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The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several
tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained
from medical images would have several clinical applications. Optical microangiography (OMAG) is a method for obtaining
three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained
with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the
fractal dimension, the vessel length fraction, and the vessel area density) is proposed and validated. Finally, the repeatability for
acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

1. Introduction

The appearance of tissue vasculatures may be an important
biomarker to distinguish healthy from diseased tissues in
several medical applications. For example, a change in retinal
vessels is an early indicator of coronary heart disease [1, 2]
and stroke [3]. Vascular remodeling has also been of interest
in several fields including wound healing [4], oncology [5],
and tissue regeneration [6].

Numerous techniques have been applied to obtain
the vascular morphology from biological tissues. Optical
intrinsic signal imaging [7], laser speckle imaging [8], and
laser-Doppler flowmetry techniques [9] can obtain microan-
giography images; however, they have low spatial resolution
which limits their capability for viewing small capillaries.
Confocal microscopy provides high spatial resolution; how-
ever, it is limited by its penetration depth and requires the use
of fluorescent tissue markers [10]. Photoacoustic imaging,
based on thermal-acoustic phenomena resulting from the
strong light absorption of blood and the subsequent thermo-
elastic expansion, provides high-resolution angiography
images; however, the acquisition time is slow [11, 12].

Optical microangiography (OMAG) is a method for
obtaining three-dimensional images of blood vessels in

vivo, using a spectral domain optical coherence tomography
(OCT) system [13, 14]. OMAG is based on separating the
static from dynamic tissue structures, which is done by
detecting the changes in the scattered signal through time,
due to the movement of particles such as red blood cells.
OMAG has been used in several studies such as visualizing
the corneal-sclera limbus [15], the retina [16], the skin
[17] and the cerebral [18], and renal microcirculations [19].
OMAG has the advantage that it can capture a large image
(2 × 2 mm) within a few seconds with high resolution
(∼10 μm) and high penetration depth (∼2.5 mm).

Microangiography images provide direct visualization of
the blood vessels and capillaries within biological tissues.
Usually, these images are interpreted qualitatively [20]. Pre-
vious methods to quantify these images include measuring
blood vessel diameters [21], the flow velocity [22], and the
maximum distance in the tissue to the nearest blood vessel
[23]. New methods that can enable the quantification of the
blood vessels, such as the vessel tortuosity, will be beneficial
for several studies, like angiogenesis.

Vessel length fraction and vessel area density are parame-
ters which represent a relative value of the total length of the
vessels and the total area occupied by the vessels, respectively
[24]. Fractal dimension (FD) is an approach that is used
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to characterize images [25]. A fractal dimension is a value
that gives an indication of how an image fills space as one
zooms into smaller scales. It has also been defined as a
description of blood vessel tortuosity. Fractal analysis enables
the assessment of the architecture of a vascular network,
particularly the branching of vessels. It has been applied
in diverse areas of medicine to describe complex biological
structures [26] such as branching patterns of the retina [27],
coronary [28], and pulmonary arterioles [29]. It has also
been used to quantify the fractal distribution of scatterers in
tissues [30], the parafoveal capillary network [31], and A-line
from OCT images of arteries [32].

In this study we examine an application of quantifying
three parameters (the fractal dimension, vessel length frac-
tion, and vessel area density) from small areas of angiography
images. We proposed to demonstrate a box counting method
for calculating the FD of images of different sizes. Also,
we developed a segmentation algorithm that allows the
extraction of the vessels from the background image. We also
assess the repeatability for obtaining OMAG images using an
in vivo mouse ear model. Finally, we apply the method for
quantifying small areas within an OMAG image.

