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A B S T R A C T   

With the outbreak of COVID-19 and the increasing number of infections worldwide, there has been a noticeable 
deficiency in healthcare provided by medical professionals. To cope with this situation, computational methods 
can be used in different steps of COVID-19 handling. The first step is to accurately and rapidly diagnose infected 
persons, because the time taken for the diagnosis is among the crucial factors to save human lives. This paper 
proposes a computationally fast network for the diagnosis of COVID-19 and pulmonary diseases, which can be 
used in telemedicine. The proposed network is called DLNet because it jointly encodes local binary patterns along 
with filter outputs of discrete cosine transform (DCT). The first layer in DLNet is the convolution layer in which 
the input image is convolved using DCT filters. Then, to avoid over-fitting, a binary hashing procedure is per-
formed by fusing responses of different filters into a unique feature map. This map is used to generate block-wise 
histograms by binding local binary codes of the input image and the map values. We normalize these histograms 
to improve the robustness of the network against illumination changes. Experiments conducted on a public 
dataset demonstrate the rapidity and effectiveness of DLNet, where an average accuracy, sensitivity, and spec-
ificity of 98.86%, 98.06, and 99.24% have been achieved, respectively. Moreover, the proposed network has 
shown high tolerance to the missing parts in the medical image, which makes it suitable for the telemedicine 
scenario.   

1. Introduction 

Within a short period, COVID-19 has proliferated across the world, 
causing an increasing number of deaths as well as significant economic 
losses. According to [1], until January 2022, the number of confirmed 
cases is estimated at around 298 million along with more than 5 million 
deaths. In addition, new variants (i.e., Delta, Omicron …) of COVID-19 
appear periodically, making it difficult to definitively get rid of this 
disease. As for the economic effects of this pandemic, there has been a 
significant rise in unemployment, perturbation in transportation chains, 
decrease in revenue, with fatal losses for the industrial section. 

The reverse transcription-polymerase chain reaction (RT-PCR) 
technique is currently used for COVID-19 screening. However, RT-PCR 
takes a considerable deal of time to produce decisions with a high 
false-negative rate [2–5]. In addition, to take samples for RT-PCR, well- 
trained employers are required. Computed tomography (CT) and chest 
X-Ray (CXR) images, which are cheaper than RT-PRC, are also used for 
COVID-19 diagnosis. During peak times of COVID-19, in certain 

countries, RT-PCR becomes scarce and may be unavailable due to the 
perturbations of supply chains and the high demand for it, which in-
creases its price. On the other hand, CT scan and CXR are already widely 
available and used in clinics for the diagnosis of different diseases before 
the appearance of COVID-19. Thus, the RT-PCR test standard for 
screening COVID-19 is expensive, time-consuming, and requires well- 
trained employers, whereas the CXR/CT images provide a time/cost- 
effective method for COVID-19 diagnosis. Nevertheless, compared to 
CXR, CT scan is considered more expensive and harmful to the patient 
than the former one. 

With the huge proliferation of COVID-19 all over the world, medical 
personnel has been greatly affected by COVID-19, and there has been a 
noticeable number of infections among this personnel. This, along with 
the exponential increase in the number of patients everyday, has caused 
a remarkable shortage in healthcare provided by the medical staff. Thus, 
many countries have opted for artificial intelligence techniques to help 
fight this disease. In particular, deep learning has been widely adopted 
in several studies for COVID-19 detection from CXR images. It can be 
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noted that promising outcomes have been achieved by those studies, 
which encourages further investigations on this track. From one point of 
view, depending on the method used for detection, existing work can 
broadly be classified into two approaches, namely segmentation and 
feature learning. The first category, including the methods [6–9], aims 
to detect infected parts of the lung using segmentation techniques. The 
second approach [10–13] focuses on extracting features that can reflect 
the image content accurately. From another point of view, depending on 
the classification outcomes, current works can be categorized into two 
categories. The first category of works performs a binary classification i. 
e., classify patients into COVID-19 and non-COVID-19, whereas, the 
second category includes a third class and considers pulmonary diseases 
such as viral pneumonia and fibrosis. 

