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Abstract

Animal movement drives important ecological processes such as migration and the spread

of infectious disease. Current approaches to modeling animal tracking data focus on

parametric models used to understand environmental effects on movement behavior and to

fill in missing tracking data. Machine Learning and Deep learning algorithms are powerful

and flexible predictive modeling tools but have rarely been applied to animal movement

data. In this study we present a general framework for predicting animal movement that is a

combination of two steps: first predicting movement behavioral states and second predicting

the animal’s velocity. We specify this framework at the individual level as well as for collec-

tive movement. We use Random Forests, Neural and Recurrent Neural Networks to com-

pare performance predicting one step ahead as well as long range simulations. We

compare results against a custom constructed Stochastic Differential Equation (SDE)

model. We apply this approach to high resolution ant movement data. We found that the

individual level Machine Learning and Deep Learning methods outperformed the SDE

model for one step ahead prediction. The SDE model did comparatively better at simulating

long range movement behaviour. Of the Machine Learning and Deep Learning models the

Long Short Term Memory (LSTM) individual level model did best at long range simulations.

We also applied the Random Forest and LSTM individual level models to model gull migra-

tory movement to demonstrate the generalizability of this framework. Machine Learning and

deep learning models are easier to specify compared to traditional parametric movement

models which can have restrictive assumptions. However, machine learning and deep

learning models are less interpretable than parametric movement models. The type of

model used should be determined by the goal of the study, if the goal is prediction, our study

provides evidence that machine learning and deep learning models could be useful tools.

1 Introduction

Many of the parametric animal movement models present in literature, including state space

models, stochastic differential equations model, step lengths and turning angles models, and

step selection function models [1–4], are geared towards inference rather than predicting
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realistic animal movement. Predicting animal behavior and movement is important for several

reasons. Realistic predictions could aid in the formation of conservation strategies to combat

the decline in bio-diversity. For example, predicting how movement patterns will be altered

when a new road is built can inform decision makers on selecting the least disruptive route.

Predicting movement is also important in the context of understanding the spread of infec-

tious diseases through animal populations. Many diseases are spread through direct contact

between individuals. Realistic predictions of the movement of infected individuals can suggest

interventions that will optimally alleviate further spread of a disease.

Machine Learning (ML) and Deep Learning (DL) methods are commonly used for predic-

tive modelling in many fields like artificial intelligence [5], image processing [6], neuroscience

[7], genomics [8] and more. However, they have seldom been used for modeling or predicting

animal movement. In this study we explore the use of a range of machine learning/deep learn-

ing tools to build predictive models for individual and collective movement of ants.

Several machine learning methods have also previously been used for predicting animal

behavior in cheetahs [9] and penguins [10]. [11] compared the use of 5 algorithms—support

vector machines, random forests, linear discriminant analysis and artificial neural networks—

to predict different behavioral modes in vultures. [12] use deep neural networks to predict

non-diving and diving behavior in shags, guillemots and razorbills using GPS data. They

found that their method did better than hidden Markov models (HMMs) at prediction. [13]

used Random Forests to study tree swallow occurrence in North America. All these studies

predict animal behaviour which is framed as a binary or multi-class classification problem. In

this work we develop an approach to use machine learning methods to not only predict behav-

iour but also actual movement trajectories.

Most studies of animal movement use parametric models, with the goal of understanding

how and when animals move the way the do. State space models like HMMs have been used

widely for understanding animal behavior [14–16]. Step selection function models are a class

of animal movement models that focus on the analysis of species-habitat associations [1, 17].

Resource selection models use a weighted distribution formulation of a point process model to

model individual independent movements. These models provide insight on the animal’s pref-

erence given its environment [2, 18, 19].

Another common approach to modeling movement is a class of models based on “step

lengths” and “turning angles” [3, 20]. A movement is defined by the straight line distance

between two consecutive locations (step length) and the turning angle between three consecu-

tive locations. Each step and turn is assigned to one of a number of random walks where each

is characteristic of a different behavioral state. [21] used these methods to model group

dynamic movement. This was based on a framework with a group level model that describes

the group’s center and an individual level model that describes the individual animal’s move-

ment relative to the group center. Multi-state random walks were used in both levels of the

framework. [22] extended these models to continuous time using a joint bearing and speed

process with parameters dependent on a continuous time behavioral switching process.

Stochastic differential equation models are another type of animal movement model that

has been used to study the interaction between animals and their habitat. [23] used a stochastic

differential equation model to study the influence of roads and grassland foraging areas on elk

movements. [24] used a potential surface for inference on regions of attraction and repulsion

on the space-time surface that the elk are moving on. [4] used a spatially varying stochastic dif-

ferential equation model to obtain insight into the spatial structure of ant movement in the ant

nest. All of these parametric models make strict assumptions about the underlying processes.

While making these assumptions allows for easy interpretation of results, such as associations
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between movement and habitat, if the modeling assumptions are imprecise, the resulting

model may have poor predictive power.

In this study we use machine learning methods to classify animal movement behaviour and

also predict movement paths that will enable us to build stochastic movement generators.

These are useful in scenarios where collecting actual movement data is laborious. It can be a

useful component in simulating the spread of a disease through an animal population and can

also be a useful tool in suggesting improvements to a system. Previous studies that used

machine learning methods for modeling animal movement only built individual level models.

In this study we look at modeling collective animal movement in addition to individual level

movement.

Ant colonies are self-organized complex social systems. They are a social insect species that

have been used to study infectious disease dynamics [25]. We use ant colony data and our

main goal is to build realistic movement simulators. This is with the eventual aim of simulating

in silico ant colonies to aid in hypothesis generation and complement experimental work. As

predicting ant movement is important when building simulators, we look at one step ahead

predictions to gauge the accuracy of the models. We also look at 1000 steps ahead simulations

to see if simulations based off of machine learning methods can capture general movement

patterns exhibited in the actual data. We compare several machine learning and deep learning

methods as well as a stochastic differential equation model that has been previously used in [4]

to model this ant colony. In order to demonstrate the generalizability of this framework we

also use it to model migratory movement of lesser black-backed gulls Larus fuscus. Here we do

one step ahead predictions and simulate short migratory paths for illustrative purposes.

2 Materials and methods

2.1 Ant movement data

We use ant data from the Hughes Lab at Penn State. This data consists of the movement of 73

common black carpenter ants (Camponotus pennsylvanicus) in a custom constructed nest.

The nest has four chambers, with each chamber divided into two parts by a barrier in the mid-

dle. There is a narrow passageway between the two halves of each chamber. The total nest size

is 65mm by 160mm and each chamber measures 65mm by 40mm. There are doorways in

between chambers that measure 6mm across, and an exit from the nest in the 4th chamber

(the far right in Fig 1). For a full description of the data collection, and original goals for this

data, see [26].

The raw data consist of 2-dimensional location coordinates for each ant j at each time point

i. Observations were made every second and there are 14400 observations amounting to 4

hours of movement data. Each ant has a unique identifier and a human observer recorded

their position by clicking on their location using a custom software package. The velocity of

movement in the x and y directions are then approximated using first differences. This dataset

is unique in having location data at a very fine temporal resolution for each individual of the

colony with no missing data and very little measurement error. A more detailed description of

the data collection process can be found in [26] and [4].

A plot of all the data is given in Fig 1, with recorded locations of each individual ant given

by a unique colour. Visually it is evident that the ants predominantly occupy chambers 1 and 4

while moving fast through Chambers 2 and 3.

The data can be accessed at https://doi.org/10.5061/dryad.sh4m4s6 as supplementary mate-

rial to [26]. The low density tracking data of colony 1 is used in this study.