2. Material and Methods

2.1. Optical Microangiography (OMAG) System. A spectral
domain optical coherence tomography system has been
developed [33] and is presented in Figure 1. The system
contained a superluminescent diode (SLD) as a light source,
with a central wavelength of 1310 nm and a bandwidth of
56 nm. The SLD provides a theoretical axial resolution of
∼13 μm in air. The light from the light source was divided
into two paths via a 2 × 2 optical coupler. One light path
was directed towards a mirror, known as the reference arm,
and the other light path was directed towards the sample,
known as the sample arm. In the sample arm, the light was
coupled into a custom-designed optical system, containing a
collimator, a pair of galvo mirrors, and an objective lens with
a 30 mm focal length. The lateral resolution was determined
to be ∼12 μm. The light backscattered from the sample and
reflected from the reference mirror was recombined using the
2 × 2 optical coupler and then transmitted to a home-built
spectrometer via an optical circulator for the detection of the
spectral interference signal. The spectrometer had a spectral
resolution of 0.141 nm, which provided an imaging depth
of 2.2 mm into the sample. A high-speed InGaAs line scan
camera (SUI, Goodrich Corp) was used in the spectrometer
to capture the interferograms at a rate of 92,000 A-lines per
second. The system sensitivity was determined to be 105 dB
at a depth of 0.5 mm from the zero-delay line.

The scanning pattern and method for processing the
acquired data were based on an optical microangiography
technique (OMAG) [17], which allows the extraction of
the three-dimensional microvascular images. Briefly, a saw
tooth waveform was used to drive the x-scanner (for fast
B scan), and a step function waveform was used to drive
the y-scanner (for slow scan, that is, C-scan). For a B scan
cross-sectional image, 256 A-lines were captured with∼8 μm
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Figure 1: Experimental setup of the spectral domain optical
coherence tomography system. SLD: superluminescent diode, OC:
optical circulator, PC: polarization controller, M: mirror.

spatial interval between adjacent A-lines to cover a range of
∼2 mm on the sample. The duty cycle for the rising side of
the saw tooth waveform was set at ∼80% per cycle, which
provided a B-scan frame rate of ∼280 frames per second.
For the C scan, the 2 mm scan range was evenly divided
into 200 steps with a 10 μm spatial interval between them. In
each step, five frames were captured and processed to extract
one B-scan cross-sectional flow image. The system acquired
1000 frames to form each three-dimensional dataset. The
total acquisition time for obtaining a 3D data set took
∼3.5 seconds, which is suitable for in vivo experiments. Six
datasets were sequentially acquired in different regions and
stitched together to obtain a whole image that covered an
area of ∼3.5× 5.5 mm. The smallest blood flow velocity that
can be measured is 4 μm/s [33].

The image processing method and the extraction
of the en face maximum projection view image of the
microvasculature network imaged by OMAG have previously
been reported [33]. The en face projection view images were
analyzed using a fractal dimension analysis method, and the
vessel length fraction and vessel area density were quantified
[24].

2.2. Experimental Protocol. We obtained in vivo images of
the microvasculature from a mouse ear. The OMAG images
were obtained at three consecutive days. The images covered
an area of ∼ 3.5 × 5.5 mm. All experiments were performed
on a C57BL/6 male mouse approximately two months old.
During the experiment, the mouse was anesthetized using
2% isoflurane (0.2 L/min O2, 0.8 L/min air), and the ear was
depilated with a commercial human hair remover lotion.

2.3. Fractal Dimension, Vessel Length Fraction, and Vessel
Area Density Analysis. To quantify the 2D en face projection
view images, we used three quantitative parameters: fractal
dimension (FD), vessel length fraction (VLF), and vessel
area density (VAD). The method consists of segmenting
the blood vessels from an OMAG image, which produces a
binary black and white image. The segmentation algorithm
consisted of three steps. First, a low-pass filter was used,
which minimized elements that were smaller than a specific
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Figure 2: (a) OMAG image obtained from a mouse ear. Scale bar is 0.1 mm. (b) Black and white segmented image of (a). (c) Skeletonization
of the segmented image (b). (d) Overlay of (c) and (a).

radius size. Then, a global threshold was used to set to zero
all the pixels below that threshold. Finally, a local adaptive
threshold was implemented to binarize the image based on
the mean pixel value within a predefined window size. This
is further discussed in Section 3.2.