Although a considerable number of methods have been proposed 
during the last two years, there is still a great deal of room for 
improvement. For instance, most existing works consider using super-
vised deep-based schemes that often require a significant deal of time for 
training. In addition, the processing time required to make a prediction 
is proportional to the number of layers/parameters. Time is a quite 
crucial factor in the diagnosis of COVID-19 and plays a decisive role in 
saving human lives. Along with the problem of high computation and 
data storage, the main disadvantage of the CNN-based approaches is the 
dependency on a training dataset that should be large enough to reach a 
satisfactory generalization power. While the performance achieved by 
the previous works is promising, it remains very challenging to complete 
the other desirable aspects along with the good performance. It is 
challenging to design a method capable to deliver precise predictions of 
COVID-19 in a reasonable time, with limited computational resources 
and high robustness against degradation of the input images. 

Indeed, during peak times of infections, COVID-19 diagnosis via 
computationally expensive methods will not beneficial for breaking the 
chain of infection. Moreover, with the remarkable advances in the field 
of telemedicine, it becomes possible for medical professionals to make 
remote diagnoses and monitor. Teleradiology is a typical task of tele-
medicine, which allows radiologists to make remote interpretations of 
medical images. In the COVID-19 pandemic, with the deficiency of 
medical health practitioners, such a process can help break the chain of 
infection and save human lives. In such a scenario, transferred medical 
images may have missing parts because of transmission errors. In such a 
case, patients may resort to retaking another clearer image. Therefore, 
using methods with minor robustness may cause the diagnosis process to 
delay and can negatively affect the decisions reached by the radiologists. 
Furthermore, adopting methods with high computation and storage 
requirements will incur extra costs on the financial budget devoted to 
fighting COVID-19. Addressing the above-mentioned problems will have 
a direct impact on limiting the proliferation of COVID-19, facilitating the 
diagnosis process, reducing the required computational cost, and thus, 
saving human lives all over the world. 

In this paper, we propose a lightweight network for COVID-19 and 
pulmonary disease recognition from CXR images. The main objective of 
this study is to make this network effective, efficient, robust, and 
computationally fast. We refer to this network as DLNet because it fuses 
feature maps produced by the convolution layer with local binary codes 
associated with pixels in the original CXR image. The novelty of DLNet 
lies in its:  

- Simple architecture: it is composed of a single convolution layer with 
a few stacked steps.  

- Effectiveness: this is due to the incorporation of filter responses from 
the convolution layer with local binary patterns associated with 
different pixels. In addition, considering the binary hashing process 
allows for avoiding over-fitting and improving the generalization 
power of the network. Furthermore, normalizing learned features 
improves the network robustness against illumination changes.  

- Low computational cost and efficiency: due to its simple architecture 
in which features learning is performed without the need for an 

intensive training process. In addition, instead of data-driven filters, 
data-independent filters are used in the single convolution layer, 
which reduces the method cost and improves its efficiency. More-
over, it can achieve high performance with limited resources (i.e., in 
terms of computation and storage).  

- Robustness to the missing parts in the medical images: this makes it 
suitable for telemedicine scenarios due to the block-wise manner 
used for feature learning and normalization. 

We conduct thorough experiments to evaluate the proposed DLNet 
on a public dataset that is made up of 4000 CXR images from three 
different classes namely COVID-19, pulmonary diseases, and healthy 
persons. As for pulmonary diseases, 19 kinds of diseases are considered 
involving fibrosis, SARS, pneumonia, atelectasis, and cardiomegaly. The 
dataset is gathered, during the last two years, from different hospitals 
and medical associations around the world including the Italian Society 
of Medical and Interventional Radiology and hospitals in China, Italy, 
USA, Australia, Korea Taiwan, and Sweden. It is worth noting that we 
mimic the scenario of telemedicine by successively cropping distinct 
regions from the medical image. Experimental results demonstrate the 
effectiveness of the proposed network, where an average accuracy, 
sensitivity, and specificity of 98.86%, 98.06, and 99.24% have been 
achieved, respectively. 

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of the works concerned with COVID-19 recognition. 
Section 3 presents our proposed DLNet. Section 4 reports the experi-
mental results. Finally, Section 5 presents the work conclusions and the 
future directions. 

2. Related work 

In this section, we review related works concerned with COVID-19 
diagnosis. At first, we present studies focusing on feature learning, fol-
lowed by studies that have adopted segmentation for COVID-19 
screening. 

