically evaluated using RealStatistics (Dr. Charles Zaiontz, Purdue Univer-
sity, West Lafayette, IN, USA), and p-values below 0.05 were considered to be statistically
significant using double-tailed tests.

3. Results
3.1. Biomechanical Testing

Analysis of the biomechanical properties of the fibrin-agarose bioartificial tissues
generated in the present work showed that the average Young’s modulus of the analyzed
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samples was 0.49 ± 0.0 MPa, whereas the stress at fracture was 0.99 ± 0.2 MPa, the break
load was 0.77 ± 0.1 N, and the strain at fracture was 28.77 ± 9.1 mm.

3.2. Morphological Analysis of Cranial Structure and Symmetry

As shown in Figure 2, morphological analysis of the animals included in the study
revealed several differences between groups. When P-CTR animals (native rats) were
analyzed, we found that the morphology of the teeth was normal, allowing a physiolog-
ical bite function, and the animals’ faces were symmetrical. In contrast, N-CTR animals
showed several morphological alterations, with 75% of the animals showing teeth alter-
ations (mainly, overgrowth and displacement of the superior incisors) associated with bite
abnormalities in 50% of the cases (mainly, mandible retraction and tooth malocclusion),
and facial asymmetry in 75% of the animals. When animals grafted with an acellular
biomaterial (ACELL group) were analyzed, we found that 75% of the animals had normal
teeth and were free from detectable bite alterations, and none of the animals showed facial
asymmetry. Finally, animals grafted with a complete bone substitute (HTEB group) showed
that 62.5% of the animals showed normal tooth morphology, and 87.5% had normal bite
and normal facial symmetry.
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Figure 2. CT scan analysis of the head bones of each group of animals included in the study. Top panels correspond to
the 3D reconstruction observed from the right side or from the inferior side, whereas bottom panels show a tomographic
section obtained at the axial plane at the site of the defect. P-CTR: native normal animals, used as positive controls; N-CTR:
animals subjected to surgical removal of a fragment of the right mandible, used as negative controls; ACELL: animals
subjected to surgical removal of a fragment of the right mandible and implant of a nanostructured fibrin-agarose biomaterial;
HTEB: animals subjected to surgical removal of a fragment of the right mandible and implant of a nanostructured human
tissue-engineered bone substitute.

3.3. Analysis of the Defect Site

In order to assess the regeneration tissue generated at the defect site, we first analyzed
the site of the mandibular defect in decalcified tissues corresponding to each group of
animals. Macroscopic results (Figure 3) showed that the mandibles of positive control
animals had a homogeneous structure with no detectable defects, while N-CTR animals
displayed an area of soft tissue between both bone fragments at the defect site. ACELL
animals also showed abundant soft tissue at the implant site, whereas the soft tissue found
between both bone ends tended to be smaller and less abundant in HTEB animals.
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Figure 3. Gross macroscopic view of the right mandible of each group of animals included in the
study. Tissues were fixed, decalcified, and sectioned in the sagittal plane to show the area of the
defect. P-CTR: native normal animals, used as positive controls; N-CTR: animals subjected to surgical
removal of a fragment of the right mandible, used as negative controls; ACELL: animals subjected to
surgical removal of a fragment of the right mandible and implant of a nanostructured fibrin-agarose
biomaterial; HTEB: animals subjected to surgical removal of a fragment of the right mandible and
implant of a nanostructured human tissue-engineered bone substitute.

Next, we evaluated the presence of bone at the defect site in CT images. As shown in
Figure 2, the mandibular structure was regular and homogenous in positive controls, as
expected. However, N-CTR animals displayed a large defect underneath the mandibular
fixation plate, which was evident in the 3D reconstruction images, and showed the absence
of dense tissue formation at the regeneration site in the tomography images, suggesting
a complete absence of bone regeneration in this group of animals. For ACELL animals,
a defect was also found at the regeneration site, although the 3D reconstruction images
suggest that this defect could be smaller in ACELL animals as compared to N-CTR. Inter-
estingly, tomography images suggest the presence of a regeneration tissue at the implant
area, although the radiodensity of this tissue was very low in these animals. Finally, the
3D reconstruction images of HTEB animals revealed the presence of a regenerative tissue
partially filling the defect site, although its consistency was not comparable to bone tissue
in tomography images, suggesting that this tissue could partially correspond to soft tissue.