Figures 2(a) and 2(b) show an example of the original
OMAG image (128 × 128 pixels) and its segmented coun-
terpart, respectively. The VAD is calculated by counting the
number of white pixels in the binary image, which represent
the area covered by vessels, and dividing it by the total
number of pixels in the image. For Figure 2(a), the total
number of pixels in the image is 128× 128 = 16, 384 pixels.

The binary image is then skeletonized by reducing all the
continuous white segments to a line with a single pixel width.
The skeletal image is a representation of the total vessel
length. The skeletonization consists of iteratively deleting the
pixels in the outer boundary of the segments until a single
pixel width line is obtained [34]. As a result, we obtained a
collection of lines which represent the midlines of all vessel
shapes. A skeletonized image is observed in Figure 2(c). The

VLF is calculated by counting the number of pixels in the
skeletonized image, which represents the length of all the
vessels, and dividing it by the total number of pixels in the
image.

Figure 2(d) shows the overlay of the original image
(Figure 2(a)) with the skeleton (Figure 2(c)). It can be
observed that the skeleton vessels overlap well with the vessels
in the original image.

The fractal dimension was calculated over the skele-
tonized image using a box counting technique [35], which is
a method of estimating the fractal dimension from structures
that are not perfectly self-similar. Briefly, the box counting
method consists of dividing a skeletonized image into square
boxes of equal sizes, where the number of boxes containing a
vessel segment is counted. The process is iteratively repeated
with boxes of different sizes. The absolute value of the
slope of the curve that shows the logarithm of the box
size plotted against the number of boxes containing a vessel
segment is the fractal dimension. This is further discussed in
Section 3.1.
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Figure 3: (a) Fifth iteration of a pentaflake. Cropped pentaflake for a size of (b) 64 × 64 (solid square in (a)) and (c) 256 × 256 (dashed
square in (a)) pixels. (d) Box size versus the number of boxes. (e) Mean and standard deviation obtained from images of different sizes.

Although the FD can also be calculated over the seg-
mented image, it has been previously demonstrated that
the fractal analysis is more sensitive to changes in vascular
pattern on skeletonized images than those in binary images
[36]; therefore, we have opted to focus on the FD of the
skeletonized images only. Both the VAD and VLF have values
between 0 and 1, and the FD has a value between 0 and 2.

3. Results

The first part of the Results section consists on validating
the method that calculates the FD and the segmentation
algorithm which enables the quantification of the FD, VLF,
and VAD. Then, these parameters are used to prove the
repeatability for obtaining OMAG images, and a new method
of studying angiography images is proposed.

3.1. Validation of the Fractal Dimension for Different Image
Sizes. To validate the accuracy of the FD calculation, an
image of a pentaflake (Figure 3(a)) was used. A true fractal
image can scale to infinity and has self-similarity properties
at every scale. However, since we are interested in calculating
the FD of an image that is limited by the pixel resolution,
we opted to use as an example the fifth iteration of the

pentaflake, which is a quasi-fractal image. The pentaflake has
a known FD which is given by [37]

FD = log(6)
log
(
1 +

(
1 +

√
5
)
/2
) ≈ 1.8617. (1)

To calculate the fractal dimension we used a box counting
method [38]. The box counting method consists of dividing a
skeletonized image into square boxes of equal sizes, where the
number of boxes containing a vessel segment is counted. The
process is repeated several times with boxes of different sizes.
The logarithm of the box size is plotted against the number
of boxes containing a vessel segment. The fractal dimension
is the negative of the slope of the linear part of the curve, as
defined by

FD = − log10(N(l))

log10(l)
, (2)

where l is the box length and N(l) is the number of boxes
needed to cover the image. True fractal images are linear
throughout the whole plot; however, quasi-fractal images are
linear within a subsection of the curve. Figure 3(d) shows an
example of the logarithm of the box size versus the logarithm
of the number of boxes containing a vessel segment for the
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Figure 4: (a) Overlay of the GS image with the optimum automatically segmented image. (b) Overlay of the skeletonized GS image with
the optimum automatically segmented skeleton image. (c) ROC curve of the automatically segmented image using a combination of 1000
different variables V1, V2, and V3. (d) Mean and standard deviation of the percent variation of the FD, VLF, and VAD between the manually
and automatically segmented five test images.

whole pentaflake image observed in Figure 3(a). The circles
are the data obtained from the box counting method. A
straight line was fit to the linear part of the curve, indicated
by the black data points.