2.1. Feature learning approaches 

Determining the feature that is capable of faithfully describing the 
image content is the cornerstone of recognition systems. Some re-
searchers have opted for handcrafted features, such as gray-level co- 
occurrence matrix (GLCM) and histogram of gradients (HoG) [14–16], 
while, most researchers have considered using different deep architec-
tures to automatically learn effective representations from chest images. 
For instance, in [16], GLCM and two other texture features were used to 
detect COVID-19 from CXR images. In another work [15], an experi-
mental assessment was carried out to measure the performance of 
different texture features, including deep and handcrafted ones. Simi-
larly, authors in [14] considered employing HoG together with CNN for 
the diagnosis of COVID-19 and pneumonia. 

Although handcrafted features are not data hungry and they have 
achieved promising results, their generalization power is minor 
compared to deep-based architectures. Additionally, handcrafted fea-
tures are sensitive to the highly similar classes, which require the sci-
entist to make amendments to the feature design to be capable to 
distinguish those classes. 

The work in [13] suggests combining features extracted using two 
pre-trained CNNs namely ShuffleNet and SqueezeNet. These features are 
then fed to a multi-class SVM to recognize three types of diseases which 
are COVID-19, bacterial pneumonia, and viral pneumonia. In [10], two 
customized CNN architectures (CovidResNet and CovidDenseNet) were 
proposed to detect COVID-19 from chest CT images. The two models can 
be partly initialized with larger networks such as ResNet50. Authors of 
[3] have proposed a two-stage scheme to discriminate pneumonia and 
COVID-19 using deep learning. The first stage is dedicated to check if 
there is a pneumonia, whereas, COVID-19 and pneumonia are 
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discriminated in the second stage. In [17], authors proposed a method 
for COVID-19 diagnosis from CT scan images, where the two- 
dimensional fractional Fourier entropy is used for features extraction. 
Note that along with COVID-19, three other classes namely community- 
acquired pneumonia, secondary pulmonary tuberculosis, and healthy 
control are considered. To classify test images, a custom deep stacked 
sparse autoencoder is created. In addition, the authors proposed an 
improved multiple-way data augmentation technique to avoid 
overfitting. 

In [18], an n-conv rank-based average pooling module (NRAPM) was 
proposed in which rank-based average pooling was employed to prevent 
overfitting. Then, inspired by the VGG network and with NRAPM-based 
conv blocks, a deep rank-based average pooling (DRAPNet) was pro-
posed. Noting that a custom improved multiple-way data augmentation 
procedure was firstly performed. For the sake of explainability, the au-
thors used the Grad-CAM method to generate the heatmaps. Experi-
ments were conducted on a dataset of 521 subjects yielding 1164 slice 
images via the slice level selection method. This dataset is composed of 
four classes which are COVID-19 positive, community-acquired pneu-
monia, second pulmonary tuberculosis, and healthy control. This 
method has achieved a micro-averaged F1 score of 95.49%. 

Some other studies have investigated different kinds of fusion 
schemes. For instance, in [4], a graph convolutional network was used 
together with CNN to detect COVID-19. To enhance the diagnosis out-
puts, a deep convolutional attention network with multiple inputs was 
used to fuse chest X-Ray and CT images in [19]. Likewise, to strengthen 
decisions reached by individual networks, authors of [12] used three 
pre-trained VGG-16, where inputs of the networks are original CXR and 
HSV image along with a third image processed using Prewitt operator. 
Another form of fusion is considered in [20], where a total of 7 pre- 
trained CNNs were fused at decision and feature level to detect 
COVID-19. In [21], a stacked auto-encoder (4 auto-encoders) model was 
developed to improve COVID-19 detection from CT images. Neverthe-
less, CNN strongly depends on the training dataset and suffers from the 
issue of high computation and data storage. This dataset should be large 
enough to ensure the generalization power of the network. In addition, 
in the case of designing a CNN from scratch, it becomes more compli-
cated due to the little theoretical guidance. Furthermore, picking out the 
appropriate CNN architecture is challenging because the number and 
nature of layers may vary depending on the problem being solved. As for 

methods considering the fusion of different CNNs, such kinds of fusions 
incur additional computational costs to these deep-based methods 
which are, inherently, computationally intensive. 

