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Abstract: Since the emergence of coronavirus disease (COVID-19) in late 2019, domestic cats
have been demonstrated to be susceptible to severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) under natural and experimental conditions. As pet cats often live in very close contact
with their owners, it is essential to investigate SARS-CoV-2 infections in cats in a One-Health context.
This study reports the first SARS-CoV-2 infection in a cat in a COVID-19-affected household in
Switzerland. The cat (Cat 1) demonstrated signs of an upper respiratory tract infection, includ-
ing sneezing, inappetence, and apathy, while the cohabiting cat (Cat 2) remained asymptomatic.
Nasal, oral, fecal, fur, and environmental swab samples were collected twice from both cats and
analyzed by RT-qPCR for the presence of SARS-CoV-2 viral RNA. Both nasal swabs from Cat 1
tested positive. In addition, the first oral swab from Cat 2 and fur and bedding swabs from both cats
were RT-qPCR positive. The fecal swabs tested negative. The infection of Cat 1 was confirmed by
positive SARS-CoV-2 S1 receptor binding domain (RBD) antibody testing and neutralizing activity in
a surrogate assay. The viral genome sequence from Cat 1, obtained by next generation sequencing,
showed the closest relation to a human sequence from the B.1.1.39 lineage, with one single nucleotide
polymorphism (SNP) difference. This study demonstrates not only SARS-CoV-2 infection of a cat
from a COVID-19-affected household but also contamination of the cats’ fur and bed with viral
RNA. Our results are important to create awareness that SARS-CoV-2 infected people should observe
hygienic measures to avoid infection and contamination of animal cohabitants.

Keywords: SARS-CoV-2; COVID-19; domestic cat; companion animals; next generation sequencing;
serology; neutralizing activity; human-to-feline transmission; contamination; One-Health

1. Introduction

In late December 2019, a human respiratory disease of unknown origin emerged in the
province of Hubei, China. The causative agent, a novel coronavirus (CoV), named severe
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acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified shortly after [1–4].
The disease, which is now referred to as coronavirus disease 2019 (COVID-19), spread
rapidly among humans and was declared as a pandemic by the World Health Organization
(WHO) in March 2020 [5]. This pandemic led to 75 million registered infections and
1.66 million deaths worldwide within the first year and is still ongoing [6,7]. In Switzerland,
the SARS-CoV-2 infection rates primarily spiked in March 2020, followed by a second and
larger wave in October and November 2020, with a total of 320,000 infections confirmed by
the end of November 2020 [8]. However, in Switzerland, human-to-animal transmission of
SARS-CoV-2 had not been described until now.

SARS-CoV-2 is taxonomically classified among the genus of Betacoronaviruses, in the
family of Coronaviridae [2]. CoV are large, single-stranded, positive-sense RNA viruses
with a genome size up to 33 kb, and they show high mutation rates upon replication [9]. Due
to the low fidelity of the viral RNA polymerase and the occurrence of natural homologous
recombination, CoV are versatile and highly variable viruses.

An example of viral recombination can be found in feline coronaviruses (FCoV), where
the FCoV serotype II originated from a recombination event of FCoV serotype I and a
canine coronavirus, which are both Alphacoronaviruses [10]. FCoV infection occurs in
cats worldwide with a prevalence of up to 80% in serological analyses. A small portion
of FCoV-infected cats go on to develop feline infectious peritonitis (FIP). Viral genomic
mutations and the host individual inflammatory response are assumed to support the
development of this systemic fatal disease [11,12]. In human CoV, zoonotic spillovers
have been demonstrated previously, especially in the recent past in the newly emerged
Betacoronaviruses SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-
CoV) [9,13–15]. For the moment, the origin of SARS-CoV-2 is unclear, although sequence
comparisons of the viral genome to other CoV known in bats and pangolins have shown
close relations [3,16,17].

For cell entry, SARS-CoV-2 spike proteins bind to the host angiotensin converting
enzyme-2 (ACE2) receptor, which is a common cell membrane protein in many mammalian
species [18,19]. The feline and human ACE2 were found to have 85.2% identity, which
is the highest identity of an ACE in companion animals in relation to the human ACE
protein [20]. In addition to cats, other animal species were also found to be susceptible to
SARS-CoV-2. Under natural conditions, domestic cats, large wild felids, dogs, mink, and
ferrets have reportedly been infected presumably through close contact with SARS-CoV-2
positive humans [21–26].

In experimental settings, viral replication has been detected in rhesus and cynomol-
gus macaques, domestic cats, ferrets, and golden hamsters; moreover, transmission of
the virus from infected to cohoused animals was demonstrated [27–35]. Reports have
also documented respiratory or gastrointestinal signs in cats after natural SARS-CoV-2
infection [21,23,36–38] and pathological changes in the respiratory tract in experimental
studies [28]. The severity of disease in naturally SARS-CoV-2 infected symptomatic cats
ranged from mild to severe in respiratory signs, including, e.g., dyspnea, sneezing, cough-
ing, and ocular discharge, and mild to moderate in gastrointestinal signs, like diarrhea
and vomitus [23,36–38]. Necropsy in one cat, although SARS-CoV-2 infected, showed that
the death was caused by an underlying hypertrophic cardiomyopathy, which resulted in
a pulmonary edema and thrombosis [39]. Another cat, which was euthanized due to the
severity of dyspnea, was found in necropsy to have suffered from viral pneumonia, with
detectable SARS-CoV-2 antigen by immunofluorescent staining of lung tissue [36].

In serological screenings, the prevalence of anti-SARS-CoV-2 antibodies in cats from
Germany, Italy, Croatia, France, and China ranged from 0.69% to 23.5% [40–45]. A study
from China could not detect SARS-CoV-2 specific antibodies in any of the 423 tested cat
sera collected after November 2019 during the early stages of the COVID-19 pandemic [42],
and a serological investigation in nine cats living with COVID-19 positive students at
a veterinary campus in France could not prove SARS-CoV-2 infection in the tested cats.
However, a significantly higher seroprevalence in animals that lived in COVID-19-affected
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households compared to the animals with unknown contact status was shown previously
in a study from France [44]. Moreover, in a recent study from Texas, neutralizing antibodies
were found in 41.2% of 17 cats from COVID-19-affected households [46].

Domestic pet cats often live in close contact with their owners. In Switzerland, about
30% of all households accommodate at least one cat. In 2020, the Swiss cat population
counted over 1.7 million individuals [47]. Therefore, the surveillance of intra- and in-
terspecies transmission of this novel CoV is of great importance in a One-Health per-
spective. This is especially true for SARS-CoV-2, which has already effectively crossed
interspecies barriers.

The Clinical Laboratory at the Vetsuisse Faculty in Zurich, Switzerland, has been
investigating the prevalence of SARS-CoV-2 in companion animals since March 2020, with
a current focus on COVID-19-affected households during the second wave in Switzerland.
Here, we report the first confirmed case of SARS-CoV-2 infection in a cat from a COVID-
19-affected household in Switzerland. The positive RT-qPCR and sequencing results in
a second cohoused cat could not be confirmed using serology because no blood sample
was available. Our findings reinforce the reports on cats being susceptible to SARS-CoV-2
infection under natural conditions and support the assumption that SARS-CoV-2 associated
disease in cats may occur.