The calculated FD of the whole image using the box
counting method is 1.845, which is very close to the value
of the true fractal (1).

In the study of several microvascular phenomena, such
as angiogenesis, which is the growth of new blood vessels, it
is important to quantify small areas of tissue. For example,
regions close to tumors may present angiogenic blood
vessels (higher tortuosity and FD) compared to the healthy
surrounding blood vessels [23]. Therefore, it is important to
determine the smallest number of pixels within an image for
which the box counting method can accurately determine the
FD value.

To demonstrate the validity of using the box counting
method on small images, we cropped the pentaflake image
with a square window with different side lengths (8, 16, 32,

64, 128, 256, and 512 pixels). All the cropped images were
centered at the same location. Figures 3(b) and 3(c) show
two examples of cropped images centered at the yellow dot
in Figure 3(a). Figures 3(b) and 3(c) represent image sizes of
64 × 64 and 256 × 256 pixels, respectively, which have been
marked by a solid and dashed red square in Figure 3(a). Every
pixel within the pentaflake image (Figure 3(a)) was selected
as a center point, and cropped images of different sizes were
extracted. The FD was calculated from each of the cropped
images. The mean plus standard deviation of the FD for
each image size is presented in Figure 3(e), where the dashed
line indicates the true FD value of 1.8617. As the image size
increases, the calculated FD has a better agreement with the
true fractal value and the standard deviation is lower. Images
with a side length of 8 pixels present a large discrepancy
between the true FD value and the calculated value. Based
on the box counting technique, we have demonstrated that
there is a tradeoff between the accuracy of the FD value and
the size of the image for which the FD is calculated; therefore,



6 International Journal of Biomedical Imaging

1

2

(a) (b) (c)

Figure 5: OMAG images obtained from the same mouse ear at day (a) 1, (b) 2, and (c) 3. Scale bar is 0.5 mm.

larger number of pixels in the image will have more accurate
FD values.

The selection of the proper image size will depend on the
application and the resolution of the system acquiring the
data. The objective is to select the smallest image size which
encompasses the most interesting features within an image.
It is also necessary that the image size contains at least 16 ×
16 pixels.

3.2. Validation of the Vessel Segmentation. The method
proposed requires the segmentation of the blood vessels over
the angiography images. Manual segmentation is a common
approach which is time consuming and is prone to error due
to the experience of the grader. Therefore, the development
of an automatic method for segmenting the vessels would be
beneficial. An automatic segmentation algorithm would be
much faster than the manual counterpart, and there would
be repeatability within the same image. However, it would
be difficult to separate the true vessels from the artifacts,
shadows, background noise, brightness, and contrast of the
different images.

We are proposing a segmentation algorithm that will
enable the FD, VLF, and VAD calculation. To validate the
blood vessel segmentation algorithm, we asked an expert
to manually create a black and white segmentation of
the image shown in Figure 2(a). The manually segmented
black and white image was considered to be the reference
or gold standard (GS) image. The goal was to develop
a computational segmenting algorithm that will closely
recreate the gold standard image.

To perform the segmentation algorithm, we first adjusted
the image to increase the contrast, by making sure that 1%
of the image was saturated at the low (0) and high (1)
intensities. The segmentation algorithm that we developed
consisted of three steps.

(1) Low pass filter: this is a top hat filter which minimizes
the noise in the image and eliminates elements
smaller than a given radius threshold. The filter
consists of erosion followed by dilation. The radius
threshold is a parameter that was defined as variable
1 (V1).

(2) Low global threshold: a threshold on the grayscale
image was defined for which values below that
threshold were set to zero and values above the
threshold remained unaltered. The threshold level
was defined as variable 2 (V2).

(3) Local adaptive thresholding: a window size was
defined for which a local threshold was determined,
where the pixels below and above the threshold were
set to zero and one, respectively. The threshold level
was determined by the mean pixel value within the
window. The window size for the adaptive threshold
was defined as variable 3 (V3).