2.2. Segmentation-based approaches 

Segmentation-based approaches aim to detect infected regions from 
chest images by using segmentation methods. For instance, Zernike 
moments and GLCM were used with a deep neural network to localize 
infected regions from CT images in [7]. The very well-known U-Net 
architecture was the base of the work in [22], where a dilated dual 
attention U-Net is proposed to segment COVID-19 lesions. Similarly, U- 
Net was considered in [23], where an extensive data augmentation 
procedure was followed to prevent the network from overfitting. Au-
thors in [8] proposed a multi-scale discriminative network for seg-
menting COVID-19, which incorporates three blocks namely pyramid 
convolution, channel attention and residual refinement. This last is 
designed to boost segmentation results by considering kernels of 
different sizes. In [24], authors have proposed an encoder-decoder deep 
architecture to determine the infected regions within the lung. On the 
one hand, the encoder part is composed of multiple layers namely 
convolution, batch normalization, RELU, and max pooling. On the other 
hand, the decoder part is composed of upsampling, convolution, batch 
normalization, and RELU. In the proposed architecture, instead of using 
one encoder, two encoders are employed, where the final encoder 
feature map is formed by concatenating the output of the two encoders. 
The first stage aims to segment the region of interest. Thus, the input 
encoders receive two images namely texture and structural components 
of the input image, and produce two feature maps. These maps are 
concatenated and fed to the decoder which produces an image con-
taining the region of interest. The second stage aims to segment infected 
lung regions. To do so, two encoders receive the region of interest image 
(produced by the first stage) and the input image, and output two feature 
maps. These maps are concatenated and fed to the decoder which gen-
erates an image containing the infected regions. 

To deal with the data scarcity issue, an unsupervised domain 
adaptation-based segmentation network was proposed in [25]. Two 
types of data namely synthetic data and limited unlabeled CT images of 
COVID-19 were used to train this network. Authors in [26] have coped 
with this issue differently by using an improved dense generative 

Fig. 1. The general architecture of the proposed network: 1) convolution layer and binary hashing, 2) calculation of LBP image, 3) block-wise histograms generation 
and normalization and 5) the final histogram. 
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adversarial network (GAN) to expand the existing dataset of COVID-19 
images. However, it remains very challenging to achieve accurate seg-
mentation of COVID-19 for several reasons. First, different types of 
infected regions have distinct physical appearances. Secondly, infected 
areas may greatly vary in terms of size, shape, location, and texture. This 
alongside the intensity inhomogeneity of the infected regions as well as 
the blurred boundaries between lesions and normal tissues makes it very 
difficult to precisely detect the infected areas. 

3. Proposed method 

As has already been mentioned, it is very challenging to develop an 
efficient, robust, and computationally fast network that can reach ac-
curate classification outcomes and distinguish between patients infected 
by COVID-19, pulmonary diseases, and healthy persons. In this section, 
we present our proposed lightweight network (DLNet). Fig. 1 illustrates 
the general flowchart of DLNet. 

ZDNet has a single convolution layer in which input medical images 
are convolved using data-independent DCT filters. This allows for 
reducing the computational cost and improving the network efficiency, 
as generating data-driven filters will take a significant deal of time, 
especially if the training is performed using a large-scale dataset. Local 
binary patterns of the input image are then calculated to characterize 
texture of the medical image. Then, to alleviate over-fitting, feature 
maps from the convolution layer are fused into a single map using binary 
hashing. The bottleneck of the proposed network lies in generating a 
histogram that jointly considers filter responses (from the final feature 
map) and LBP codes associated with local image pixels. Instead of 
generating separate histograms for each of LBP and the feature map, the 
generated histogram allows binding both histograms to strengthen the 
image representation. We consider incorporating spatial relationships 
by extracting the histograms from local image regions. Then, extracted 
histograms are normalized against illumination changes. Finally, a 
support vector machine classifier is used for test image matching. 
Hereafter, we provide more details on each step in DLNet. 

3.1. Convolutional filters generation 

Assuming that we are given an input image, denoted by I with the 
dimensions M× N. We consider using discrete cosine transform (DCT) 
filter bank, which allows our network to have the property of data- 
independency (i.e., in contrast to data-driven filters). Although they 

are extracted differently, the equivalence of DCT and principal compo-
nent analysis (PCA) filters has been proven in [27]. By extending 1D 
DCT, 2D DCT is given by. 

f (u, v) = δ(u)δ(v)
∑M

i=1

∑N

j=1
f (x, y)cos

[
π(2i + 1)u

2M

]

cos
[

π(2j + 1)u
2N

]

, (1) 

where 

δ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1̅
̅̅̅̅
M

√ , ifu = 0

̅̅̅̅̅
2
M

√

, otherwise

(2)  