Quantitative analysis of the CT radiodensity of the tissue found at the defect site at the
right side of the mandible revealed significant differences between groups. Results showed
that positive controls showed 2742.8 ± 1171 Hounsfield units (HU) at the right mandible,
whereas N-CTR had 546.7 ± 130.7 HU, ACELL had 542.4 ± 135.4 HU, and HTEB showed
884.3 ± 358.2 HU at the defect site. Statistical comparison between groups demonstrated
that the CT intensity signal of positive control animals was significantly higher than N-CTR,
ACELL, and HTEB animals (p < 0.05), while that of HTEB was significantly higher than
that of N-CTR and ACELL animals (p = 0.002). In addition, when the radiodensity was
compared between the right and the left sides of each animal, we found that both sides
were similar in positive control animals (p > 0.05), whereas significant differences were
detected between the two sides of the mandible in the N-CTR, ACELL, and HTEB groups
(p < 0.05).
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3.4. Histological Analysis

Histological analysis of the non-operated mandibles (left side) of all animals included
in the study—and both sides of P-CTR mandibles—using H&E showed that the bone
structure was compatible with a normal compact bone consisting of a dense extracellular
matrix with abundant osteoblasts and vascular lacunae forming osteons compatible with a
normal Haversian bone. Then, analysis of the operated side of N-CTR animals showed
a complete absence of bone tissue; instead, the area of defect was filled with a dense
connective tissue consisting of a dense matrix with numerous fibroblast-like cells. For the
operated mandibles of ACELL animals, we found that the defects were filled with a dense
connective tissue similar to that found in N-CTR animals, but a few small, isolated areas
of bone were found immersed within this connective tissue (average 1.25 ± 0.35 areas
per animal). These areas were formed by normal bone with an osteoblast population
immersed in a dense, well-organized extracellular matrix. Finally, analysis of HTEB
animals showed that the defect zone was mostly composed of dense connective tissue, but
a higher number of scattered bone areas was found (average 3 ± 1.41 areas). Interestingly,
areas of developing cartilage were found close to some of these bone zones (Figure 4).
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In addition to the H&E analysis, we evaluated the implant area using several histo-
chemical and immunohistochemical methods (Figures 5–7). Initially, detection of calcifi-
cation areas using alizarin red histochemistry revealed that the bone tissue found in P-
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Figure 4. Histological analysis of mandible tissues using hematoxylin and eosin (H&E) staining. Normal bone: tissues
corresponding to the non-operated side of the mandible (left side); defect: tissues corresponding to the operated side of
the mandible (right side), showing some areas of bone and cartilage tissue found at this side; N-CTR: animals subjected
to surgical removal of a fragment of the right mandible, used as negative controls; ACELL: animals subjected to surgical
removal of a fragment of the right mandible and implant of a nanostructured fibrin-agarose biomaterial; HTEB: animals
subjected to surgical removal of a fragment of the right mandible and implant of a nanostructured human tissue-engineered
bone substitute. Scale bars correspond to 1000 µm in the top images representing low-magnification images and 50 µm in
the images below obtained at higher magnifications.

In addition to the H&E analysis, we evaluated the implant area using several histo-
chemical and immunohistochemical methods (Figures 5–7). Initially, detection of calcifica-
tion areas using alizarin red histochemistry revealed that the bone tissue found in P-CTR
animals (normal controls) showed strong staining intensity, revealing the presence of abun-
dant calcium deposits. In contrast, tissue found at the regeneration area of N-CTR animals
contained very few alizarin-red-positive calcium deposits, with statistically significant
differences from positive controls. Analysis of the areas of bone found at the regeneration
area of ACELL animals showed lower staining intensity than positive controls, but con-
tained higher amounts of calcium deposits than negative controls. However, we found
that the staining intensity of bone areas corresponding to the HTEB group was similar to
positive controls, and statistically higher than negative controls. Finally, cartilage areas
found in HTEB animals showed very low alizarin red staining intensity (comparable to
negative controls). Secondly, we used picrosirius red histochemistry to assess the presence
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of collagen fibers in each group of animals as a relevant component of the bone ECM. Our
results showed that the highest collagen content was found in P-CTR normal bone, and the
rest of the samples analyzed here displayed significantly lower picrosirius red intensity.
The lowest levels of collagen were found at the regeneration area of N-CTR animals, with
levels significantly lower than in ACELL and HTEB bone areas and HTEB cartilage areas.
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a nanostructured human tissue-engineered bone substitute. Scale bars: 100 µm.
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blue, and toluidine blue) and immunohistochemistry (osteocalcin and versican). Results correspond to average values in
each study group. P-CTR: native normal animals, used as positive controls; N-CTR: animals subjected to surgical removal
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a: differences with P-CTR are statistically significant; b: differences with N-CTR are statistically significant.