2.1.1 Derived variables. We consider supervised learning approaches to animal move-

ment, and seek to predict future movement with characteristics of the previously observed
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movement behavior. We used the raw data to derive new variables that capture previous

behaviour of individual ants as well as movement of neighbouring ants with the aim of inform-

ing predictions. We created 39 variables for each ant at each time step. These variables are

meant to capture a wide range of potential movement behavior. A complete list of variables is

given in Table 1. The motivation behind deriving these variables are threefold. First to capture

previous behaviour of the individual ant. This is captured by the variables xt−1:t−5,yt−1:t−5,

vxt−1:t−5,vyt−1:t−5, Stationary time and dt−1. The second to capture the interaction between the

ant and the structure of the nest. The variables that capture this are Sub chamber number and

distance to walls in North, South, East and West directions. The rest of the variables capture

the behavior of neighboring ants. The derived variables were selected by visually observing the

movement of the ant colony through time as well as referencing [4]. To be concise, we will

Fig 1. Visualization of the ant movement data colored by each unique ant identifier. Ants mostly reside in

Chambers 1 and 4 and seem to have faster more directed movements through Chambers 2 and 3.

https://doi.org/10.1371/journal.pone.0235750.g001

Table 1. List of derived variables.

Variable Description

xt−1:t−5,yt−1:t−5 Lagged (x, y) co-ordinates upto 5 lags

vxt−1:t−5,vyt−1:t−5 Lagged x, y velocities for upto 5 lags

Stationary time Number of consecutive time points the ants were stationary. See Fig 2b for

stationary time for ant ID 397

dt−1 Distance traveled in the penultimate time step

Sub chamber Sub chamber number. Each chamber is separated into two halves with the wall

in the middle. Sub chambers are numbered from 1-8 from left to right.

Dist to wall in N, S, E, W

directions

Distances from the ant’s current position to the nearest wall in the North,

South, East and West directions

Distance to nearest neighbor (nn) Distance from the ant’s current position to the nearest ant

nnxt−1,nnyt−1 (x, y) location of the nearest neighboring ant at time t−1

nnvxt−1,nnvyt−1 Velocities in the (x, y) directions of the nearest neighbouring ant at time t − 1

Q1, Q2, Q3, Q4 Number of ants in each quadrant. Quadrants 1, 2, 3 and 4 are defined as 8x8

squares around the ant as given in Fig 2a. This variable captures the density of

neighboring ants in different directions around each ant.

Number of neighboring ants who

are still

Number of ants in a 10mm radius around the ant that are still at t − 1

Number of neighboring ants who

are moving

Number of ants in a 12mm radius around the ant that are moving at t − 1

Distance to the queen Distance from the ant to the queen. The queen has the ID “Que”.

https://doi.org/10.1371/journal.pone.0235750.t001
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denote the vector of all derived variables at time t as ut.

ut� 1 ¼ ðxt� 1:t� 5; yt� 1:t� 5; vxt� 1:t� 5; vyt� 1:t� 5;Other derived variablest� 1Þ ð1Þ

2.2 Migratory gulls data

For a second example system, we use 15 bird years of migratory paths of lesser black-backed

gulls (Larus fuscus). This data [27] was obtained from supplemental information from [28].

These 15 paths come from 7 individual gulls over the time period 2010-2014. All paths have

the same migratory strategy of wintering in the Iberian Peninsula. Fig 3 gives the paths of all

15 bird years. For each bird year, tracking data was obtained every 20-30 minutes. See [28] for

more details about the data collection process. Some bird years had missing values and we

used linear interpolation for imputation of missing data.

Looking at the Fig 3 we can see four distinct behavioral states, which we define based off of

location and movement patterns: Northern range, Southbound migration, Southern range and

Northbound migration. We classified each observation as being in one of these states as fol-

lows. All birds began in the Northern range state. A bird switches to the Southbound migration

state when their movement track covers over 0.91 degrees Latitude in the course of a ten-hour

period, and stays in that state until they do not cover at least 0.91 degrees Latitude in a South-

bound direction, in which case they are then classified as being in their Southern range. Birds

stay in their Southern range until their movement track covers over 1.0 degrees Latitude in a

northbound direction in the course of a ten-hour period, and stay in this state until the do not

cover at least 1.0 degrees Latitude in a Northbound direction. Occasionally, birds made stop-

overs along their migratory route. In this case, we classified birds as being in either the North-

ern range or Southern range state depending on whether the stopover site was closest to the

farthest North or farthest South observed location of the bird that year. The result was a behav-

ioral state for each bird at each time point in our study.

In this dataset, location was given as latitude and longitude coordinates. We first converted

these into UTM coordinates before carrying out our analysis. Similar to the ant dataset, we

computed derived variables to capture features of the gulls movement. The derived variables

are lagged locations in x and y directions, lagged velocities in x and y directions, day number

(number of days since 1st of June each year), time of day (decimal number between 0 and 1)

and distance travelled in the penultimate time step.

Fig 2. Stationary time and definition of 4 quadrants. (a) gives a graphical description of the 4 quadrants around each

ant. Each quadrant has side length 8mm. (b) gives the plot of stationary time for ant ID 397 and shows that there are

long periods of no movement.

https://doi.org/10.1371/journal.pone.0235750.g002
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Fig 3. Migratory paths of 15 gulls years. Each differently colored line denotes an individual gull year. All gulls migrate southbound to the Iberian

Peninsula.

https://doi.org/10.1371/journal.pone.0235750.g003
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Unlike the ant movement data we do not have colony level data for the gulls and therefore

only aim to model individual movement of gulls in this study.

2.3 Modeling individual and collective movement

Let pi,t be the x, y locations of animal i at time t. The models used in this study can be divided

into two main types.

1. Independent Models: Each animal is independently and identically distributed:

pi,t = (xi,t, yi,t)* g(ui,t−1)

2. Joint Models: All animals are modeled jointly:

Pt ¼

p1;t
T

p2;t
T

..

.

pN;t
T

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

� gðu1;t� 1; � � � ; uN;t� 1Þ ¼ gðut� 1Þ

Pt is the joint distribution of locations of all animals in a colony or herd at time t. g is a

probability model yet to be specified.

We use both types of models to generate colony simulations after model fitting for the ant

movement data. In order to demonstrate the generalizability of our framework to other species

we use the individual level model to simulate migratory paths for the gulls data. We do not use

the colony level model since colony level data were not available, with only a small sample of

birds (seven individuals) observed. When using individual movement models we model each

animal using the same model. This approach assumes that one model is sufficient for modeling

an individual animal and that the underlying process that determines behavior is unchanged

from one animal to another. Thus, individual animal models capture population-level average

behavior, while the colony level models have more flexibility in capturing behavioural patterns

specific to each individual animal as well as interactions between the animals.

2.4 A general framework for modeling high-resolution animal movement

We now present a general framework for modeling animal movement. This framework allows

for state-switching, with different movement behavior in each state, and is flexible enough to

allow for parametric or nonparametric approaches for movement in both the state-switching

and movement behavior.

On average, ants in our data are stationary 76% of the time. These ants are moving inside

the nest for 22% of the time, and are outside of the nest (in a feeding arena) for 2% of the data.