δ(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1̅
̅̅̅
N

√ , ifv = 0

̅̅̅̅
2
N

√

, otherwise

(3) 

The filter bank is composed of several distinct 2D DCT bases. To rank 
the DCT filters and pick out the most eligible ones we can use with the 
convolution layer, we consider the horizontal-frequency major ordering 
instead of zig-zag ordering (see Fig. 2). Generally speaking, in DCT, 
coefficients of bases with low frequency are higher than coefficients of 
high-frequency bases because humans are more sensitive to low- 
frequency bases. In both kinds of ordering schemes, diagonal bases are 
sequentially ranked. However, the difference lies in the importance 
assigned to those bases. While in the zig-zag ordering, frequency di-
rection importance is alternated between horizontal and vertical bases, 
the horizontal-frequency major ordering gives more importance to 
horizontal filters (i.e., they are prioritized over the vertical filters). This 
last selection strategy is consistent with the nature of images being 
processed in which low-frequency horizontal bases are more likely to 
occur. Fig. 3 shows some selected bases from the filter bank. 

3.2. Convolution layer 

The DCT filters generated in the previous step are used to perform 
convolution operations in the spatial domain. In particular, the DCT 
filters are used to convolve input medical images in the first layer of 
DLNet. Hereafter, we give more details on this process. 

Suppose that the 2D filter size is k× k, I is convolved with different 
2D DCT bases as follows. 

Fig. 2. The DCT filter bank (the leftmost image) and the two strategies for filter selection: the zig-zag (in middle) and the horizontal-frequency major ordering (the 
rightmost image). 

Fig. 3. Typical filters from the DCT filter bank.  
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Op =
{

I*Wp
}L

p=1 (4)  

Where Wp∊Rk×k, p = 1,⋯, L represents the set of 2D DCT bases (i.e., 
filters) and pL stands for the number of filters. Noting that feature maps 
Op has the same size as I because borders of image is zero padded with 
pad size of (k − 1)/2 before performing convolution. 

3.3. Binary hashing 

To prevent our network from over-fitting, we consider performing a 
binary hashing procedure on feature maps by quantifying filter re-
sponses. After convolving the input image using DCT filters, we obtain 
the feature maps, where their values include real numbers. In this step, 
we binarize each map by considering zero as a threshold i.e., values 
higher than zero (i.e., positive) are replaced by one, and zero otherwise. 
Eq. (5) defines the binarization process. This step is preliminary to the 
next step (i.e., binary hashing) which aims to prevent over-fitting and 
characterize filter responses by accumulating positive values of feature 
maps. 

BIN(Op) =

{
1, if Op > 0
0, otherwise (5) 

The binarized feature maps are combined to form a single image 
denoted by D (Fig. 4). In this case, every pixel in D will range from 0 to 
2L− 1. The Combination is done according to the next equation. 

D =
∑L

p=1
2p− 1BIN(Op) (6)  

3.4. Image encoding using local binary patterns 

In the previous steps, we have considered pixel responses to different 
filters. In this step, the aim is to strengthen our DLNet by including local 
binary patterns (LBP) associated with different image pixels. To do so, 
we calculate binary codes of pixels in the input image. In the basic LBP, a 
3 × 3 neighborhood around each pixel is considered, then, pixels have a 
higher value than the center pixel are assigned by one, and zero other-
wise. The binary code is obtained by taking the binarized values in a 
clockwise direction (see Fig. 5). Formally, for a pixel gc defined by is 

coordinates I(xc, yc) and surrounded by a neighborhood of p pixels. LBP 
code is generated according to the following equation. 

LBPgc =
∑i=p− 1

i=0
BIN

(
gp − gc

)
2i (7)  

3.5. Block-wise filter response-based LBP histogram generation 

The cornerstone of DLNet lies in jointly considering two kinds of 
crucial information which are filter responses as well as local binary 
codes of image pixels. To reach such a representation, we extract a 
2M-dimensional histogram that binds local binary patterns and filters 
responses. This histogram is referred to as HISTL, and can be generated 
using Eq. (8). 

HISTL(w) =
∑u

a=1
LBPgc (Indw) (8) 

such that u = |Indw| and w represents the index of the histogram. Indw 

is the set of pixels’ spatial coordinates for which D is equal to w. Indw is 
defined by. 