2. Materials and Methods
2.1. Animals

The two cats reported in this study lived in a COVID-19-affected household in the
northern part of the canton of Zurich, Switzerland. The household consisted of two
people living with their two cats. One owner had tested positive for SARS-CoV-2 RT-
PCR on 2 November 2020 (Viollier AG, Allschwil, Switzerland; Figure 1), after both
owners had developed respiratory symptoms in the week prior. The positive tested owner
reported muscle pain, anosmia, cough, sore throat, and nasal discharge. The other person
experienced only mild symptoms. They underwent quarantine until 9 November 2020.

Viruses 2021, 13, x FOR PEER REVIEW 3 of 28 
 

 

[42], and a serological investigation in nine cats living with COVID-19 positive students 
at a veterinary campus in France could not prove SARS-CoV-2 infection in the tested cats. 
However, a significantly higher seroprevalence in animals that lived in COVID-19-af-
fected households compared to the animals with unknown contact status was shown pre-
viously in a study from France [44]. Moreover, in a recent study from Texas, neutralizing 
antibodies were found in 41.2% of 17 cats from COVID-19-affected households [46]. 

Domestic pet cats often live in close contact with their owners. In Switzerland, about 
30% of all households accommodate at least one cat. In 2020, the Swiss cat population 
counted over 1.7 million individuals [47]. Therefore, the surveillance of intra- and inter-
species transmission of this novel CoV is of great importance in a One-Health perspective. 
This is especially true for SARS-CoV-2, which has already effectively crossed interspecies 
barriers. 

The Clinical Laboratory at the Vetsuisse Faculty in Zurich, Switzerland, has been in-
vestigating the prevalence of SARS-CoV-2 in companion animals since March 2020, with 
a current focus on COVID-19-affected households during the second wave in Switzerland. 
Here, we report the first confirmed case of SARS-CoV-2 infection in a cat from a COVID-
19-affected household in Switzerland. The positive RT-qPCR and sequencing results in a 
second cohoused cat could not be confirmed using serology because no blood sample was 
available. Our findings reinforce the reports on cats being susceptible to SARS-CoV-2 in-
fection under natural conditions and support the assumption that SARS-CoV-2 associated 
disease in cats may occur. 

2. Materials and Methods 
2.1. Animals 

The two cats reported in this study lived in a COVID-19-affected household in the 
northern part of the canton of Zurich, Switzerland. The household consisted of two people 
living with their two cats. One owner had tested positive for SARS-CoV-2 RT-PCR on 2 
November 2020 (Viollier AG, Allschwil, Switzerland; Figure 1), after both owners had de-
veloped respiratory symptoms in the week prior. The positive tested owner reported mus-
cle pain, anosmia, cough, sore throat, and nasal discharge. The other person experienced 
only mild symptoms. They underwent quarantine until 9 November 2020. 

 
Figure 1. Timeline of the sample collections and overview of test results in the two cats (Cat 1 and Cat 2) after one of the two
cat owners had tested RT-qPCR positive for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Cat 1 (indicated
with the black cat-pictogram) became symptomatic on 5 November 2020 and was presented to a private practitioner on
10 November 2020, where a blood sample was collected. Swab samples from both cats were collected on 16 and 19 November
2020. Serological testing (ELISA and sVNT) was performed on serum from Cat 1 collected on 10 November and 8 December
2020. Cat 2 is indicated gray. Results of RT-qPCR and serology are indicated by colors as shown in the legend. (EDTA:
ethylenediamine tetra-acetic acid, ELISA: enzyme-linked immunosorbent assay, sVNT: surrogate virus neutralization test,
and RT-qPCR: real-time quantitative reverse transcriptase-polymerase chain reaction, CT: cycle threshold).
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The two cats in this household were four years old, male neutered, Maine Coon
mixed breeds with outdoor access. One of the cats (Cat 1) developed clinical signs on
5 November 2020, during the human quarantine and was presented to a local veterinary
practitioner on 10 November 2020, where a blood sample was collected.

Subsequently, the cat owners contacted the Clinical Laboratory at the Vetsuisse Faculty
in Zurich, Switzerland, and the cats were enrolled into the SARS-CoV-2 surveillance
study in companion animals, which is currently ongoing. For this study, mucosal, fecal,
fur, and environmental swab samples were collected from both cats (Cats 1 and 2). As
environmental samples, the cats’ favorite sleeping spots (fabric surfaces, each cat had one
designated spot) were sampled. Further blood samples were collected from Cat 1 (Figure 1).
The owner did not allow for more swab samplings.

The owners were informed about the study design and gave written consent before-
hand. The sample collection was officially approved by the ethics committee of the canton
of Zurich (BASEC number 2020-00979) and by the veterinary office of the canton of Zurich
(ZH062/20). At the time of the cat sampling, the owners were postsymptomatic and had
finished their quarantine. A veterinarian of our group, provided with personal protective
equipment, sampled the cats at their home according to a sample collection protocol that
was developed for the surveillance study. To prevent contamination between the two cats,
gloves were changed before proceeding with the second cat.

2.2. Blood Sample Collection

The first blood collection from Cat 1 was performed by the local veterinarian on
10 November 2020 (Figure 1). He collected an ethylenediamine tetra-acetic acid (EDTA)
and a lithium–heparin anticoagulated blood sample as well as a native blood sample for
the gain of serum. Blood and serum samples were stored at 4 ◦C for seven days before they
were made available for the current study. Subsequently, for the present study, additional
EDTA and serum samples from Cat 1 were drawn on 8 December 2020 (Figure 1). The
owner did not allow for any blood collection from Cat 2.

2.3. Swab Sample Collection

Swab sampling of both cats, Cat 1 and Cat 2, and their environment was carried out on
16 and 19 November 2020. Cotton swabs with plastic shafts (Lidl, Weinfelden, Switzerland
and Heinz Herenz, Hamburg, Germany) that were separately sealed in reclosable plastic
bags (Minigrip® Red line, Alpharetta, GA, USA) were used for sampling. Strict caution
was taken to prevent contamination of the swab sampling area during collection.

From each cat, oropharyngeal, nasal, and rectal swabs were collected. Additionally,
swabs from the fur and the surface of the cats preferred sleeping spot were taken to look
for environmental and surface contamination. After sampling, the swab tip was stored
in a previously labeled 1.5 mL screw cap tube (Sarstedt AG and Co. KG, Nümbrecht,
Germany) prefilled with 300 µL of DNA/RNA shield solution (Zymo Research Europe
GmbH, Freiburg, Germany), which also ensures nucleic acid stability during sample
storage/transport at ambient temperatures and inactivates nucleases and infectious agents.
The overlaying part of the shaft was cut with clean scissors and the tube was closed. The
specimens were shipped to the Clinical Laboratory at ambient temperature, stored at 4 ◦C,
and further analyzed within 48 h.

2.4. Nucleic Acid Extraction and Molecular Analysis

The swab samples were prepared prior to extraction as previously described [48–50].
In detail, after mixing by vortexing, the tubes were put on a shaking incubator at 42 ◦C for
10 min to resuspend the sample. The incubation step was then followed by centrifugation
at 8000 rpm for 1 min to remove all drops from the lid. Further preparation was carried out
in a laminar flow cabinet under sterile conditions. The forceps were cleaned with RNase
AWAY™ (Thermo Fisher Scientific, Basel, Switzerland) and 70% ethanol between every
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step and sample. The swab was inverted with a pair of sterilized forceps and the tube was
centrifuged (8000 rpm for 1 min) again to retain all the liquid from the tip.