Positions of ants outside the nest are not recorded; video tracking of these ants was only done

inside the nest. Following [4], we view these three distinct states the ant could be in (moving

within the nest, stationary within the nest, and outside of the nest) as behavioral states. It has

long been recognized that, when movement is observed at high temporal resolution, that ani-

mals of most species exhibit similar state switching behavior [3]. The most common approach

used to model state-switching in animal movement is through hidden Markov models. Here,

we consider the case where the temporal resolution is fine enough, and the measurement error

on the animal locations is small enough, that it is reasonable to assume that an animal’s behav-

ioral state is evident at each time point from the position data themselves. When this is not the

case, the following framework could be used as a model for latent animal movement and state

switching.
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We assume in general that animal i is in behavioral statemit at time t, withmit 2 {1, 2, . . .,

M}. For the ants, we follow [4] and assume thatM = 3, with

mit ¼

0 if ant does not move

1 ant moves out of the nest

2 ant moves within the nest

8
>>><

>>>:

For the gulls we assume thatM = 4, with

mit ¼

1 gull stays in the Northern range ðScandinavia and Great BritainÞ

2 gull migrates southbound to the Iberian Peninsula

3 gulls stays in the Southern range ðIberian PeninsulaÞ

4 gull migrates northbound to the Northern range

8
>>>>>>><

>>>>>>>:

In general, we assume that an animal’s movement behavior is different for each behavioral

state. We thus propose a general framework for the analysis of animal movement data in

which an observed behavioral state process {mit, t = 1, 2, . . ., T} is modeled and predicted

using a classification model, and bivariate movement {pit, t = 1, 2, . . ., T} is modeled using a

continuous-valued response model. Thus, we propose that at time t in this general framework

can be expressed as follows. The state process at time t is modeled using a classification model:

Pðmit ¼ kjfmis;pis; s 2 1; 2; . . . ; t � 1gÞ ¼ fmkðut� 1Þ ð2Þ

and, conditioned on this behavioral state, we model the animal’s discrete-time velocity vit =

(pit − pit−1)/δt as

vitjðmit ¼ kÞ ¼ fvkðut� 1Þ þ �it; �it � hmit : ð3Þ

Here fvk is a vector-valued function which controls the mean movement of the animal in

state k. Similar formulations have been proposed by [29], who let fvk be the negative gradient

of a potential surface, and [4, 30], who consider functions resulting from numerical approxi-

mations to stochastic differential equation models for animal movement. The framework we

propose is flexible enough to encompass most existing parametric models for animal move-

ment, as well as nonparametric approaches. For example, fvk could be the prediction from a

bivariate random forest [31] or neural network predictor trained on movement data, and fmk
could be the predicted probability of transitioning to state k from a neural network classifica-

tion algorithm.

When applying this framework to the ant movement data, we havemit = 0 for a stationary

ant. Since the ant does not move the discrete time velocity should be 0, i.e. fv0 = 0 and �it = 0.

The location of ants when they move out of the nest is not recorded. Therefore we assign their

location to be (199, 0) which is the bottom right most coordinate of the nest at the opening of

the nest to the feeding area. Therefore, for an ant that moves out of the nestmit = 1, we adjust

(xt, yt) to be (199, 0). Since we now have (xt, yt) and (xt−1, yt−1) we can calculate the discrete

time velocity to be fv1 = (199 − xt−1, 0 − yt−1) and �it = 0. When an ant moves within the nest,

i.e.mit = 2 we fit a bivariate continuous response model using all the movements that resulted

in an ant moving. This is difficult to do for colony level models as we cannot dynamically alter

the output dimensions based on which ants are moving and which are not. In this case, we use

all movement data to model velocity and use the output of (1) to zero out velocities of ants that
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are classified as not moving or are outside of the nest. Whenmt = 1 (ant has moved out of the

nest) we adjust (xt, yt) to be (199, 0). This is the bottom extreme right corner of the nest where

the feeding area is located. We do not predict vt but rather calculate vt = (199 − xt−1, 0 − yt−1).

When using this framework to model migratory movement of gulls we express vit and pit as

follows.

vitjðmit ¼ kÞ ¼ fvkðut� 1Þ þ �it; �it � hmit

pitjðmit ¼ kÞ ¼ vitjðmit ¼ kÞ þ pit� 1; k ¼ 1; 2; 3; 4

We have one classification model of the form in Eq (2) and four velocity models, one for

each individual state.

In general, the individual level model can be formally expressed as in Eqs (2) and (3). We

formally define the colony level model for N ants as follows. We denote vector valued variables

in bold. We use lower case to denote individual ants and upper case to denote collective ants.

Pt, Vt and Mt denote colony level locations, velocities and movement behaviours respectively.

Pt ¼ ½p
0
1t p0

2t . . . p0Nt�
0
;

Vt ¼ ½v
0
1t v0

2t . . . v0Nt�
0
;

Mt ¼ ½m1t m2t . . .mNt�
0
;

The colony level model for movement behaviour is of the following form

MtjUt� 1 � CategoricalðFmðUt� 1ÞÞ ð4Þ

The colony level model for velocity is of the following form

VtjUt� 1 ¼ FvðUt� 1Þ þ F
v
t ð5Þ

Fv
t ¼ ½�

v
1t0 �v

2t0 . . . �vNt0�0

We use Fvt for ease of notation to demonstrate how the colony level movement behaviour and

velocity models are combined.

FvtðMt;Ut� 1Þ ¼ ½f
0

vm1;t
ðUt� 1Þ f 0vm2t

ðUt� 1Þ � � � f
0

vmNt
ðUt� 1Þ�

0
;

The colony level model for location is given as follows

PtjUt� 1;Mt ¼ Pt� 1 þ FvtðMt;Ut� 1Þ þ Ft: ð6Þ

Ft ¼ ½�
ðm1tÞ0
1t �

ðm2tÞ0
2t . . . �

ðmNtÞ0
Nt �0:

We apply the above framework to model the entire colony of ants jointly. The colony has

73 individual ants, therefore Nt = 73. To better understand the form of Fvt when this frame-

work is applied to ant colony data we illustrate the form of fvmitðUt� 1Þ.

fvmit ¼

ð0; 0Þ mit ¼ 0

ð199 � xi;t� 1; 0 � yi;t� 1Þ mit ¼ 1

vit mit ¼ 2

8
>>><

>>>:

The reasoning behind the form whenmit = 0 andmit = 1 for the ant colony data is the same

as under the individual level model.
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The relationship between the error terms Fv
t and Ft when the colony level model is applied

to ant movement data can be illustrated through the relationship between �vit and �
mit
it .

�
mit
it ¼

ð0; 0Þ mit ¼ 0

ð0; 0Þ mit ¼ 1

�vit mit ¼ 2

8
>>><

>>>:

In specifying the two step model above we have used fm, fv, Fm and Fv as general functions.

The form of these functions will vary depending on the machine learning or deep learning

methods used.

2.5 Machine learning and deep learning methods

There were several factors that influenced our decision on the types of machine learning and

deep learning methods to use in estimating fm and fv. For fm we consider classification methods

that allow for multiple classes (three classes in our case) and can be extended to the multivari-

ate case. A univariate classifier is sufficient for modeling individual ant behaviour while a mul-

tivariate extension is needed to model colony level behaviour with the dimensionality of the

classifier equal to the number of ants in the colony.

Animal movement is inherently stochastic in nature and so we are interested in obtaining

stochastic simulations of movement. Therefore, for estimating fv we consider methods that

allow for sampling a velocity from a distribution of velocities. For ease of implementation we

restrict ourselves to classes of models that are capable of estimating discrete categorical

responses and continuous multivariate responses.

We consider random forests and neural networks as candidate methods for modeling fm
and fv at the individual and colony level. We use univariate and multivariate random forests, as

well as neural networks, to model fm and fv in the individual and colony level models.

2.5.1 Random forests. We here provide a description of the Random Forest algorithm,

which we use as one possible machine learning approach for modeling animal movement.