There are three variables that can be manipulated in the
segmentation algorithm (V1, V2, and V3). A set of 1000
different combinations of the three variables was defined.
For each combination of the variables, Figure 2(a) was
segmented.

Each computer-segmented (CS) image was overlaid with
the GS image as shown in Figure 4(a). The yellow pixels
represent the pixels that were selected by both the CS and the
GS image, also known as true positives (TP). The green pixels
were only selected by the GS image, known as false negatives
(FN), while the red pixels were only selected by the CS image,
known as false positives (FP). Finally, the black pixels were
selected by neither image, known as true negatives (TN).
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The sensitivity (Se) and specificity (Sp) from each of the
1000 overlaid images was determined by [27]

Se = TP
TP + FN

,

Sp = TN
TN + FP

.
(3)

A receiver operating characteristic curve (ROC) was
created as observed in Figure 4(c). Each of the black dots
represents the Se and Sp obtained from the 1000 overlaid
images. The overlaid image with the highest value of the
average of the Se (85.18%) and Sp (87.91%), indicated by
the blue square in Figure 4(c), corresponded to values of 15,
0.15, and 10 for V1, V2, and V3, respectively.

To validate the parameters selected for V1, V2, and V3,
we obtained four new images that were manually segmented,
known as the testing set. Each of the test images was
computationally segmented using the optimum V1, V2 and
V3, and the sensitivity and specificity have been included
as red circles in Figure 4(c). Also, the same Figure 2(a) was
manually segmented by an independent expert, and the Se
and Sp were calculated. This value is indicated by a green
triangle in Figure 4(c). As can be noted, the sensitivity and
specificity are greater than 75% for all cases, indicating the
validity for the method described which was used with 4
independent images and with an image segmented by an
independent expert.

Finally, the FD, VLF, and VAD were calculated from
the five testing set images (4 independent images and 1
independent expert). The mean plus standard deviation of
the percentage variation between the values obtained by
the manually and automatically segmented test images is
presented in Figure 4(d). It is observed that the FD and
VAD have variation of less than 5%, which indicates that
those parameters are not very sensitive to the errors in the
segmentation algorithm. However, the VLF presents higher-
percent variations (∼20%) between the manual and the
computational method. The differences in the skeletonized
images can be observed in Figure 4(b) where several false
positives and false negatives are observed.

3.3. Repeatability of the Optical Microangiography. It is
important to validate the repeatability for obtaining OMAG
images to guarantee that the calculated values for FD, VLF,
and VAD are comparable among images. Therefore, OMAG
images were obtained at three consecutive days from the
same region of a mouse ear. Each day, six OMAG images
(∼ 2 × 2 mm) from different regions of the mouse ear
were obtained and stitched together to create a larger image
(∼ 3.5 × 5.5 mm). Figure 5 presents the en face maximum
projection view images from the mouse ear, which was
obtained at three consecutive days. Qualitatively, it can be
observed that the images appear similar among themselves.

The FD, VLF, and VAD were calculated for the images
observed in Figure 5 and presented in Table 1. The values
obtained are similar among the three days indicating that
stitched OMAG images are repeatable.

Table 1: Fractal dimension, vessel length fraction, and vessel area
density obtained from the images of days 1, 2, and 3 from Figure 5.

Day 1 Day 2 Day 3

Fractal dimension 1.754 1.751 1.747

Vessel length fraction 0.12 0.12 0.123

Vessel area density 0.441 0.433 0.433

3.4. Characterizing Small Optical Microangiography Areas.
In many applications, there is a need to quantify small
microangiography regions. For example, blood vessels near
and far away from a wound area may have different
morphology. In the following section we propose a method
to quantify small regions within OMAG images. The method
consists of cropping a section of a large image, therefore,
creating a smaller image. The FD, VLF, and VAD would then
be calculated over the cropped image, and the values are then
stored in one of the middle pixels. For example, Figure 6(a)
shows a 32×32 pixel window (red square), and the calculated
values are stored in one of the middle pixels (16,16) indicated
by a red dot in the center of the red square. By sliding the
window across the whole image, a color map image can be
obtained. The size of the window was appropriately reduced
at the borders of the image. In this application, a window size
of 32 pixels (∼250 μm) was selected, such that it was large
enough to include one or more vessels within it (the largest
vessels are ∼100 μm in diameter).