Subsequently, the swab tip was removed, and the sample was further processed for
nucleic acid extraction as follows. A volume of 90 µL of total nucleic acid (TNA) was
extracted from 200 µL of each sample using a MagNA Pure LC 2.0 instrument (Roche
Diagnostics AG, Rotkreuz, Switzerland) with the MagNA Pure LC Total Nucleic Acid High
Performance Kit (Roche Diagnostics AG) according to the manufacturer’s instructions.
For each batch of extraction, a negative control (phosphate-buffered saline (PBS) without
Ca2+ and Mg2+, Life Technologies Ltd., Paisley, UK) was included to monitor for cross-
contamination. From the EDTA anticoagulated blood samples, RNA was extracted from
200 µL with the QIAamp RNA blood mini kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions.

Two SARS-CoV-2 real-time reverse transcriptase-polymerase chain reaction (RT-qPCR)
assays were used to amplify a template on the envelope gene sequence (E-assay) and
the RNA dependent-RNA polymerase (RdRp-assay) on the open reading frame-1ab gene
(ORF1ab) as previously described [51] with the following modifications. Both assays were
run on an ABI PRISM 7500 Fast Sequence Detection System (Applied Biosystems, Foster
City, CA, USA) using 4 µL of TNA and a TaqMan® Fast Virus 1-Step Master Mix (Applied
Biosystems, Foster City, CA, USA) in a RT-qPCR protocol designed by the Swiss Federal
Institute for Virology and Immunology (IVI, Mittelhäusern, Switzerland).

The 20 µL RT-qPCR reaction for the E-assay contained 5 µL 4×Master Mix, a final
concentration of 200 nM of forward primer (pWhSF-E-F21; 5′-ACA GGT ACG TTA ATA
GTT AAT AGC GTA CTT CT-3′; 32 nt), 200 nM of reverse primer (pWhSF-E-R22; 5′-ACA
ATA TTG CAG CAG TAC GCA CA-3′, 23 nt), and 100 nM of fluorogenic probe (pWhSF-
E-P23mgb; 5′-FAM-ATC CTT ACT GCG CTT CGA-MGB-3′, 18 nt). The 20 µL RT-qPCR
reaction of the RdRp-assay contained 5 µL of 4× Master Mix, a final concentration of
200 nM of forward primer (pWh-RdRp-F1; 5′-AAA TGG TCA TGT GTG GCG GT-3′; 20 nt),
200 nM of reverse primer (pWh-RdRp-R2; 5′-ATT AAC ATT GGC CGT GAC AGC T-3′,
22 nt), and 100 nM of fluorogenic probe (pWh-RdRp-P3mgb; 5′-FAM-CTC ATC AGG AGA
TGC C-MGB-3′, 16 nt).

The temperature profile included a step of reverse transcription for 5 min at 50 ◦C,
followed by the polymerase activation at 95 ◦C for 20 s, and 45 cycles of 3 s at 95 ◦C, followed
by 30 s at 60 ◦C. Negative RT-qPCR controls (RNAse-DNase-free water, AppliChem,
Darmstadt, Germany), a negative extraction control (PBS) and a positive RT-qPCR control
(in vitro transcribed RNA control containing three concatenated sequences of RdRp, E, and
nucleocapsid (N) SARS-Cov-2 genes: RNA_Wuhan_RdRp-E-N, provided by the IVI) were
added in every run [52]. The input copy number of the samples was calculated using a
10-fold serial dilution of the positive RT-qPCR control synthetic template.

All samples were run neat and diluted 1:5 in nuclease free water to detect possible
RT-qPCR inhibition. The result of the two runs, neat or 1:5 diluted of each sample, which
gave the lower cycle threshold (CT)-value, was used for further interpretation. The samples
were judged as positive when an amplification was detected in both assays (E-Assay and
RdRp-Assay) with CT-values ≤ 38. CT-values > 38 and <45 in one or both assays were
stated as questionable positive. No amplification (CT-value ≥ 45) in both or one of the two
assays was interpreted as negative.

2.5. Confirmatiory Tests for Positive RT-qPCR Results

For confirmation of the positive RT-qPCR results from the mucosal swabs collected
on 16 November 2020, the extracted TNA samples were sent to the veterinary reference
laboratories of Switzerland and Germany, the Swiss Federal Institute of Virology and
Immunology (Switzerland), and the Friedrich–Loeffler Institute (FLI, Greifswald–Insel
Riems, Germany) [51,53]. At the IVI, the reference laboratory for SARS-CoV-2 diagnostic
for animals in Switzerland, the RT-qPCR results were confirmed [51]. The sample was
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judged positive if all assays were positive with a CT-value ≤ 38 and questionable positive,
if the CT-values were >38 to 45.

2.6. Next Generation Sequencing

Whole genome sequencing was conducted by the Genomics Facility Basel, Switzerland.
For this, the remains of the TNA extracted from the RT-qPCR positive mucosal swabs (nasal
swab from Cat 1 and oral swab from Cat 2 from 16 November 2020) were transferred to the
Genomics Facility. Library preparation and whole-genome sequencing was performed as
previously described [54]. Briefly, the ARCTIC v3 primer scheme was used for viral genome
amplification, which results in tiled amplicons of approximately 400 bp length [55]. For
optimizing the results and adapting to the low viral load, two different PCR conditions (Q5
Hot Start DNA Polymerase, New England Biolabs) were used for genome amplification.

Temperature profile for PCR condition 1: 30 s 98 ◦C, 35× (15 s 98 ◦C and 300 s 63 ◦C),
hold 4 ◦C; temperature profile for PCR condition 2: 30 s 98 ◦C, 35× (15 s 98 ◦C and 300 s
65 ◦C), and hold 4 ◦C. Both amplicon sets were subsequently converted to sequencing
libraries. The sequencing libraries were prepared using NEBNext Ultra II DNA library prep
reagents (New England Biolabs) and NEXTFLEX UDI Barcode adaptors (PerkinElmer AG,
Schwerzenbach, Switzerland). For whole genome sequencing, an Illumina MiSeq system
(Illumina Switzerland GmbH, Zurich, Switzerland) with a read output of 2× 251 bases was
chosen. Quality control of the raw reads was performed with V-pipe. Following quality
control, the reads were mapped to the reference genome MN908947 [56].

For phylogenetic analysis, the alignment files from the two PCR conditions were combined
using SAMtools_merge [57], alignment statistics were generated using BCFtools_mpileup
considering maximum 10,000 reads per site and variants were called using BCFtools_call.
Variants were filtered to those where the alternate allele was the majority base using
BCFtools_filter [58]. Finally, VCF_consensus_builder was used to generate a consensus
sequence and mask sites with <5× coverage [59]. Lineage classification was done by using
the Pangolin tool [60,61]. Sequences were aligned using MAFFT and a maximum-likelihood
tree was built using IQ-TREE with an HKY + F + G4 substitution model [62,63].

2.7. Antibody Detection by Enzyme-Linked Immunosorbent Assay (ELISA)

The sera were tested using an in-house established enzyme-linked immunosorbent
assay (ELISA), for the detection of anti-SARS-CoV-2 spike glycoprotein receptor binding
domain (RBD) antibodies. The protocol was mainly based on methods described ear-
lier [64–66]. In detail, the antigen, a recombinant spike glycoprotein RBD SARS-Related
Coronavirus 2, Wuhan-Hu-1 with C-Terminal Histidine Tag (NR-52946, BEI Resources,
Manassas, VA, USA) was boiled for 3 min at 95 ◦C in 0.5% sodium dodecyl sulfate (SDS,
Sigma-Aldrich, Buchs, Switzerland) and diluted in 0.1 M carbonate coating buffer (Na2CO3
water free, pH 9.6) (Sigma-Aldrich) to a final concentration of 2 µg/mL of antigen and
0.0025% SDS.