Classification and regression trees (CART), the building blocks of Random Forests, were

developed by [32]. The CART framework consists of 4 components.

1. A set of binary questions based on the predictors that partition the predictor space.

2. An impurity measure. In this study for classification we use the gini index and for regres-

sion we use a measure based on the response variance.

3. A split function: A split is made at each node that results in children nodes. A split function

is used to determine the best split. This incorporates the impurity measure and determines

the optimal split that results in the children nodes being the most homogeneous among

competing splits. Nodes that do not have children nodes are called terminal nodes or leafs.

4. A way of determining the tree size.

In a univariate response setting with predictors xij and responses yi where (i = 1, . . ., n;j = 1,

. . ., p), with n and p being the total number of samples and the number of predictor respec-

tively, let us consider the data at nodem to be Q. Let θ = (j, tm) be a candidate split consisting

of a predictor j and a threshold tm that partitions the data into subsets Qleft(θ) and Qright(θ)
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defined as

QleftðyÞ ¼ ðxij; yiÞ 2 Qjxij <¼ tm

QrightðyÞ ¼ Q QleftðyÞ

The impurity at nodem is calculated using the impurity functionH(). For a classification

problem we use the Gini index defined as

HðQÞ ¼
XK

k¼1

pmkð1 � pmkÞ

pmk ¼
1

Nm

X

i2Q
Iðyi ¼ kÞ

Where k = 1, . . ., K and K is the number of classes for the categorical response yi. i 2 Q repre-

sents the subset of all samples in nodem. |i 2 Q| = Nm.

In the regression (movement) setting we use mean squared error defined as

HðQÞ ¼
1

Nm

X

i2Q
ðyi � �ymÞ

2

�ym ¼
1

Nm

X

i2Q
yi

i 2 Q and Nm have identical meaning as before. We calculate the splitting rule at nodem by

selecting the split that minimizes the impurity.

GðQ; yÞ ¼
nleft
Nm

HðQleftðyÞÞ þ
nright
Nm

HðQrightðyÞÞ

y
�
¼ argmin

y
GðQ; yÞ

nleft = |Qleft(θ)|, nright = |Qright(θ)|. This is repeated until the maximum allowable depth of

the tree is reached [33].

Extending CART to the multivariate case with no responses yij (i = 1, . . ., n and j = 1, . . .,

no) can be done simply by adjusting the impurity function H() appropriately. [33] states that

this can be done by computing the average impurity across all the outputs. For the classifica-

tion case this can be formally represented as

HðQÞ ¼
1

no

Xno

j¼1

XK

k¼1

pmkjð1 � pmkjÞ

pmkj ¼
1

Nm

X

i2Q
Iðyij ¼ kÞ

Here we assume that each categorical response variable has the same categories. In our

study we use multiple categorical variables to correspond to behaviours of each individual ant

in the colony with each these variables taking values of 0, 1 and 2 as defined in (2).
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The extension to the regression setting is discussed in detail in [34]. Here a covariance

weighted analog is proposed. This is equivalent to adjusting theH() as follows

HðQÞ ¼
1

Nm

X

i2Q
ðyi � �ymÞ

0

V� 1ðm; ZÞ yi � �ymð Þ

η represents parameters that can be used to prescribe covariance structures for e.g. (auto

regressive behaviour, compound symmetry) but in this study we consider V−1(m, η) to be the

identity matrix. In our study we consider the velocities of all ants in an ant colony to be the

multivariate continuous responses and the data did not indicate a structure in the covariance

matrix that warranted for a specific form for V−1(m, η) to be used.

In the univariate case for classification, prediction results in a K dimensional vector

ðfm0
; fm1

; . . . ; fmK Þ ¼ fm where each element is a proportion of the cases in that leaf that fall into

class k. The predicted class then is the class associated withmaxðfm0
; fm1

; . . . ; fmK Þ. The

multivariate analog is a natural extension where now we have a K × no matrix and the class cor-

responding to the maximum for each column is obtained. The resulting will be an no dimen-

sional vector with predicted classes for each response.

For the regression case prediction for each leaf is the response means of the cases reaching

that leaf. For the multivariate case it is simply the vector response means of the cases.

We use univariate and multivariate random forests to model fm and fv in the individual and

colony level models. Random Forests [31] are a ensemble of CART trees. Each tree is fit using

a bootstrap samples of the data. At each node,l predictors are randomly selected (l<< p) and

used for node splitting. Predictions using random forests are made by majority vote of the

ensemble learners for classification problems and mean of the ensemble learners for regression

problems.

In order to get stochastic simulations, we randomly sample a single learner from the ensem-

ble learners and use its results for both the individual and colony level models.

We use a grid search to tune these models. We used a range of values for the maximum

depth of the trees, the minimum number of samples in a leaf and minimum samples needed

for a split for tuning. We evaluated each model based on in sample and out of sample perfor-

mance. The goal was to select a set of hyper-parameters that lead to good performance on both

in sample and out of sample data in order to safeguard against overfitting. We implement Ran-

dom Forests using the sklearn package [33] in Python.

2.5.2 Deep learning methods. In the previous sub-section we described Random forests,

which can be used to both predict categorical behavioural states as well as predict movement

paths for animals. We now describe deep learning approaches, another popular machine learn-

ing approach which can accomplish these same tasks.

Deep learning uses abstract layers of latent variables in a hierarchical structure to perform

pattern matching and prediction [35]. It finds a predictor for an output Y given a high-dimen-

sional input X. This can be represented as an input-output mapping Y = F(X). The multivariate

function F is a superposition of univariate semi-affine functions. We use two types of neural

networks- feed-forward neural network and recurrent neural networks. The difference

between them as their names suggests is that recurrent neural networks have recurrent con-

nections that feed previous states as inputs when computing subsequent states. We consider

two types of recurrent neural networks- simple recurrent networks and Long Short Term

Memory networks [36]. The latter improves on the vanishing gradient problem that is encoun-

tered in simple recurrent neural networks and has the ability to retain information for long

time intervals. We use truncated Principal Component Analysis as a dimension reduction

method for the colony level neural network models.
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To predict velocities in the x and y directions we exploit the ensemble learning property of

random forests to sample velocities while we use monte carlo dropout [37] for neural networks

that enable us to easily sample from the posterior predictive distribution.

We embed information about previous time points in all our predictive models by includ-

ing lagged velocities and locations in ut. There are however, variants of neural networks that

explicitly model sequence data, like time series of animal movements. Recurrent neural net-

works (RNN) and Long Short Term Memory (LSTM) [36] models are common deep learning

methods used in applications like speech recognition [38], forecasting exchange rates [39], and

text classification [40]. We explore these methods for modeling animal movement.

In summary, the methods we pick enable us to

1. Model discrete categorical responses for fm

2. Model continuous multivariate responses for fv

3. Give stochastic simulations

In addition to the above simple recurrent neural networks and LSTM models account for

the time series nature of the data.

2.5.3 Feed forward neural networks. Let f 1
l ; f

2
l ; . . . ; f Nll be the activation functions associ-

ated with the lth hidden layer. The semi-affine activation rule at the ith neuron of the lth hidden

layer is given by

f il ¼ fl
XNl� 1

j¼1

wjzj þ bli

 !

Where wj are the weights corresponding to the Nl−1 inputs {zj} from the (l − 1)th layer to the ith

neuron of the lth layer. bli denotes the offset or bias sometimes called thresholds or activation

levels [35].

Popular choices for the activation function fl are the sigmoid function, tanh

(tanhðxÞ ¼ sinhðxÞ
coshðxÞ ¼

ex � e� x
exþe� x), softmax and rectified linear unit (ReLU(x) =max(0, x)). This choice

is largely governed by the type of layer (hidden or output) and if it is the output, the type of

task involved (classification or regression). The goal is to select optimal weights and bias based

on a criterion which is often to minimize a loss function. The loss function depends on

whether the type of task is classification or regression.