Indw ≡ (D = w) (9) 

where the operator ≡ is an assignment operator that assigns Indw 

with the spatial coordinates for which D = w. To take advantage of the 
spatial relationship, we extract the histogram in a block-wise fashion. 
Therefore, D and LBPgc are divided into non-overlapping blocks, and 
histograms extracted from different blocks are concatenated in a single 
histogram, which is, to some extent, translation-invariant. 

Indeed, there is a close relationship between the outputs of this step 
and the binary hashing process which aims to prevent overfitting 
[28,29]. To understand how can this be done, we give a simple example. 
Suppose that number of filters is equal to R. Thus, the output of the 
convolution layer will be R feature maps. Generating local histograms 
using all these feature maps along with the LBP image will result in a 
high-dimensional feature vector. For instance, if we have an N × N 
image, a block size of M × M pixels and k filters, the dimension of the 
local feature vector will be 2k. We have a total of 

( M
N
)2 blocks in the 

entire image, thus, dimension of the final feature vector will be 2k ×
( M

N
)2. However, if binary hashing is excluded, dimension of the final 

Fig. 4. Binary hashing process, images with a red border are feature maps and the one with a blue border is the output of fusing those images.  

Fig. 5. An example of LBP calculation.  
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feature vector will be 2k ×
( M

N
)2

× R, which can significantly increased in 
the case of high-resolution images. This high dimension will cause the 
network to strictly fit the training images, thus, reducing the general-
ization power of the network. In addition, high dimensional feature 
vectors can greatly affect the network efficiency. To avoid such issues, 
we consider fusing all the feature maps into a single one using the binary 

hashing according to Eq. (5) and Eq. (6). 

3.6. Histogram normalization and matching 

We perform histogram normalization to improve the robustness 
against illumination changes. In fact, the significant disparity in features 

Fig. 6. Histogram prior to normalization (at top) and histogram after normalization (at the bottom). This latter seems to be more evenly distributed.  

Table 1 
list of the pulmonary diseases considered by this study.  

Disease Number Disease Number Disease Number Disease Number 

ARDS 4 Chlamydophila 2 Escherichia 4 Hernia 7 
Klebsiella 1 Legionella 2 Pneumocystis 14 Infiltration 623 
SARS 15 Streptococcus 16 Atelectasis 508 Pneumonia 500 
Cardiomegaly 125 Consolidation 160 Edema 93 Mass 147 
Effusion 392 Emphysema 84 Fibrosis 56    

Fig. 7. Samples from the used dataset. The first row corresponds to healthy samples, the second row corresponds to pulmonary diseases (from left to right: fibrosis, 
emphysema, effusion, atelectasis, pneumonia and Cardiomegaly), the last row corresponds to COVID-19 samples. 
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can noticeably degrade the classification results. Thus, a power-L2 
normalization scheme is considered to relieve this disparity. Given a 
histogram H = (h1,⋯,hf ), power-L2 is defined as follows. 

hi =

̅̅̅̅
hi

2
√

‖H‖
(10) 

‖H‖ stands for the L2 norm of H. Fig. 6 depicts the effect of 
normalization. In this work, a linear one versus all support vector ma-
chine (SVM) classifier is used for histogram matching. 

4. Experiments and discussion 

4.1. Dataset 

To assess the performance of the proposed method, we consider 
creating a dataset of CXR images from two different datasets [30,31] 

which are publicly available at [32,33]. This dataset is made up of 4000 
CXR images. More specifically, images are divided into three different 
classes: 1500 images for patients infected by COVID-19, 1250 images 
related to pulmonary diseases and the remaining images (i.e., 1250) are 
for healthy cases. Table 1 presents the list of pulmonary diseases 
included in the dataset. Fig. 7 shows representative images from our 
dataset. 1000 images from each class are intended for training and the 
rest are for testing. 

4.2. Performance metrics 

Three measures were utilized to evaluate the classification perfor-
mance of our DLNet namely accuracy, specificity and sensitivity. They 
are defined as follows. 

Accuracy =
TP + TN

TP + FN + FP + TN  

specificity =
TN

FP + TN  

sensitivity =
TP

FN + TP 

Where TP stands for the number of true positives, TN represents the 
number of true negatives, FN is the number of false negatives and FP is 
the number of false positives. 

Table 2 
Different parameters subsets that are experimented.  

Subset of parameters Number of filters Filter size Block size 

1 5 5 × 5 50 × 50 
2 5 7 × 7 200 × 200 
3 8 9 × 9 25 × 25 
4 9 9 × 9 100 × 100 
5 9 9 × 9 50 × 50 
6 7 7 × 7 100 × 100  

Fig. 8. Performance achieved by different subsets.  