Next, we analyzed the presence of ECM proteoglycans in each group of samples using
alcian blue and toluidine blue histochemistry. For alcian blue, staining was significantly
higher in P-CTR normal bone compared to the rest of the samples, and bone found in
the ACELL group was significantly lower than N-CTR. No differences from N-CTR were
found for HTEB bone and cartilage. Regarding toluidine blue, HTEB bone and cartilage
showed significantly higher staining intensity than P-CTR, and no differences were found
from N-CTR.

For the bone marker osteocalcin (Figures 6 and 7), immunohistochemistry revealed
strong staining intensity in P-CTR normal bone and a very low signal in N-CTR, with
statistically significant differences between both groups of samples. Bone areas found at
the regeneration sites of ACELL and HTEB animals showed significantly higher intensity
than N-CTR, and bone found in HTEB animals had higher signal than P-CTR. Analysis of
versican expression showed that the staining intensity was similar in the P-CTR, ACELL,
and HTEB groups, whose signal intensity was significantly higher compared to N-CTR.
The lowest signal was found in cartilage areas corresponding to HTEB samples.

4. Discussion

Induction of efficient and successful bone regeneration is a challenge in maxillofacial
surgery. In the present work, we used a combination of biocompatible fibrin-agarose bio-
materials with potential utility in tissue engineering [16–20], and pre-differentiated ADSCs
that were previously demonstrated to have significant osteogenic potential [23]. Applica-
tion of nanostructuration methods allowed us to generate three-dimensional cylinder-type
structures that were used to repair the mandible defects generated in an animal model. Al-
though the biomechanical properties of these bioartificial structures were lower than those
of mineralized bone [29], we found that the biomechanical behavior of our tissue substitutes
was high compared to previously reported values for fibrin-based hydrogels [30]. Most
likely, application of the biofabrication methods described in the present work—including
nanostructuration and modification of the three-dimensional structure of the biomaterial to
generate a rod-shaped cylinder—was able to improve the biomechanical properties of this
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type of biomaterial, as previously suggested [31]. However, future biofabrication protocols
should be developed to enhance these properties and make them more similar to those of
native human bone.

In general, our results showed that the use of this biomaterial-based approach was not
able to induce completely satisfactory bone regeneration in vivo. However, some positive
results were obtained. There could be multiple reasons that our model was not able to
induce a completely satisfactory bone regeneration process. First, it is possible that our
model requires longer periods of time to achieve bone regeneration. In the present work,
we analyzed our animals for 4 months after the surgical procedure, which is considered
to be enough for a full regeneration in the rat, according to several reports [32]. However,
the critical size of the defect induced here could require longer periods of time. Second,
a crucial factor of the present work is the nature and size of the defect created in the
mandibles of the study animals. Most previously reported works make use of a 3–5 mm
circular defect in the inferior border of the rat mandible [33–36]. Although this defect is
considered to be of critical size, the general structure of the rat mandible is preserved,
without complete separation of the mandible segments. In contrast, our model is one of
the first descriptions of a severely critical defect with a large separation of bone fragments
and stabilization with osteosynthesis plates. This model could more faithfully reproduce
the clinical situation in which patients and surgeons are confronted with severe trauma,
tumors, congenital defects, and other severe conditions. However, regeneration at the bone
defect could be significantly more challenging in our model due to the size and structure
of the defect, along with the amount of normal bone tissue surrounding the defect. In
this study, we used an HTEB substitute containing human cells pre-differentiated to the
osteoblastic cell lineage using previously described induction methods. Despite the fact
that these methods are broadly used to induce osteogenic differentiation, and are known to
be highly efficient [25], future studies should analyze the phenotype of these cells using
enzymatic methods, such as the alkaline phosphatase (ALP) activity assay [37].

Despite these limitations, we found a positive effect of the HTEB implant as com-
pared to controls. First, our results suggest that nanostructured fibrin-agarose grafts may
contribute to improvement of the development and function of maxillofacial bones as
determined by morphological analysis. In fact, bite function, tooth morphology, and facial
symmetry tended to be more physiological in animals grafted with these biomaterials as
compared to N-CTR animals. Although these results are preliminary, our results suggest
that this technology could be useful in cases with severe morphological and structural
alterations with loss of mandibular bone. Even though they used a different animal model,
previous works carried out by our research group demonstrated that fibrin-agarose-based
bioartificial tissues could contribute to induce harmonic development of maxillofacial
structures in rabbits with a palate bone defect [26,38].