In this study we use MLP as a possible method of approximating fm. For the individual level

model we can represent a two-hidden layer MLP with h1 hidden units in layer 1 and h2 hidden

units in layer 2 in the following form.

z1;t ¼ f1ðW1ut� 1 þ b1Þ

z2;t ¼ f2ðW2z1;t þ b2Þ

z3;t ¼W3z2;t þ b3

fm0;t

fm1;t

fm2;t

2

6
6
4

3

7
7
5 ¼ f3ðz3;tÞ ¼ softmaxðz3;tÞ

WhereW1 2 R
h1�p,W2 2 R

h2�h1 ,W3 2 R
3�h2 , b1 2 R

h1 , b2 2 R
h2 and b3 2 R

3
.
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In this model f3 is the softmax function [41] and is applied element-wise on z3. For the kth

class the softmax function is computed as

f3ððz3;tÞkÞ ¼
expððz3;tÞkÞ

P2

j¼0
expððz3;tÞjÞ

k ¼ 0; 1; 2

f1 and f2 can activation functions of our choosing. See [42] for a list of activation functions

to choose from. In this study we restricted hidden layer activation functions to relu, tanh and

elu.

The parameters in the above modelW1,W2,W3, b1, b2 and b3 are estimated by minimizing

the categorical cross entropy, a popular loss function for multi-class classification problems.

[43] specify categorical cross entropy loss as follows.

Let f3((z3,t)k) = pk, p = [p0, p1, p2] and
P2

k¼0
pk ¼ 1. If the class of the categorical response

variable corresponding to u is k, we define the one hot encoding to be ej where eji = 1 if i = j,
otherwise 0. One hot encoding replaces a single categorical response variable with 3 binary

dummy variables. The loss function is then defined as

Loss ¼
X2

k¼0

ejklog
1

pk

� �

¼ log
1

pj

 !

The loss is minimized using a gradient descent algorithm of our choice. See [42] for a list of

optimizers and references for each optimizer.

Overfitting is a concern when deciding the number of hidden neurons foe each layer. Drop-

out [44] is a technique that is used to alleviate this. This is achieved by removing hidden neu-

rons with a probability p� and then see how this affects the loss function and optimization

problem. See [44] for more details.

In addition to the parameters we need to estimate, we also have hyper-parameters which we

need to specify by tuning the model. We do a grid search of the hyper-parameter space and

use out of sample performance to inform us on choosing the most appropriate values of the

hyper-parameters. The hyper-parameters we considered were the number of neurons in each

hidden layer, the dropout probability, the activation function of each hidden layer, the number

of hidden layers, the optimizer in the tuning process and the learning rate associated with the

optimizer. We used accuracy rate as the performance metric.

We use the keras package [42] in Python to fit these neural network and use a grid search in

the tuning process.

Extension of this to the colony level model is quite straightforward. The output layer f3(z3)

was modified as follows

z3;1;t ¼W3;1z2;t þ b3;1

z3;2;t ¼W3;2z2;t þ b3;2

..

.

z3;N;t ¼W3;Nz2;t þ b3;N

f3;1;t ¼ softmaxðz3;1;tÞ

f3;2;t ¼ softmaxðz3;2;tÞ

..

.

f3;N;t ¼ softmaxðz3;N;tÞ

WhereW3;i 2 R
3�h2 ; b3;i 2 R

3
for i = 1, . . ., N.
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When the class of the ith ant is j we define eijk = 1 for j = k and 0 otherwise. The loss function

is modified as below and is simply the sum of the categorical cross entropy for each ant.

f3;iððz3;i;tÞkÞ ¼ pi;k

Loss ¼
XN

i¼1

X2

k¼0

eijklog
1

pi;k

 !

¼
XN

i¼1

log
1

pi;j

 !

Tuning of hyper-parameters were done similarly to that of the individual level model.

Since the softmax function outputs a discrete probability distribution over the K classes for

each ant we sample from a Multinomial Distribution with corresponding probabilities for

each ant in order to obtain simulations. For the individual level model we will have to do this

only once whereas for the colony level model we will have N such distributions.

We also use MLPs to model fv. For the individual level model we have a bi-variate response

vx and vy- the velocities in the x and y directions. Our final goal is to build a stochastic move-

ment simulator and in order to achieve this we need to be able to generate stochastic move-

ments. We specify neural networks within a Bayesian setting that will let us sample vx and vy
from a posterior predictive distribution. See [45] for a detailed explanation of Bayesian Neural

Networks (BNN). For the individual level model we define a two layer BNN as follows.

z1;t ¼ f1ðW1ut� 1 þ b1Þ

z2;t ¼ f2ðW2z1;t þ b2Þ

fvðut� 1Þ ¼W3z2;t þ b3

WhereW1,W2 andW3 are h1 × p,h2 × h1 and h3 × h2 matrices respectively while b1, b2 and b3

are h1, h2 and 2 dimensional vectors respectively. We specify N(0, ν) as the prior distribution

for each element of the weight matrices and bias vectors. Bayesian inference can be done using

MCMC [45] or more recent variational inference methods [46, 47]. These methods can be

computationally prohibitive. [37] suggested dropout as a Bayesian approximation. They prove

that casting dropout in training and testing phases in deep neural networks leads to approxi-

mate Bayesian inference. They call their method Monte Carlo dropout (MCdropout). Dropout

should be used in the testing phase in addition to the training phase. We use the sum of the

mean squared errors of the individual velocities as the loss function. The predictions generated

are approximate samples from the posterior predictive distribution [35]. For more details

about MCdropout see [37].

We use the keras library in Python to implement MCDropout and apply dropout at each

layer in the network. Similarly to the classification models we use a grid search to tune the

models.

We extend this model to the colony level by including all velocities in x and y directions of

all ants as the response variable. The response variable is then a 146 dimensional vector.

For feed forward and recurrent neural network models for both movement behaviour and

velocity at the colony level we use Principal Component Analysis (PCA) for dimension reduc-

tion. PCA has been used as a pre-processing dimension reduction method in [48] and [49].

We extract the first 1000 components which accounts for over 95% of the variability of the

input variables. See Fig 4 for the cumulative variance plot.

All other aspects of implementing the colony level NN model for ant velocities were done

similarly to the individual level NN model.
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2.5.4 Recurrent neural networks. Recurrent Neural Networks(RNN) model sequential

information and its output depends on its input as well as past computations. The network

thus develops a memory of its past events that are implicitly encoded into its hidden neurons.

This differs from traditional feedforward networks where each set of inputs and outputs are

independent of each other [50]. RNN and its variants therefore are a popular choice for time

series forecasting and some applications include water resources forecasting [51] and electric-

ity spot prices forecasting (Mirikitani and Nikolaev, 2010).

We explore using standard Recurrent Neural Networks for modeling fm and fv. We consider

a two layer recurrent neural network where the first layer is a recurrent layer and the second

layer is a feed forward neural network similar to what we defined earlier. The only change for

both models fm and fv is the form of f1. This is modified in the following way for a simple RNN

[38].

z1;t ¼ f1ðW1ut� 1 þWhz1;t� 1 þ b1Þ

WhereWh is a h1 × h1 matrix.