A 96-well MICROLON®, C-bottom, medium binding plate (Greiner-Bio One, St. Gallen,
Switzerland) was coated with 200 ng/well of antigen by incubating for 3 h at 37 ◦C and
overnight at 4 ◦C. If not used immediately, the plates were stored at −20 ◦C. Before use, the
plates were washed three times with ELISA wash buffer (pH 7.4, 0.15 M sodium chloride,
0.2% Tween 20, Sigma-Aldrich). Whenever washing, the plates were tapped dry before
proceeding. To avoid unspecific binding, blocking was performed with 100 µL/well of 2%
bovine serum albumin (BSA, Sigma-Aldrich) in P3× buffer, which contains 0.15 M sodium
chloride, 1 mM Na2-EDTA (Titriplex® III, VWR, Dietikon, Switzerland), 0.05 M Tris-base
[Tris(hydroxymethyl)aminomethane, Fisher Scientific, Rheinach, Switzerland) 0.1% BSA,
and 0.1% Tween 20, at 37 ◦C for 1 h.

After three subsequent washing steps with ELISA wash buffer, 100 µL of the diluted
controls and serum samples were pipetted in duplicate. The sera were previously heat
inactivated at 56 ◦C for 1 h, and the dilution was prepared at a ratio of 1:100 with P3x buffer.
Following incubation at 37 ◦C for 1 h and three washing steps with ELISA wash buffer, a
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goat anticat immunoglobulin G (IgG) horseradish peroxidase (HRP) conjugated secondary
antibody (Jackson ImmunoResearch Europe, Ely, UK) was added. The conjugate dilution
was prepared as 1:3000 in P3x, and 100 µL/well was used.

After one more step of incubation for 1 h at 37 ◦C and another three washing
steps, 100 µL of a substrate solution consisting of 0.2 M citric acid pH 4.0 (Alfa Ae-
sar, Thermo Fisher Scientific), 2% hydrogen peroxide, and 40 mM ABTS (2.2-azino-di(3-
ethylbenzthiazoline-6-sulfonic acid diammonium salt)) (Sigma-Aldrich) was pipetted in
each well. The optical density (OD) values were read on a spectrophotometer (SPECTRA-
max PLUS 384, Bucher Biotec AG, Basel, Switzerland) at 415 nm after the substrate was
incubated for 10 min at room temperature.

Positive control sera from four SARS-CoV-2 antibody-positive field cats were kindly
provided by Dr. Herman Egberink and Dr. Els Broens, Faculty of Veterinary Medicine,
University of Utrecht, the Netherlands. As a negative control, a serum sample from a
specified pathogen free (SPF) cat collected in 2017 was used (TVB ZH095/15 [67]). Sera
submitted to the diagnostic laboratory from 24 Swiss cats for routine diagnostic purposes
(remaining material) between 2 October 2017 and 4 January 2020 were run as pre-COVID-19
samples. The positive OD cutoff value was calculated at six-fold standard deviations above
the mean value of reactivity of all serum samples from the pre-COVID-19 cohort [68].

2.8. Surrogate Virus Neutralization Test (sVNT)

For the detection of neutralizing activity against SARS-CoV-2 RBD of the spike protein,
the commercially available SARS-CoV-2 Surrogate Virus Neutralization Test Kit (GenScript
Inc., Piscataway, NJ, USA) was used. This test detects antibodies that block the binding
of SARS-CoV-2 RBD to the angiotensin converting enzyme 2 (ACE2) receptor on a cell
surface in a species-independent ELISA-like setup. The test was performed according to
the manufacturer’s instructions. Briefly, the samples and controls were heat inactivated
at 56 ◦C for 1 h, if not already performed, and diluted 1:10 with sample dilution buffer
and mixed with one volume of diluted HRP-RBD solution. This mixture was incubated
at 37 ◦C for 30 min, before adding 100 µL to the capture plate, which was precoated with
ACE2 protein.

After incubating for 15 min at 37 ◦C, the plate was washed with washing solution
four times. Thereafter, 100 µL of 3,3′,5,5′-tetramethylbenzidine (TMB) solution was added
per well. The plate was then incubated in the dark at room temperature for 15 min. For
stopping the reaction, 50 µL of stop solution was added to each well. The OD values were
read immediately on a spectrophotometer (SPECTRAmax PLUS 384, Bucher Biotec AG) at
450 nm. Positive and negative controls, provided by the kit, were included in duplicate in
every run. The assay validity was based on the OD values for positive and negative controls
falling in the recommended values. The percentage of inhibition, which is dependent on
the titer of anti-SARS-CoV-2 antibodies, was then calculated with the formula (1):

Inhibition (%) = (1 − OD value of sample/OD value of negative control) × 100 (1)

According to the manufacturer, the results were interpreted as positive for SARS-CoV-
2 neutralizing activity when the inhibition was calculated to be ≥20%, while <20% was
regarded as a negative result [69]. Four positive control sera and the 24 feline pre-COVID-
19 samples described above were analyzed using the sVNT. A positive cutoff value was
calculated at six-fold standard deviations above the mean value of reactivity of all serum
samples from the pre-COVID-19 cohort.

2.9. Confirmatory Serological Tests

The serological results of Cat 1 were confirmed by the Virology Division of the Fac-
ulty of Veterinary Medicine, University of Utrecht by a virus neutralization test with a
pseudotyped SARS-CoV-2 spike protein as described previously [70,71]. Additionally,
the result was confirmed by the Friedrich–Loeffler Institute (FLI, Greifswald–Insel Riems,
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Germany) using a RBD-ELISA, an indirect immunofluorescence assay and a surrogate
virus neutralization test as described previously [45,69,72].

2.10. Testing for Further Viral Infections

The TNA from the oral swab from Cat 1 collected on 16 November 2020, and the
oral swab from Cat 2 collected on 19 November 2020 were also tested for feline calicivirus
(FCV) and feline herpes virus (FHV) using previously published methods [50,73]. The
serum sample collected from Cat 1 on 8 December 2020, was tested for feline leukemia
virus (FeLV) p27 antigen by sandwich ELISA and for feline immunodeficiency virus (FIV)
antibodies to determine FIV infection by Western blot as described [74–78]. The TNA from
EDTA anticoagulated blood from Cat 1 was tested for FeLV provirus by qPCR as previously
described [78].

2.11. Submission to GenBank, ProMed, and OIE

The consensus sequence of Cat 1 was submitted to GenBank (submission ID SUB9088926,
GISAID ID: EPI_ISL_1005699). The cat was officially reported to the world organization for
animal health (OIE) on 3 December 2020 [79] and to ProMed [80].

2.12. Statistical Analysis

Statistical analyses were performed using GraphPad Prism version 8.4.0 (GraphPad
Software for Windows, San Diego, CA, USA).

3. Results
3.1. History and Clinical Signs

At the end of October 2020, the owners of the two cats had developed respiratory
symptoms compatible with COVID-19 and one of them tested positive for SARS-CoV-2
RNA by RT-qPCR assayed in a commercial laboratory at the beginning of November 2020.
The second owner was not tested for SARS-CoV-2. The positive-tested owner with strong
respiratory symptoms had very close contact to Cat 1 while in quarantine. Cat 1 began to
show respiratory signs three days after the owner was diagnosed with COVID-19 and was
presented at a private veterinary clinic on 10 November 2020. The owners reported that
the cat had been sneezing and coughing and showed apathy and inappetence at that time.