Compared with other biomaterials used in tissue engineering of the mandibular bone,
fibrin-agarose offers high biocompatibility, although its biomechanical properties are not
comparable to those of native bone [29]. Among the biomaterials used in mandibular
bone tissue engineering, most reports make use of different types of inorganic salts—
especially calcium phosphate, alone or combined with growth factors and mesenchymal
stem cells [10,23]. Despite the fact that these biomaterials can improve bone formation,
their real utility in severely critical defects in which a large percentage of the mandible is
lost is very low, and novel strategies based on tissue engineering and cell differentiation
are needed in order to efficiently treat these conditions. In general, the fibrin-agarose
biomaterial used in the present work offers high biocompatibility to cells cultured within
the biomaterial, along with excellent biointegration at the graft site once grafted in vivo.

In the present work, we found that the tissue generated at the defect site varied
between groups although, unfortunately, this tissue was not compatible with dense, normal
bone tissue in any of the study groups. Interestingly, we found that the use of a bone
substitute in the HTEB group was able to improve regeneration of the bone defect as
compared to the N-CTR group, and this improvement was associated with structural
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and histological differences from controls. Regarding the regeneration tissue found at
the defect site, we found significant differences in terms of CT radiodensity, with HTEB
resulting in the formation of denser tissue as compared to N-CTR and ACELL, although the
radiodensity found in P-CTR normal bone was not reached. In general, we could conclude
that the use of a fibrin-agarose bioartificial tissue was able to improve tissue regeneration,
although regeneration was not comparable to that of native bone, and further research is
needed in order to find a perfect bone substitute for this severely critical bone defect model.

When the regeneration tissue was analyzed histologically, we found several differences
between groups. Interestingly, animals treated with the fibrin-agarose biomaterial showed
some areas of bone formation, while HTEB animals also had detectable areas of cartilage
tissue. The structure and composition of these tissues revealed that the regenerating bone
corresponding to HTEB was more similar to normal control bone than the regenerating
tissue found in other study groups. In short, the bone areas formed in the HTEB animals had
similar staining signals to native positive controls for alizarin red and versican, suggesting
that this bone could be partially mineralized, and could be associated with this important
proteoglycan with a key function in ECM physiology [39]. In addition, HTEB showed
significantly higher staining signals than N-CTR for alizarin red, picrosirius red, versican,
and osteocalcin. Regarding the first of these markers, our results highlight the possibility
that the ECM of the bone regeneration tissue formed in HTEB animals could be more
physiological than that found in negative controls. In addition, the higher presence of
osteocalcin—considered to be the most specific marker for osteoblastic activity [40]—suggests
that the osteoblastic activity of cells found at the regeneration site was more intense in the
HTEB group, with signal intensity comparable to, or even higher than, positive controls.
This could be explained by the fact that the bone regenerative and biosynthetic activity
was more active in HTEB animals than in native controls, which usually display a basal
metabolic activity. Interestingly, the osteoid activity as determined by toluidine blue was
also higher in the HTEB group than in native, normal controls, suggesting again that this
newly formed bone could be related to an active process of biosynthetic activity [41].

Though these findings suggest a partially positive effect of the HTEB on mandibular
bone formation, it is clear that the product could be significantly improved to achieve full
bone regeneration. On the one hand, novel biofabrication methods should be applied to
the HTEB in order to generate a product with higher analogy to the native mandible bone.
In this regard, previous reports from our research group demonstrate that fibrin-agarose
biomaterials can be improved and functionalized by chemical cross-linking [42], or by
combination with magnetic nanoparticles [43] and bioactive nanostructured lipid carri-
ers [44]. Future works should determine whether these methods can enhance the biological
and biomechanical properties of the HTEB used in the present work. On the other hand,
a crucial step in the development of novel therapies for use in regenerative medicine is
clinical translation. As is the case of previous human tissues generated with nanostruc-
tured fibrin-agarose biomaterials [17,45], HTEB will need to fulfill several requirements of
medicines agencies before therapeutic use in patients.

5. Conclusions

In conclusion, the present study is one of the first descriptions of a severely critical
mandibular bone defect animal model that could reproduce severe clinical conditions.
This model allowed us to evaluate a novel model of tissue-engineered bone substitute
that showed positive outcomes in terms of facial bones’ morphology and function and,
partially, in terms of regeneration tissue density, structure, and mineralization. Future
studies should be carried out in order to determine the usefulness of this bone substitute in
different experimental settings.
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