An important variant of RNN is long short-term memory (LSTM) [36] which has the ability

to retain information for long time intervals. z1,t is modified as follows

it ¼ sðW1iut� 1 þWhiz1;t� 1 þWcict� 1 þ b1iÞ

ft ¼ sðW1fut� 1 þWhfz1;t� 1 þWcfct� 1 þ b1f Þ

ct ¼ ftct� 1 þ ittanhðW1cut� 1 þWhcz1;t� 1 þ b1cÞ

ot ¼ sðW1out� 1 þWhozt� 1 þWcoct� 1 þ b1oÞ

z1;t ¼ ottanhðctÞ

where σ is the sigmoid activation function, i, f, o and c are the input gate, forget gate, output

gate and cell activation function. All of these are dimension equal to the size of the hidden

layer h1. The input gate i is used to protect the memory contents from perturbation of irrele-

vant inputs. The output gate o is similarly used to protect other units from currently irrelevant

memory contents. The forget gate was a later addition to the LSTM model [52]. This rectifies a

weakness of LSTM that could only handle subsequences with explicitly marked ends and not

continual input streams. As specified in section 2.4.2 we used PCA as method of reducing the

dimension of the input variables.

Fig 4. Cumulative variance plot. First 1000 components explain over 95% of the variance.

https://doi.org/10.1371/journal.pone.0235750.g004
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In fitting both models we consider the training set as one long time series without dividing

the times series into sub-sequences. We use these models for the classification task as well as

regression. Both methods have implementations in keras. We use a grid search for model

tuning.

2.6 SDE model

We have described multiple machine learning methods, which we can use to model animal

movement and behavioural states. Most current animal movement research uses parametric

models, with one prominent type of model being based on stochastic differential equations.

To compare machine learning approaches to parametric models, we will use the ant data and

compare results from machine learning methods with a custom stochastic differential equa-

tion model developed specifically for our ant system. The stochastic differential equation

(SDE) model described in this section assumes constant movement. Thus, we fit the SDE

model to the subset of the training data where the ants were in motion. We classified each

individual animal movement as “moved within the nest”, “stood still within the nest”, or “out-

side the nest”, and we used these classes to fit a multinomial regression with backward step

selection on the variables in Table 1. When an individual was predicted to have “moved within

the nest”, we used the SDE model to predict the next position in time. The SDE model frame-

work [4] captures spatially-varying directional bias using a potential surface and captures spa-

tial variation in speed without directional bias using a motility surface. This SDE model is a

custom-constructed parametric model custom-constructed for this ant system. It thus pro-

vides a reasonable parametric model for comparison with the nonparametric models we

propose.

The SDE model is as described in [53]. The model for animal position pt at time t is repre-

sented by the set of equations

dpt ¼ vtdt ð7Þ

dvt ¼ � bðvt � mðptÞ½� rhðptÞ�Þdt þ smðptÞIdwt ð8Þ

where vt is the velocity of the animal at time t, β is the coefficient of friction which controls

autocorrelation in movement, σ is a constant which we set equal to 1 to render the model iden-

tifiable, I is a 2 × 2 identity matrix, wt is independent Brownian motion in R2
, andm(pt) and h

(pt) are spacially-varying motility and potential surfaces respectively, evaluated at pt. The

potential surface captures spatially-varying directional bias (drift) through its gradient, while

the motility surface captures spatial variation in speed without directional bias by compressing

and dilating time.

The Euler-Maruyama method approximates (7) and (8) by

ptþ1 ¼ pt þ vt ð9Þ

vtþ1 ¼ vt � bðvt � mðptÞ½� rhðptÞ� þmðptÞIdwt ð10Þ

Isolating vt in (9) and substituting into (10) results in the autoregressive model of order 2

ptþ2 ¼ bmðptÞ½� rhðptÞ� þ ð2 � bÞptþ1 þ ð1 � bÞpt þmðptÞ�t ð11Þ

where �t�
iid Nð0; IÞ and 0 is a column vector of zeroes in R2

.
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Motility and potential surfaces are divided into J = 9, 998 1 × 1 mm grid cells. Motility and

potential surfaces evaluated at position pt have the spline representation

hðptÞ �
XJ

j¼1

hjsjðptÞ

mðptÞ �
XJ

j¼1

mjsjðptÞ

where

sjðptÞ �

(
1; pt in jth grid cell

0; otherwise

and hj andmj are the potential and motility surfaces respectively, evaluated in grid cell j.
We solved for the motility surface m1:J by minimizing the penalized likelihood to estimate

the variance of the residual, which is proportional to the motility. Plugging in the estimated

motility surface, we minimized the penalized likelihood a second time and solved for the

potential surface h1:J. This procedure is described in further detail in [53]. Once the motility

and potential surfaces were estimated, we made predictions using the autoregressive model

(11).

3 Results

3.1 One step ahead predictions for ant movement

We divide the data into 80% training data and 20% testing data. All models are fitted using the

training data and evaluated based on both training and testing data. The mean square predic-

tion error (MSPE) for the training set and testing set is given in Table 2 for each method.

Although we model velocities through Eq (2) we compute MSPE based on the predicted (x, y)
locations and the actual location co-ordinates. For locations falling outside of the nest, we proj-

ect them onto the nearest border of the nest using a vector projection algorithm. See [54] for

details. The formula we use for calculating the MSPE is given below. The objective is to have

low training and testing MSPE with low disparity between the models. This indicates a high

Table 2. MSPE for one step ahead predictions for individual and colony level models.

Individual Movement

Method Train MSPE Test MSPE

Multinomial Regression + SDE 0.2105 0.2375

Random Forest 0.1765 0.2149

NN 0.1952 0.2375

RNN 0.2057 0.2316

LSTM 0.2060 0.2325

Colony Movement

Method Train MSPE Test MSPE

Random Forest 0.2204 0.2522

NN 0.2208 0.2518

RNN 0.2211 0.2519

LSTM 0.2222 0.2543

https://doi.org/10.1371/journal.pone.0235750.t002
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level of accuracy with minimal overfitting of the models to the training set.

MSPE ¼

Pn
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxt � x̂t Þ
2
þ ðyt � ŷt Þ

2

q

n
ð12Þ

The individual level Random Forest model had the lowest MSPE for the training and testing

sets. The colony level models did worse than the individual level models. When considering

only the colony level models the NN model had the best performance for the test set. The RNN

model has similar performance to the NN model. The Random Forest at the colony level has

low MSPE for the training set but relatively high MSPE for testing set suggesting some degree

of overfitting.

We also examined variable importance for the best overall model for one step prediction.

The variable importance for models estimating fm and fv are given in Table 3.

3.2 One step ahead predictions for gull migratory movement

Since the purpose of the gull analysis is to demonstrate how this framework can be generally

applied to other species we do not apply all the machine learning and deep learning methods

given in Section 2.5 but apply only Random Forests and LSTM models. We picked these two

since they are the simplest and most complex of the machine learning and deep learning meth-

ods we explored.

We randomly split the 15 gull years into 5 folds and used 5-fold cross validation to tune

each model using a grid search. For LSTM models, when fitting the velocity models we

extracted observations that ended in the specific state we were modeling, and also extracted a

moving window of the 1000 prior steps leading up to it. For the Random Forest model this was

simpler as it is not recurrent in nature and we simply subset the data by the state we were

modeling and used each subset when fitting the velocity models.

In this analysis we let cross validated prediction error for the classification model determine

the most appropriate number of lags. We used 3 candidate lags- 30, 40 and 50. For the Random

Forest model using 50 lags gave the best performance and therefore we used 50 lags for both

the classification and velocity steps. For the LSTM model using a lag of 40 gave the best perfor-

mance in the classification step and we used 40 lags in the velocity step as well.

We calculated MSPE for each individual fold using the best models from the grid search.

We give the mean cross-validated MSPE and corresponding standard deviations in Table 4.