The private practitioner, to whom the cat was presented, reported slightly enlarged
mandibular lymph nodes and tenderness at pharyngeal and tracheal palpation in clinical
examination. The internal body temperature was not elevated (38.5 ◦C). The cat was
diagnosed with upper respiratory tract infection and received injections of an antibiotic
(amoxicillin, Betamox LA®, Arovet AG, Switzerland), a nonsteroidal anti-inflammatory drug
(NSAID, meloxicam, Metacam®, Boehringer Ingelheim GmbH, Switzerland), and a long-
term steroid (methylprednisolone, Depo-Medrol®, Zoetis Schweiz GmbH, Switzerland).

Amoxicillin clavulanic acid (Clavaseptin®, Vetoquinol AG, Switzerland) and the
NSAID robenacoxib (Onsior®, Elanco Animal Health Inc., Switzerland) were prescribed for
continuing the treatment at home. The overall clinical condition of Cat 1 improved slowly;
however, the sneezing persisted for another two weeks. No clinical signs were observed in
Cat 2. Both cats had no underlying health condition. The owners reached out to the Clinical
Laboratory due to concerns for possible SARS-CoV-2 infection in their symptomatic cat.

3.2. RT-qPCR

The nasal swab that was collected from Cat 1 on 16 November 2020, two weeks after
the owners had tested positive, resulted in RT-qPCR positive results for both genes (E and
RdRp; CT-values 32.6 and 33.2; Table 1). This result was replicated in another nasal swab
collected three days later with similar CT-values (Table 1). All TNA samples were run
neat and 1:5 diluted to test for potential RT-qPCR inhibition. Only one TNA sample in the
diluted assay gave a lower CT-value (oral swab from Cat 2 collected on 16 November 2020).
In all other samples, no evidence of RT-qPCR inhibition was found.
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The RT-qPCR of the EDTA anticoagulated blood sample collected from Cat 1 on
10 November 2020 yielded CT-values of 43 (E gene) and 42 (RdRp gene) and was, therefore,
interpreted as questionable positive. However, the fur swabs collected at both times and
the cat bedding sample from Cat 1 also tested positive with CT-values ranging from 31.8 to
36.9 (Table 1).

In the asymptomatic cat (Cat 2) the first oral swab was positive, but the subsequent
sample collected three days later was negative (Table 1). In addition, the bedding swab
collected at the first timepoint and the fur sample collected three days later tested RT-qPCR
positive (Table 1). The fecal swabs collected from both cats tested negative twice.

Table 1. The RT-qPCR results from ethylenediamine tetra-acetic acid (EDTA) blood from Cat 1 and mucosal, fecal, fur, and
environmental swabs from both cats.

Cat ID Collection Date Material E-Assay
(CT-Value) 1

RdRp-Assay
(CT-Value) 1

Interpretation of the
Results 2

Cat 1 10 November 2020 EDTA blood 43.2 42.2 questionable positive
16 November 2020 oral swab negative 36.6 negative

nasal swab 32.6 33.2 Positive
fecal swab negative 44 negative
fur swab 34.4 34.1 positive

bedding swab 31.8 31.7 positive
19 November 2020 oral swab negative negative negative

nasalswab 32.5 32.4 positive
fecal swab negative negative negative
fur swab 36.9 35.7 positive

Cat 2 16 November 2020 oral swab 37.5 36.2 positive
nasal swab negative negative negative
fecal swab negative negative negative
fur swab 44.9 35.8 questionable positive

bedding swab 32.9 33.1 positive
19 November 2020 oral swab negative negative negative

nasal swab negative negative negative
fecal swab negative negative negative
fur swab 33.8 35.9 positive

1 Displayed cycle threshold (CT) values indicate measurements in neat samples except for the oral swab from Cat 2 (dilution 1:5) collected
on 16 November 2020. 2 Interpretation: positive: CT-values ≤ 38 in both assays; questionable positive: CT-values between >38 and <45 in
one or both assays; and negative: CT-values ≥ 45 in one or both assays.

The positive RT-qPCR result in the nasal swab from Cat 1 collected on 16 Novem-
ber 2020 was confirmed by the federal laboratory of Switzerland (IVI) with CT-values of 35
in the RdRp and both E RT-qPCR assays (triplicates). This sample also tested positive in the
federal laboratory of Germany (FLI) with CT-values of 35 in RdRp assay (duplicated) and a
CT-value of 40 in the E RT-qPCR assay. The oral swab from Cat 2 collected on 16 November
2020, yielded a negative result in the IVI and a questionable positive result in the RdRp
RT-qPCR assay in the FLI. No further samples were tested at the IVI or FLI.

3.3. Next Generation Sequencing

By next generation sequencing (NGS), the nearly complete SARS-CoV-2 viral genome
from the nasal swab sample from Cat 1 collected on 16 November 2020 was successfully
sequenced. The viral RNA was amplified using two different PCR conditions yielding
consensus sequence coverages in the third quartile of 2858 and 4433, respectively, and
completeness with respect to reference sequence Wuhan-Hu-1 (MN908947) of 93% and
97% of positions with ≥5× coverage, respectively. The same PCR conditions were applied
to the oral swab sample from Cat 2. From that sample a poorer sequencing yield was
obtained, with consensus sequence coverages in the third quartile of 972 and 0 and genome
completion of 41% and 17%, respectively.
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With respect to the reference Wuhan-Hu-1, twenty-two single nucleotide polymor-
phisms (SNPs) were present in at least one of the four sequences obtained from Cat 1 and
Cat 2 (Table 2). SNPs that were inconsistent between the sequences from the same cat
were not included. One SNP was in the untranslated region 5UTR (nt 241), 10 in the open
reading frame ORF1ab region (nts 1236, 3037, 3738, 7122, 9130, 14349, 14408, 16111, 18186,
and 19137), three in the spike (S) gene (nts 22801, 23403, and 23580), one in the ORF6 gene
(nt 27319), six in the nucleocapsid (N) gene (nts 28487, 28868, 28881, 28882, 28883, and
29091) and one in the 3UTR (nt 29706). No SNPs were found in the ORF3a, envelope (E)
gene, membrane (M) gene, ORF7a gene, and ORF8 gene. Most of these SNPs (n = 12) are
nonsynonymous (Table 2). Nineteen of the 22 SNPs, including all of the 12 nonsynonymous
SNPs were present in the consensus sequence of Cat 1.

Table 2. Single nucleotide polymorphisms (SNPs) that are present in at least one of the four sequences. SNPs that were
inconsistent between sequences from the same cat are not reported. Genome coordinates are with reference to sequence
Wuhan-Hu-1 (MN908947). SNPs that are shared between the consensus sequence of Cat 1 and 18 other cat isolates available
on GISAID on 26 January 2021 are highlighted in bold letters.