Fig. 9. Performance per class reached by DLNet.  
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4.3. Dlnet parameters tuning 

In this experiment, we measure the performance of the proposed 
method when varying different parameters. We do so to detect the 
subset of parameters that can improve the classification results. DLNet 
has three hyper-parameters which are the number of filters, filter size 
and block size. Among several, we have tested six subsets as shown in 
Table 2. 

Fig. 8 reports the classification results for the different subsets in 
Table 2. From this figure, we can make the following remarks.  

- The first remark we can make is the relative stability of classification 
scores for most subsets despite the change in parameters. Another 
thing to note is that specificity is higher than sensitivity for the six 
subsets, which means that, for the three classes, the number of true 
negatives is higher than the number of true positives.  

- If we look at the number of filters, we can notice that this parameter 
can noticeably affect the classification outcomes. In our case, the 
maximum performance is achieved by using 9 filters. Nevertheless, it 
should be noted that the number of filters is proportional to the 
feature dimensions. Therefore, this parameter has to be a compro-
mise between feature dimensions and classification accuracy.  

- Generally speaking, filter size must be large enough to describe the 
interesting regions within the chest image. Small size filters will 
cause the network to over-fit because they will significantly increase 
the feature dimensions. In this experiment, the 9 × 9 filter has scored 
the best result.  

- As for the block size, we can see that a 100 × 100 block is suitable for 
our dataset.  

- Finally, by comparing all the subsets, we can note that the fourth 
subset has yielded the best recognition scores (accuracy = 98.86%, 
specificity = 99.24%, and sensitivity 98.06%). 
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Fig. 10. Confusion matrix of the proposed network.  

Fig. 11. Settings adopted to test the tolerance to missing parts in the image, top row corresponds to the first five settings which are referred to as (from left to right) 
S1, S2, S3, S4 and S4. The second row depicts the random settings which are denoted by (from left to right): RS1, RS2, RS3, RS4 and RS5. 
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For a comprehensive analysis, we report the classification scores per 
class (Fig. 9). We can see that 99.5% (i.e., about 495 out of 500) of 
COVID-19 images are correctly classified. This high rate confirms the 
strength of the proposed method. In addition, the specificity for COVID- 
19 class is 100%, meaning that no image from pulmonary and healthy 
classes has been predicted as COVID-19. We can also remark that 
sensitivity scores are nearly optimal for the three classes. 

To provide further clarifications, we plot the confusion matrix as 
shown in Fig. 10. As can be seen from Fig. 10, only five (5) COVID-19 
images were misclassified, 4 of which are classified as healthy and one 
as pulmonary. In addition, we can see that there is a slight confusion 
between images from pulmonary and healthy classes. For instance, 7 
images from the pulmonary class were misclassified as healthy, and 5 
images from the healthy class were misclassified as pulmonary. 

4.4. Studying the tolerance to missing parts of medical image 

This aim experiment aims to emulate the scenario of COVID-19 
diagnosis via teleradiology. In such a case, radiologists can make 
remote interpretations of medical images. This will aid in saving time, 
and human lives and breaking the chain of infection. To achieve an 
accurate diagnosis, a medical image should be transmitted correctly 
because transmission errors (e.g., missing parts) can negatively influ-
ence the decisions reached by the radiologists. Hence, we evaluate the 
tolerance of DLNet when there are missing parts in the medical image. 

We synthetically mimic this scenario by successively cropping distinct 
regions in the image. Specifically, we consider ten (10) settings, in each 
of which a specific region is cropped. In the first five settings, we 
respectively delete a 100x100 sub-image from the top left, top right, 
center, bottom right and bottom left regions. In the other settings, we 
randomly cropped five other sub-images with the same size. Fig. 11 
depicts the ten settings. Fig. 12 reports the recognition scores yielded by 
the different settings. 