The LSTM model does considerably better than the Random Forest model in one step ahead

predicitons.

We also examined variable importance for the best overall model in predicting one step

ahead movement for migratory gulls. Table 5 gives the top five variables for each model (classi-

fication and 4 velocity models) in decreasing order. It was surprising that day number did not

Table 3. Predictor variables with top 5 variable importance for individual level random forest models estimating

fm and fv.

Variable Importance for Movement model (fm) Variable Importance for Velocity model (fv)
Stationary time vyt−1

dt−1 vxt−1

vxt−1 Distance to nearest neighbor

vxt−2 yt−2

vyt−1 Distance to wall in East direction

https://doi.org/10.1371/journal.pone.0235750.t003
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have a very high variable importance for the classification model although having various lags

of y is reasonable to expect.

3.3 1000 steps ahead predictions for ant movement models

In addition to looking at one step ahead prediction, we also compare the models in Table 2

based on long term simulations. We simulate 1000 steps ahead from the starting point of the

testing set. We repeat the simulation 100 times for each model. When comparing these simula-

tions we do not compare prediction accuracy as it is not appropriate when considering sto-

chastic simulations over a long period of time. Rather, we compare features of the simulations

of each model. We define metrics to investigate individual behaviour of the ants, space use of

the nest and interaction between ants.

When considering individual behaviour we look at “Total Distance” travelled by all the ants

over the 1000 step period, we also consider the percentage of time ants are stationary and out

of the nest during the time period. When examining space use we look at the percentage of

time ants are in each sub chamber (1-8). To investigate interaction between ants we look at the

average number of ants within a 12mm radius over the 1000 time step period.

We compute these metrics for each of the 100 simulations of each model and compare

against the observed metric for the 1000 time step period. Figs 5 and 6 give the results for the

1000 step ahead predictions. The solid black line is the actual metric for the 1000 time step

period and the dashed green lines give the 25th and 75th percentiles of a 1000 time step mov-

ing window over the whole dataset. This was done to provide a reference as to whether the

period we are simulating over is unusual compared to the general movement features we see in

the data. We do see that it is a somewhat unusual period as the solid black line falls within the

dashed green lines only once (Fig 6 plot (d)) in the 12 plots of Figs 5 and 6.

When looking at Fig 5 we see that the SDE model captures the actual in plots (a) and (c). In

plots (b) and (d) the SDE model still is within the dashed green bands. The SDE model strug-

gles somewhat with space use especially plots (c), (d) and (e) of Fig 6.

The machine learning and deep learning models have mixed performance over the different

metrics. There is no clear winner. Plot (a) in Fig 5 is of particular concern for these models as

many of them seem to have very slight movements. Recurrent models like the LSTM individ-

ual level model and the individual and colony level RNN model did better than the other

machine learning and deep learning models in plot (a) of Fig 5. The models did better at

Table 5. Variable importance for individual level random forest model in gulls analysis.

Model Variables with highest importance

Classification yt−9, yt−35, yt−28, yt−15, yt−22

Velocity for state = 1 vyt−1, vxt−1, xt−1, yt−2, dist

Velocity for state = 2 vyt−1, vxt−1, dist, vyt−2, vxt−2

Velocity for state = 3 vxt−1, vyt−1, yt−1, yt−2,xt−2

Velocity for state = 4 vyt−1, vxt−1, dist, vyt−2, vyt−44

https://doi.org/10.1371/journal.pone.0235750.t005

Table 4. Average cross-validated MSPE and standard deviations using random forest and LSTM models for migra-

tory gulls.

Method Average CV MSPE Standard Deviation of CV MSPE

Random Forest 4.5608 0.1571

LSTM 1.7325 0.1305

https://doi.org/10.1371/journal.pone.0235750.t004
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capturing Percentage out and Percentage stationary, although the NN individual level model

and the RF colony level model overestimated and underestimated the metrics respectively for

Percentage Stationary. Based on plot (a) of Fig 5 we consider the LSTM individual model,

RNN individual and colony models to be contenders of the best machine learning and deep

learning models. The RNN colony level model overestimates the metric significantly in plot

(d) of Fig 5 while the LSTM individual model has better performance than the RNN individual

model in all the plots of Fig 6.

None of the models were able to simulate a movement path from sub chamber 1 through to

sub chamber 8 or in the opposite direction.

Overall, the SDE model did best in capturing the features of ant movement. From the

machine learning and deep learning models the LSTM individual level model seems to have

the most reasonable performance in long range simulations.

Fig 5. Metrics investigating individual ant behaviour and ant interaction. The black solid line gives the metric for the actual 1000 second time

period. The green dashed lines are the 25th and 75th percentiles of the metric for all 1000 second windows in the actual data. (a) Total distance (b)

Percentage Stationary (c) Percentage out (d) Average number of ants within a radius of 12mm.

https://doi.org/10.1371/journal.pone.0235750.g005
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Fig 6. Metrics investigating space use of ants in simulations. The black solid line gives the metric for the actual 1000 second time period. The green dashed lines

are the 25th and 75th percentiles of the metric for all 1000 second windows in the actual data. (a) sub chamber 1 (b) sub chamber 2 (c) sub chamber 3 (d) sub

chamber 4 (e) sub chamber 5 (f) sub chamber 6 (g) sub chamber 7 (h) sub chamber 8.

https://doi.org/10.1371/journal.pone.0235750.g006
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3.4 Simulated migratory paths using gull models

We do not conduct a comprehensive simulation study for the gull models like we did in sec-

tion 3.3 for the ant models. This is because our purpose in doing the analysis for the gulls data

is to demonstrate the generalizability of the framework we propose. Instead we present simu-

lated migratory paths for Random Forests and LSTM models for illustrative purposes. We ran-

domly selected a gull year (gull ID 325 from year 2010) for the simulations. We refitted the

models in Table 4 excluding the randomly selected gull year.

Simulating complete annual paths of gull migration were not successful therefore we simu-

lated shorter (50 to 300 steps ahead) simulation paths, focusing on the transition points of one

state to another (Fig 7) as well as within the Southern migration and Northern migration states

(Fig 8).

Paths given in red are the actual paths, the paths in blue and green are the simulated paths

from the LSTM and Random Forest models respectively. All the simulated paths in Fig 7 cap-

tured the change in state as evidenced in the subtle change in the darkness/lightness of the

color of the path. Fig 7(a) shows both the LSTM and RF simulations transitioning to state 2

and moving southward although they do not move as much as the actual path given in red. In

Fig 7(b) both the LSTM and RF simulated paths transition to state 3, the LSTM simulation

gives the gull hovering on the coast like the actual path while the RF simulation gives the gull

moving more inland. In Fig 7(c), although both the LSTM and RF transition to state 4 which is

Northern migration, the Random Forest model does not move in the Northern direction

instead moving slightly towards the West. The LSTM model however shows migration to the

North. Fig 7(d) shows both the LSTM and RF paths transitioning to state 1. The RF path has

very small steps while the LSTM path has movement that visually looks more similar to the

actual path.

Fig 8 gives simulated paths of gulls while the gulls are in their migratory states. Fig 8(a)

shows both the LSTM and RF paths staying in state 2 while moving southwards and eventually

transitioning to state 3 similar to the actual path. Both the simulated paths show the transition

to state 3 happening further south than the actual path with the RF path ending in Africa.

Fig 7(b) show both the LSTM and RF model continuing in state 4 and moving in the Northern

direction. The RF simulated path moves a lot more further North than the actual path.

Overall, looking at the simulated paths given in Figs 7 and 8, the LSTM simulated paths cap-

ture the qualitative nature of the actual movement. Code used in this study can be found at

https://github.com/dzw5320/animalmov.