The FD, VLF and VAD from the OMAG image of day
1 (Figure 5(a)) are presented in Figures 6(a), 6(c), and
6(e), respectively. For ease of visualization, the images were
multiplied by the black and white segmented images. The
edges of the image present an artifact due to the window
having smaller size. Also the top border of the ear presents
an artifact due to the window covering both the ear and outer
areas of the ear. The white dashed lines in Figures 6(a), 6(c)
and 6(e) demarcate the boundaries for which the artifacts
are observed. Therefore, the regions outside the dashed line
should be discarded.

Two regions of interest (ROI) have been selected in
Figure 5(a). Region 1 is covering large blood vessels, while
Region 2 is covering small vessels and capillaries. The mean
and standard deviations of the FD, VLF and VAD within
the two ROIs are presented in Figures 6(b), 6(d) and 6(f),
respectively.

The FD and VLF show smaller values in the regions
within large blood vessels compared to the capillaries. This is
expected since large vessels are fairly smooth compared to the
capillaries which are more tortuous. Also, a few large vessels
have a smaller length compared to several small vessels cov-
ering the same area. On the other hand, the VAD is slightly
higher when it covers large blood vessels, because the area of
the vessels covering the image is larger for larger vessels.

4. Discussion

In this study, we propose a quantitative approach for
classifying OMAG images which is based on using the fractal
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Figure 6: (a) Black and white segmented image multiplied by the (a) fractal dimension, (c) vessel length fraction, and (e) vessel area density
of the OMAG image from day 1 (Figure 5(a)). Mean and standard deviation of the (b) fractal dimension, (d) vessel length fraction, and (f)
vessel area density from the two regions of interests in Figure 5(a). The values were calculated with a 32 × 32 pixel length sliding window.
The dashed lines in (a), (c), and (e) indicate the segmentation of the edges in the image.
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dimension, vessel length fraction, and vessel area density.
Moreover, we intend to apply these calculations on small
areas within the OMAG images to obtain a color map as
observed in Figure 6. The purpose is to properly characterize
different regions within an image and monitor their changes,
for example, compare the morphological changes in regions
close and far away from an injured region, such as a burn.

The calculation of the fractal dimension is not precise
given that we are not utilizing true fractal images. The
images that we obtain are limited by the pixel resolution. We
used a pentaflake as a reference image to validate the box
counting technique. The calculation of the FD depends on
the slope of the curve, which is given by (2) and observed in
Figure 3(d). This method is limited by being able to properly
discern the linear area of the curve. The selection of different
number of data points to fit a straight line may yield different
results. Images with larger number of pixels have FD values
closer to their true value compared to smaller number of
pixels, as shown in Figure 3(e). Therefore, it is important to
acknowledge that there is a tradeoff between the image size
and the accuracy of the FD value. Also, if the image size is too
small (8×8 pixels), there is a large error in the FD calculation.

The image size used to calculate the FD must depend
on the application. For this study, it was of interest to
obtain a size that would include one or more vessels, such
that the tortuosity could be properly estimated. An image
size containing less than one vessel will not provide useful
information about the vascular morphology. A large image
size might provide a better FD value, but the resolution of
the color map image would be reduced, therefore, providing
less variation in the FD value across different areas within
an OMAG image. In this study a window size was selected
to incorporate at least one large vessel, as observed in
Figure 6(a). Also, the system resolution was high enough that
the window used had 32× 2 pixels; therefore, the FD value is
valid (Figure 3(e)).