Gene SNP (nt) aa Change Cat 1 PCR 1 Cat 1 PCR 2 Cat 2 PCR 1 Cat 2 PCR 2

5UTR C241T * noncoding T T n n
ORF1ab A1236G * ORF1a: D324G G G n n
ORF1ab C3037T * synonymous T T n n
ORF1ab C3738T * ORF1a: P1158L T T n n
ORF1ab T7122C * ORF1a: I2286T Y (C or T) C n n
ORF1ab G9130T * synonymous T T n n
ORF1ab T14349C synonymous n n n C
ORF1ab C14408T * ORF1b: P314L T T n T
ORF1ab C16111T * synonymous T T Y (C or T) n
ORF1ab G18186T * ORF1b: M1573I n T n n
ORF1ab A19137G * synonymous G G n n

S G22801T * synonymous T K (T or G) T n
S A23403G * S: D614G n G G n
S G23580C * S: S673T C C n n

ORF6 T27319C * synonymous C n C n
N G28487A * N: V72I A A A n
N C28868T * N: P199S T T n n
N G28881A * N: R203K A A n n
N G28882A * N: R203K A A n n
N G28883C * N: G204R C C n n
N C29091T synonymous n n T n

3UTR G29706T noncoding n n T n

* SNPs that are present in the consensus sequence of Cat 1 (n = 19); Bold: SNPs that Cat 1 has in common with viral sequences from 18 other
cats available on GISAID on 26 January 2021 (n = 4). Abbreviations: GISAID = Global Initiative on Sharing All Influenza Data, SNP = single
nucleotide polymorphism, UTR = untranslated region, ORF = open reading frame, S = spike, N = nucleocapsid, nt = nucleotide, aa = amino
acid, PCR = polymerase chain reaction, n = no SNP.

For phylogenetic analysis, the consensus sequence of Cat 1 was considered. The
specimen of the SARS-CoV-2 RT-PCR positive cat owner was no longer available in the
commercial laboratory for sequence comparison. Instead, a comparison was made between
the consensus sequences from Cat 1 and the sequences publicly available on the Global
Initiative on Sharing All Influenza Data (GISAID) website as of 26 January 2021 [81]. The
consensus sequence from Cat 1 was most similar genetically to a human-derived viral
sequence (EPI_ISL_729214, Appendix A, Table A1) in the B.1.1.39 lineage. The human
isolate was collected on 6 November 2020 in the same municipality as where the cat
lives. With respect to the sequence of EPI_ISL_729214, the consensus sequence from
Cat 1 shows one SNP (T7122C on the ORF1ab gene), while EPI_ISL_729214 shows the
wildtype nucleotide “T” at this position (Table 2). The B.1.1.39 lineage was primarily found
in Switzerland, where it was the second most sampled lineage in the Canton Zurich in
November 2020 (geographic distribution shown in Figure 2).
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Additionally, the consensus sequence of Cat 1 was compared to 18 other cat isolates
available on GISAID on 26 January 2021. Four shared SNPs, with respect to the reference
Wuhan-Hu-1, were found among the cat viral sequences (Table 2).
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A phylogenetic tree including the 69 most genetically similar isolates from GISAID
according to nonsynonymous mutations and ten isolates representative of the predominant
lineages circulating in Zurich in November 2020, shows that the Cat 1 consensus sequence
is most closely related to the human-derived isolate from Zurich (Figure 3), although
similar isolates were found across Switzerland and Austria.

3.4. Serological Tests

The sera were analyzed by an in-house established ELISA for the presence of anti-
SARS-CoV-2 RBD antibodies. The serum from Cat 1 collected on 10 November 2020 showed
a mean OD value of 0.81 and the serum from Cat 1 from 8 December 2020, showed 1.31 as
the mean OD value (Figure 4A). Pre-COVID-19 sera from 24 cats were included. Apart from
one pre-COVID-19 sample with an OD of 0.580 (collected on 30 August 2019), all samples
yielded low OD values (<0.225); the cutoff for positive samples was set at the six-fold
standard deviation of the pre-COVID-19 samples and was an OD of 0.78 (Figure 4A). Four
positive control cat serum samples resulted in a mean OD of 1.04. The sample from the
negative SPF cat resulted in a mean OD of 0.05.

SARS-CoV-2 neutralizing activity was assessed using the sVNT. The first serum sample
from Cat 1 (collected on 10 November 2020) showed an inhibition of 95.9% with an OD
value of 0.12. The subsequent serum sample from Cat 1 (collected on 8 December 2020)
showed an inhibition of 100.4% with an OD value of 0.053 (Figure 4B). Thus, inhibition
in the samples from Cat 1 was clearly above the 20% inhibition judged to be positive by
the manufacturer.
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In addition, pre-COVID-19 sera from 24 cats were analyzed. Apart from one pre-
COVID-19 sample with 59.4% inhibition (collected on 22 November 2019), all samples
yielded low inhibition with a mean inhibition at 18%. If a cutoff was set at the six-fold
standard deviation above the mean inhibition of the pre-COVID-19 samples (81.8% inhi-
bition), the samples from Cat 1 were still considered positive. The four positive control
samples resulted in a mean inhibition of 96.9%. No samples from Cat 2 were available for
serological analyses.

Positive serological findings for the serum from Cat 1 collected on 10 November 2020
were confirmed by the Virology Division of the Faculty of Veterinary Medicine, University
of Utrecht: the serum had a virus neutralization titer of 1:512; ≥16 is considered positive.
The positive results of the sample were confirmed by the FLI: Cat 1 tested positive in an
RBD-ELISA (OD = 0.86; positive OD ≥ 0.3), by an indirect immunofluorescence assay (titer
1:64; positive titer > 1:16) and in the surrogate virus neutralization test (88.5% inhibition;
positive inhibition > 20%).

3.5. Exclusion of Further Common Feline Viral Infections

RT-qPCR and qPCR, respectively, from oral swabs from both cats, tested negative
for FCV and FHV. Additionally, EDTA blood from Cat 1 was negative for FeLV provirus.
Cat 1 also tested negative for FIV infection by FIV Western blot and for FeLV infection
(antigenemia and provirus negative). Blood samples from Cat 2 were not available.



Viruses 2021, 13, 496 13 of 26

Viruses 2021, 13, x FOR PEER REVIEW 13 of 28 
 

 

 
(A) 

pre-
COVID

sa
mples

posit
ive

 

co
ntro

ls Cat 
1

(20
20

-11
-10

) Cat 
1 

(20
20

-12
-08

)

In
hi

bi
tio

n 
(%

)

 

(B) 

Figure 4. Serological results of two consecutive serum samples from Cat 1 and control samples. (A) receptor binding do-
main enzyme-linked immunosorbent assay (RBD-ELISA) results from Cat 1 compared to a precoronavirus disease 2019 
(COVID-19) control group (n = 24) and a positive control group (n = 4). Serum from Cat 1 from 10 November 2020 and 8 
December 2020 yielded OD values of 0.81 and 1.31, respectively. Pre-COVID-19 control group sera (collected from Swiss 
cats before 5 January 2020) showed a mean OD value of 0.10. Positive control group sera showed a mean OD of 1.04. The 
dashed line indicates six-fold standard deviations of the mean OD of the pre-COVID-19 samples. (B) Surrogate virus 
neutralization test (sVNT) results from Cat 1 compared to a pre-COVID-19 control group (n = 24) and a positive control 
group (n = 4). Cat 1 showed an inhibition of 95.9% and 100.4% on 10 November and 8 December 2020, respectively. The 
mean inhibition of pre-COVID-19 sera was calculated at 18%. Positive control sera resulted in a mean inhibition of 96.9%. 
The dotted line indicates the positive cutoff determined by the manufacturer at an inhibition of ≥20% The dashed line 
indicates six-fold standard deviations of the mean inhibition of the pre-COVID-19 samples at 81.8%. 

SARS-CoV-2 neutralizing activity was assessed using the sVNT. The first serum sam-
ple from Cat 1 (collected on 10 November 2020) showed an inhibition of 95.9% with an 
OD value of 0.12. The subsequent serum sample from Cat 1 (collected on 8 December 2020) 
showed an inhibition of 100.4% with an OD value of 0.053 (Figure 4B). Thus, inhibition in 
the samples from Cat 1 was clearly above the 20% inhibition judged to be positive by the 
manufacturer. 