4 Discussion

In this study we proposed a general framework to predict and simulate animal movement. We

applied this framework using various machine learning and deep learning models as well as a

custom constructed parametric movement model for the ant data. We also demonstrated the

generalizeability of our approch by applying this framework to the gull data at the individual

level. For the ant data, we found that for one step ahead prediction the machine learning and

deep learning models at the individual level did better than the SDE model. The random forest

model at the individual level had the best performance for one step ahead prediction. For the

gull data, the LSTM model did better than the Random Forest model when predicting one step

ahead. For ant movement simulation, the SDE model seemed to do better than the other mod-

els although none of them were a clear winner. Of the machine learning and deep learning

models the LSTM individual level model had the overall best performance when considering

simulations. For the simulated gull migratory paths, the LSTM model seemed to better capture

migratory behaviour than the random forest model.

PLOS ONE Machine learning for modeling animal movement

PLOS ONE | https://doi.org/10.1371/journal.pone.0235750 July 27, 2020 23 / 30

https://github.com/dzw5320/animalmov
https://doi.org/10.1371/journal.pone.0235750


Fig 7. Simulation of shorter migratory paths transitioning from one state to another. (a) Transition from state 1 to

state 2 (b) Transition from state 2 to 3 (c) Transition from state 3 to 4 (d) Transition from state 4 to 1. Red is the actual

migratory path, green is the path simulated using the LSTM and blue is the path simulated using the Random Forest

model. The color gradient for each color denotes the different states as given in the plot legend.

https://doi.org/10.1371/journal.pone.0235750.g007
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The general framework has two main steps. In the first step we predict the movement

behaviour of the animal. Given the movement behaviour, we then predict the bivariate veloc-

ity. When fitting the second step for the Random Forest and Neural Network models at the

individual level we only used the data where an animal made a movement to fit the velocity

model. For the RNN and LSTM models this was more complex, and for the ant data, for ease

we used all the data irrespective of whether the movement resulted in the ant moving or not to

fit the velocity model. An alternative method would be to only consider sequences of move-

ments that end with the animal in the state under consideration. We followed this approach

when fitting the LSTM model for the gull data. This leads to the data in the training set having

variable time lengths. However, this can be handled by padding the time sequences and indi-

cating that padding has been used when specifying the model in keras.

In the ant analysis, the colony level models had deteriorated performance when compared

to the individual level models. Here again we used all the data to fit the velocity model. Unlike

Fig 8. Simulation of shorter migratory paths within the Southern and Northern migration states. (a) Southern migration 2

(b) Northern migration. Red is the actual migratory path, green is the path simulated using the LSTM and blue is the path

simulated using the Random Forest model. The color gradient for each color denotes the different states as given in the plot

legend.

https://doi.org/10.1371/journal.pone.0235750.g008
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for RNN and LSTM models in the individual level there is no alternative method to only subset

for when the ants are moving as at any given time some ants are stationary while others move.

Here we fit two independent models for movement behaviour and velocity and then combine

their outputs by zeroing out velocities if the ants are predicted to be stationary or making the

appropriate velocity adjustment if the ant is predicted to move out of the nest.

A possible reason for the performance of using colony level models suffering could be the

low volume of data. Since we are modeling all the ants together the number of samples we

have now reduces to the number of time points in the training data set for non recurrent mod-

els and to one long sample for the recurrent neural networks. The number of predictor vari-

ables increase thereby increasing the size of the network. These two factors in conjunction lead

to difficulties in the colony level model. Machine Learning and deep learning methods typi-

cally need large amounts of data. We used truncated Principal Component Analysis as a

dimension reduction method for the predictor variables. This method was chosen due to ease

of implementation and its simplicity. Alternative dimension reduction can be used here. A

drawback of using PCA is that the already difficult problem of investigating variable impor-

tance now gets more difficult since each component is a mixture of the original predictor

variables.

Most colonies have social hierarchies which delineate roles to each animal that in turn

could affect their movement behaviour. Even within the ant colony, we typically see a queen,

workers and males. It might be useful to first use clustering to separate each type of animal and

then apply the framework proposed in this study so that there is greater homogeneity in the

data used to fit each model.

We computed variable importance for the best model for one step ahead prediction in the

ant analysis which was the Random Forest model at the individual level. We did this for the

gull random forest model as well. Computing variable importance for Random Forests models

is a well studied problem (see [55] and [56]). Computing variable importance for neural net-

works is less straightforward. [57] suggested conducting a functional analysis of the weight

matrix based on a technique that determines behavioral significance of hidden neurons.

Another method is to consider the neural network to be a black box and use permutation

importance as given in [56] to calculate variable importance. In our case we could consider the

truncated PCA as part of the black box.

The ease of specifying machine learning and deep learning models compared to traditional

animal movement models is an important factor to consider. Most traditional parametric

models are custom constructed for specific species or environments. Therefore developing a

model can be time consuming. There are also various assumptions made in specifying these

models which might not be accurate or realistic across various scenarios. Machine Learning

and Deep Learning models are easier to specify and fit although tuning these models can often

be laborious. There has been a significant improvement in the computing capability of the pro-

cessing units that are used to run these models. They are also readily available for use via cloud

computing [58]. This increase in computing capability has also meant that they scale well to

large amounts of data. However, the model used need to depend on the goal of the study. If

prediction or simulation is the goal, machine learning or deep learning methods might be eas-

ier to specify due to the black box nature of these methods and faster to fit due to advanced

computing resources that are now available [58]. This comes at the cost of the models being

less interpretable.

Tuning a neural network can often be tedious. There are a number of tuning parameters

that need to be specified. For e.g. the number of hidden layers, the number of neurons in each

hidden layer, the optimizer to use, the activation function, the level of dropout, the learning

rate and the number of iterations used to train the model. In addition to these there are
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additional tuning parameters that help in avoiding over-fitting like L1 and L2 regularization.

We used a grid search to train the neural network. Another method that is gaining popularity

for tuning is using genetic algorithms [59, 60].

This study introduces a novel framework for classification of movement states and predict-

ing movement velocities. This is particularly useful when it is straightforward to identify move-

ment behaviour states and data is available at a fine temporal resolution. This might not always

be the case. If data is sparse in time and states are not easily identifiable you will need to iden-

tify states before the analysis as we did in the gull analysis. Some degree of pre-processing

could be used for this. There are existing frameworks like [61] that are useful for going from

sparse data to fine-resolution markov chains.

Reinforcement learning is a field of artificial intelligence that has been used for problems

like modeling self driving cars [62, 63]. It will be interesting to see if formulating the simulation

problem through this paradigm would give better performance.

We present a general framework for modeling animal movement that consists of two steps.

The first step models movement behaviour and the second step models velocity of the animal

given the movement behaviour. We used a suite of machine learning and deep learning to fit

individual and colony level models. We use ant movement data and compare performance

against stochastic differential equation model that uses multinomial regression to model

movement behaviour. Random Forests and Neural Networks at the individual level perform

better than the SDE model for one-step ahead predictions while the SDE model does better in

capturing movement features in long range simulations. The LSTM individual level model has

the best performance out of the machine learning and deep learning models for long range

simulations of ant colonies. In order to demonstrate the utility of the framework generally, we

also applied the Random Forest and LSTM models to gull movement data at the individual

level and found that the LSTM model had better performance for one step ahead predictions

as well as better visual simulated paths. Machine Learning and Deep Learning have been spar-

ingly used to model movement behaviour or predicting locations. This work provides a unified

approach of combining both aspects within a general framework.
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