From Fig. 12, it evidently appears the robustness of our DLNet when 
there are missing parts in the medical image. Therefore, with such a 
tolerance, there is no need to retake another clearer image once this 
scenario occurs. For both random and selected settings, the difference in 
the scores obtained by using the entire original image was not signifi-
cant. For instance, by cropping the top left region from the image, the 
accuracy, specificity and sensitivity have been decreased by 1.86%, 
1.24% and 3.59%, respectively. This is may be attributed to the block- 
wise manner the DLNet uses to learn local features instead of using 
the entire image. Such a manner alleviates the effect of missed parts by 
preventing pooling all features in a compacted vector where discrimi-
native features may be dominated by the common global features. In 
other words, generating the feature vector by considering different 
image regions allows recompensing the information lost by eliminating 
certain regions (i.e., the missed regions). Along with the robustness of 
the proposed DLNet, this experiment demonstrates that different image 
regions affect the classification decision. However, we can note that 
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cropping the top left region has the least effect on the classification re-
sults compared to the other settings. This means that its contribution to 
the classification decision is less than the contributions of the other 
regions. 

4.5. Measuring the processing time 

Time is a crucial factor in fighting COVID-19. Quickly identifying 
infected persons can significantly help prevent other persons, save their 
lives and break the chain of infection. In view of the high number of 
infections everyday, the RT-PCR technique for COVID-19 screening 
seems to be time-consuming, thus, rapid testing methods are highly 
recommended. The aim of this experiment is to measure the processing 
time required by the proposed network. Fig. 13 presents the processing 
time, in terms of the number of filters, required to extract features from 
one image using our DNLNet. 

From the above figure, we can see that processing time is propor-
tional to the number of filters used by the convolution layer of the 
network. This is because considering more filters will incur additional 
processing and rises the feature dimensions. For instance, by using 3 
filters only, the processing time was 0.022 s, whereas, using 11 filters 
increases the running time by twice. From these results, we can conclude 
that DLNet is a real-time network which is suitable for COVID-19 
screening, especially in the case of the huge proliferation of this disease. 

For a comprehensive analysis, we compare the processing time 
required by the proposed DLNet and several deep features, as most 
relevant works have considered using deep architectures for feature 
learning. In particular, we consider comparing the proposed method 
with features learned using pre-trained deep networks including Goo-
gleNet, VGG-19, VGG-16, ResNet-50 and ResNet-101 (Table 3). 

As can be seen from Table 3, the processing time required by the 
proposed method is much less than the time required by different deep 
pre-trained models. For instance, VGG-16 takes 0.4267 s to extract 
features from one image, which represents the processing time taken by 
our DLNet multiplied by 10. Similarly, if we look at the other deep 
networks, we can notice the great deal of time they require compared to 
DLNet. Deep networks are composed of several stacked layers with a 
huge number of parameters, which significantly increases the time 
needed to learn image features. The above-reported results confirm the 
efficiency of the proposed method, and makes it possible to embed it in 
frameworks with low computational resources. 

4.6. Comparison with related works 

We report details of some relevant studies i.e., performance, datasets, 
type of input image and targeted classes (Table 4). From Table 4, we can 
note that the targeted classes are not the same for all the cited studies. 
For instance, the work in [21] has considered two classes namely COVID 
and non-COVID, while, in [3] three different classes which are COVID, 
healthy and pulmonary were considered. We can see also that each study 
used a distinct dataset with a different number of images. In most 
studies, classification accuracy has exceeded 90%, which suggests that 
such approaches can be a good alternative to conventional COVID-19 
detection methods. It is worth noting that most cited studies are based 
on deep learning and require a relatively high computational budget. 
Nevertheless, our proposed method is computationally fast as revealed 
by the previous experiment. This along with the high classification ac-
curacy it scores (98.86%) makes it a promising solution to fight COVID- 
19. 

5. Conclusion 

In this paper, we proposed a fast lightweight network, which is 
termed as DLNet, for COVID-19 and pulmonary diseases recognition 
from CXR images. The first layer of DLNet is the convolution layer which 
acts as a feature detector and uses DCT filters to convolve input images. 
The main idea behind DLNet is to simultaneously consider filter re-
sponses and local binary patterns associated with pixels of the CXR 
image. DLNet is extracted in a block-wise manner to take advantage of 
spatial relationships, where the extracted histograms are normalized to 
cope with illumination changes. We carried out comprehensive experi-
ments on a public dataset. The obtained results revealed the effective-
ness of the proposed method as well as the low computational cost it 
requires. It has also been shown the high tolerance of DLNet to the ex-
istence of missed parts in the medical images, makes it possible to 
integrate DLNet in a telemedicine environment. As a future track, one 
can design a framework to fuse our proposed lightweight network (e.g., 
DLNet) with other networks to strengthen individual decisions achieved 
by each network. 
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