In addition, pre-COVID-19 sera from 24 cats were analyzed. Apart from one pre-
COVID-19 sample with 59.4% inhibition (collected on 22 November 2019), all samples 
yielded low inhibition with a mean inhibition at 18%. If a cutoff was set at the six-fold 
standard deviation above the mean inhibition of the pre-COVID-19 samples (81.8% inhi-
bition), the samples from Cat 1 were still considered positive. The four positive control 
samples resulted in a mean inhibition of 96.9%. No samples from Cat 2 were available for 
serological analyses. 

Positive serological findings for the serum from Cat 1 collected on 10 November 2020 
were confirmed by the Virology Division of the Faculty of Veterinary Medicine, Univer-
sity of Utrecht: the serum had a virus neutralization titer of 1:512; ≥16 is considered posi-
tive. The positive results of the sample were confirmed by the FLI: Cat 1 tested positive in 
an RBD-ELISA (OD = 0.86; positive OD ≥ 0.3), by an indirect immunofluorescence assay 
(titer 1:64; positive titer >1:16) and in the surrogate virus neutralization test (88.5% inhibi-
tion; positive inhibition >20%). 

  

Figure 4. Serological results of two consecutive serum samples from Cat 1 and control samples. (A) receptor binding
domain enzyme-linked immunosorbent assay (RBD-ELISA) results from Cat 1 compared to a precoronavirus disease 2019
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4. Discussion

We hereby report and describe the first case of a SARS-CoV-2 infection in a cat from
a COVID-19-affected household in Switzerland. SARS-CoV-2 positive domestic cats had
been reported in other European countries, i.e., Belgium [37], France [38], Spain [39,82],
Germany [83], UK [36], and Italy [84], as well as in Hong Kong [25] and the US [23]. Most
of these cases and SARS-CoV-2 positive cats from some additional countries appear on a
list that is regularly updated by the world organization for animal health (OIE) [21]. The
SARS-CoV-2 positive cats reported so far lived in COVID-19-affected households, as was
the case in the current study, or lived with suspectedly SARS-CoV-2 infected humans. The
authors of the current report share the opinion that the transmission of the SARS-CoV-2
infection in Cat 1 most probably occurred through close contact with infected humans.
The United States Department of Agriculture had introduced a case definition for positive
cases, which was implemented in the United States [85]. According to that, a confirmed
positive case is defined as an animal with “SARS-CoV-2 real-time RT-PCR and sequence
confirmation of virus either direct from sample or from virus isolate; or demonstration of
SARS-CoV-2 neutralizing antibodies” [85]. The hereby reported case of Cat 1 meets those
defined criteria.

In the present study, two four-year-old male neutered Maine Coon mixed breed cats
were tested for SARS-CoV-2 infection after one of them had developed signs of respiratory
disease. The presence of active SARS-CoV-2 infection could undoubtably be demonstrated
in one of the cats (Cat 1) using diverse molecular and serological methods, and confirmation
of our results was provided by the federal laboratory of Switzerland (IVI) and Germany
(FLI), respectively, and by a research laboratory in the Netherlands (University of Utrecht).
For the second cat (Cat 2), only molecular data could be provided.
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In the nasal swabs from Cat 1, viral RNA was detected at two timepoints, three days
apart. The first sampling was conducted eleven days after the onset of respiratory signs in
this cat and two weeks after one of the owners had tested SARS-CoV-2 RT-PCR positive.
Regarding the history, the timeline, and onset of clinical signs in Cat 1, human-to-cat
transmission appears the most likely. As previous studies reported, under experimental
conditions, positive RT-qPCR results may be expected only within a short timeframe
after SARS-CoV-2 infection of cats. In one study, nasal and oral swabs were RT-qPCR
positive up to day 14 after the experimental infection [33], and infectious virus could be
isolated from one-day post inoculation to up to seven days after virus inoculation or contact
transmission in other studies [32,35]. However, in a recent field study, viral RNA was
detectable over a period of approximately 25 days in one cat [46]. Further studies will be
necessary to determine the expected time range of RT-PCR positivity in pet cats under
natural conditions.

With a CT-value of about 33 in the E and RdRp assay, resulting from the nasal swabs
from Cat 1 at both timepoints, a viral RNA load of approximately 9000 copies per swab
was calculated. In naturally infected cats, only a few reports provided details on CT-values.
In Spain, two cats tested positive for SARS-CoV-2 in serological tests, while one of them
was also positive in RT-qPCR from nasal swabs, with CT-values from 33 to 39 [39]. SARS-
CoV-2 RNA was detected in rectal swabs collected from a cat in France that showed mild
respiratory and gastrointestinal symptoms with a CT-value of 29 [38]. A cat in Italy that
had shown acute signs of pneumonia, was tested positive for viral RNA with CT-values
of 34 in a nasal swab [84], and a cat from the UK yielded CT-values of 34 and 33.5 in the
two different genes [36]. In the case of Cat 1, it can be assumed that lower CT-values and,
therefore, higher viral loads could have been found during earlier stages of the infection
and the acute phase of disease. It is doubtable that, at the time of testing, Cat 1 shed
infectious virus. Human studies, investigating the correlation between CT-values and virus
isolation, found samples to be noninfectious starting at CT-values > 24 to≥30 or higher [86].
In general, culturable samples had significantly lower CT-values and, therefore, higher
viral loads, as summarized in a recent review that has not yet undergone peer-review [86].
Research also showed that positive viral culturing was the most likely in samples collected
at early timepoints of infection [87]. Thus far, successful viral culturing was documented in
a field sample from a cat in Texas and two tigers and a lion in New York. In RT-qPCR, the
cats’ sample yielded CT-values ranging from 18 to 22, depending on the targeted gene [46].
The field samples from the two tigers and the lion in New York had CT-values ranging
from 17.3 to 24.5 in the lowest tested targets [88]. Therefore, sample collection early in
the infection, while high viral loads are expected, is crucial to gain further insight in the
shedding patterns of infectious SARS-CoV-2 in animals. In addition to low viral loads,
the rare reporting of viral isolation results in veterinary samples may be explained by the
restriction to biosafety-level-3 (BSL-3) laboratories.

Another crucial issue in the study setup, beside the timepoint of sample collection, is
the selection of the appropriate sample material for SARS-CoV-2 RNA detection in cats, as
only limited information is available thus far on potential shedding routes. As reported
previously, viral RNA could be retained from deep oral, nasal, and fecal swabs, as well
as from vomit and ocular samples from cats [23,25,38,82]. A potential explanation for
the occurrence of viral RNA in all these different materials and locations could be the
expression of ACE2, the host cell receptor for SARS-CoV-2. This receptor is present in many
different cell types from various organ systems in mammals [18,89]. Therefore, we suggest
that sampling materials for SARS-CoV-2 RT-qPCR should be chosen broadly. In our study,
oral, nasal, and fecal swabs were tested to minimize the risk of missing positive results and
to gain insight in potential shedding routes of SARS-CoV-2 in cats.

Interestingly, fur samples from Cat 1 and the cats’ bedding were also RT-qPCR positive;
the CT-values of these samples were similar to those of the nasal samples from Cat 1.
Whether the viral RNA positive results were due to virus shedding of the cat (e.g., by
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sneezing) or to contamination by the cat owner cannot be determined. This was likely not
due to grooming of the cat, since the oral swab from Cat 1 was RT-qPCR negative.