A limitation of the method proposed is that it requires
vessel segmentation over the angiography images. A manual
segmentation approach may be a valid option; however, it is
time consuming and is prone to error due to the difference
in ability among the graders making the outcome dependent
on the experience of the grader. Therefore, the development
of an automatic method for segmenting the vessels would
be beneficial. The advantage is that it is much faster and
there is repeatability within the same image. The drawback
is determining the best approach that would be universal for
all images and which is capable of separating the true vessels
from the noise background, such as blood vessel shadows,
system noise, brightness, and contrast between the different
images.

This paper describes a quantitative method for evaluating
OMAG images generated from microcirculatory tissue beds
in vivo. The parameters of the method (V1, V2, and V3)
have been determined by comparing them to a manually
segmented gold standard image and validated using a testing
set. The testing set consisted of four new images that were
manually segmented by the same expert as the gold standard
image and a fifth image which was the same image as the
GS but was manually segmented by an independent expert.

Using a manually segmented image as a gold standard has
been used in the past for other applications, such as retinal
images [27]. It is important to note that the gold standard
image is not perfect, given that the manually segmented
images by two independent experts are not identical. In
the future it would be beneficial to conduct a large-scale
study with a large training and testing set and several
different algorithms. However, in this study the sensitivity
and specificity values obtained (>75%) are encouraging.

It is important to mention that the system resolution
may affect the results. Systems with lower resolution may
not be able to discern the small capillaries, while systems
with higher resolution might display even smaller capillary
branches. The values for V1, V2, and V3 were obtained from
a gold-standard image with a given system resolution. Future
studies should address how the values for FD, VLF, and VAD
will vary when using systems that have different resolutions.

The percent variations of the FD and VAD (Figure 4(d))
are less than 5%, indicating that the differences between the
manually and automatically segmented images are insensi-
tive to the calculation of these parameters. However, the VLF
has a larger percent variation of ∼20%. We attribute this
discrepancy to the skeletonization algorithm, which consists
of removing pixels from a continuous white shape until there
is a segment with a single pixel width. If the continuous
white shape (obtained by the segmentation algorithm) has
one or more extra (or less) pixels, compared to the gold-
standard image, the skeleton obtained may have significant
differences as observed in Figure 4(b), which affect the VLF
value. Although a ∼20% variation is not a large value,
this error can be reduced by improving the segmentation
algorithm using a larger training and testing set as previously
mentioned.

To properly use this method, it is important to charac-
terize the repeatability for obtaining OMAG images. OMAG
images were obtained from the same region of a mouse ear
at 3 different days (Figure 5), and the calculated parameters
were very similar to one another (Table 1). This result is
encouraging, given that one of the goals is to obtain images
from the same location at different time points, and it
is important to validate the repeatability in obtaining the
OMAG images.

The analysis proposed is based on using the 2D en
face projection view images. OMAG allows obtaining 3D
images of the microangiography morphology; however, the
3D images are prone to artifacts such as the shadow effect
from superficial large vessels. Future studies should address
the applicability of using a similar method over the three-
dimensional OMAG images. This will also enable the analysis
of the vessels that are located at different tissue layers.

The method proposed has been applied specifically
on OMAG images. However, it can also be applied to
angiography images obtained by other methods such as
photoacoustic microscopy [12].

5. Conclusion

In this study we have proposed to use three parameters to
quantify optical microangiography images obtained using
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a spectral domain optical coherence tomography system.
We have validated the method for calculating the fractal
dimension and determined the tradeoff between image size
and FD accuracy. FD values obtained from images with
a large number of pixels tend to be closer to theoretical
values. We have also proposed a segmentation algorithm
for which three variables have been determined by studying
the sensitivity and specificity of manually and automatically
segmented images. The repeatability for obtaining OMAG
images was demonstrated, and finally a color map of
the OMAG images has been shown to demonstrate the
applicability of the method for quantifying small regions
within an image.

Three parameters have been proposed to quantify
angiography images. FD, VLF, and VAD provide a measure
a blood vessel tortuosity, length and area, respectively. The
proposed method can be used to study the angiography of
biological tissues for different medical applications, such as
the monitoring angiogenesis, wound healing, and capillary
recruitment. It can also be used for different angiography
imaging methods such as photoacoustic microscopy.
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