It is also important to note that the SARS-CoV-2 RT-qPCR protocols and the interpre-
tation of the obtained RT-qPCR results vary between laboratories, as also shown in the
present study, where the CT-values differed slightly between the three laboratories. An
additional reason for slight differences in CT-values could be due to the sample shipping,
although the TNA was shipped either by courier on dry ice or, for short distances, on ice
packs. The interpretation of the RT-qPCR results depends, furthermore, on the question
under investigation.

Caution should be used if one aims to determine whether a cat poses a potential
SARS-CoV-2 infection risk; this could best be answered using virus isolation—however,
due to biosafety reasons this assay is not widely available and, at least in Switzerland,
not available for routine diagnostic purposes for animal samples. Besides virus isolation,
alternative RT-PCR methods can also be applied to detect transcriptionally active virus by
using specific primers and probes for sense and antisense RNA [90]. This alternative RT-
PCR method could not be applied in the case of Cat 1 and Cat 2 due to insufficient material.
More targeted and systematic research on cats in COVID-19-affected households using
molecular and serological methods will be necessary to elucidate whether only low SARS-
CoV-2 loads may be expected in naturally infected cats and whether questionable positive
loads may, nonetheless, be associated with previous viral replication in cats. The authors
of this current report share the opinion that for the definition of a SARS-CoV-2 infection
serological methods, and for the determination of active infection and infectiousness ideally
virus isolation is needed in addition to common RT-qPCR and sequencing results. A blood
sample collected from Cat 1 during the symptomatic phase of the infection yielded only
questionable positive RT-qPCR results (very high CT-values), which are consistent with
the very low viral RNA loads in the peripheral blood of this cat. In a literature review on
human patients, SARS-CoV-2 RNA was reported in 0–76% of the tested blood samples
with a pooled estimate of 10% [91]. RNA detection in human blood samples was positive
up to 20 days post symptom onset in a clinical cohort of 212 patients, and the detection of
viral RNA was associated with the severity of the disease [91]. However, CT-values in that
study were high (≥33.5), and viremia (the presence of replicating virus) was not confirmed
in any of the positive samples [91]. In eight asymptomatic cats, none of the blood samples
collected at seven timepoints within 21 days after experimental infection tested positive
for viral RNA [33]. In Cat 1, the viral RNA blood loads may have been underestimated,
since the initial blood sample collected by a private veterinary practitioner had been stored
at 4 ◦C for seven days prior to analysis. Prolonged sample storage at this temperature
could have led to a significant reduction and, thus, underestimation of the viral RNA blood
load in Cat 1. Given the results in humans and in experimental cats so far, the presence of
viremia in Cat 1 seems unlikely.

An induction of a specific antiviral immune response, with anti-SARS-CoV-2 RBD-
specific antibodies and neutralizing activity was detected in sera from Cat 1. This confirms
an active SARS-CoV-2 infection. The exact timepoint of the infection in Cat 1 could
not be determined. However, the cat became symptomatic seven days after the owner
developed respiratory symptoms and while the cat was in close contact with the owner
during quarantine. Cat 1 was sleeping in the same bed with the COVID-19 diseased
owner, in contrast to Cat 2, which was staying more distant. The first blood sample from
Cat 1 was collected five days after the cats’ clinical signs were noticed by the owner. In
an experimental study, SARS-CoV-2 infected cats had detectable neutralizing antibodies
starting at seven to ten days after the virus exposure [33]. Therefore, it is reasonable to
assume that Cat 1 had acquired the infection from its SARS-CoV-2 positive owner during
the quarantine period. Analyzing a second blood sample collected almost one month
after the initial sample, an increase in RBD-specific antibodies was observed, while the
neutralizing activity rose only slightly.
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These findings also support our assumption that, at the time of the initial blood
collection, while the cat was symptomatic, an acute SARS-CoV-2 infection was present in
Cat 1. SARS-CoV-2 as the cause of disease in Cat 1 cannot be proven undoubtedly. However,
the serological findings, the absence of evidence of other viral infections (FHV, FCV, FIV, and
FeLV), and the timing and the presentation of the clinical signs strengthen the assumption
that the respiratory signs in Cat 1 resulted as a consequence of SARS-CoV-2 infection.

The species independent sVNT used in this study was recently evaluated for cat sera
using a plaque reduction assay; a high sensitivity (98.9%) and specificity (98.8%) of the
sVNT was reported for feline samples [92]. In contrast, in the present study, one sample of
the feline pre-COVID cohort collected on 22 November 2019 resulted in a high inhibition
of 59.4% in the sVNT (but only a mean OD value of 0.09 in the RBD-ELSA; positive
cutoff at 0.78). FCoV cross-reactivity seems unlikely to be the cause of the increased
inhibition in the sVNT; a low FCoV titer of 1:25 was found in this sample using an indirect
immunofluorescence assay (IFA) with porcine transmissible gastroenteritis virus (TEGV)
as previously described [93]. The latter is in accordance with previous results, where no
cross-reactivity of the sVNT to other coronaviruses was reported [92]. The cutoff of ≥20%
recommended for the sVNT by the manufacturer was, in our opinion, not optimal for
feline samples. We therefore suggest setting a higher cutoff in the sVNT for cats. Using this
higher cutoff, the two serum samples from Cat 1 were clearly positive in the sVNT, and this
positive result was confirmed using assays for the detection of neutralizing activity in two
different laboratories (FLI and University of Utrecht). Of note, one other sample from the
feline pre-COVID cohort group yielded high OD values in the RBD-ELISA. This sample
also did not have particularly high FCoV antibodies with a titer of 1:100 and had a clearly
negative result in the sVNT with 18.3%. The presence of antibodies in cats cross-reacting
with SARS-CoV-2 could also be explained by a further, yet unknown feline CoV with low
virulence, which is closely related but distinct from SARS-CoV-2. Currently, the cause of
the false positive signals of the two feline serum samples are under investigation. Only
a limited number of studies on SARS-CoV-2 seroprevalence in cats have been performed
and they have used different methods and antigens [40,41,44,45]. However, also in human
cohorts, samples with presumably unspecific seroreactivity to SARS-CoV-2 antigens were
reported [94]. Further serological studies using more feline samples and investigating
different cat populations will be necessary. However, we recommend combining different
serological approaches for the confirmation of seropositive results.

In Cat 2, the oral swab, together with the fur and environmental swab, but not the
nasal and fecal swabs, were positive in RT-qPCR. Thus, in Cat 2, a possible contamination
of the mouth through licking and self-grooming behavior rather than infection, at least at
the tested timepoints, should be considered. In a previous study, viral RNA contamination
rather than infection was suspected in two dogs that tested RT-qPCR positive in fecal
or fur swabs, but did not show an antibody or neutralization response [46]. Cat 2 had
less close contact to the owner, but still contact to Cat 1; thus, the RT-qPCR positivity in
samples from Cat 2 may also have resulted from Cat 1. Virus transmission by direct contact
and airborne transmission to bystander cats has been demonstrated under experimental
conditions [28,32,33]. In testing the cats’ fur and their favorite sleeping area for viral RNA,
we aimed to gain insight into potential environmental SARS-CoV-2 contamination in the
cats’ surroundings and of the cats in a COVID-19-affected household. Pet cats living in
COVID-19-affected households could potentially act as fomites for viral spread. Interest-
ingly, the cats’ bedding samples gave the lowest CT-values and, thus, the highest viral RNA
loads were found for the cats individually. In general, SARS-CoV-2 was proven to remain
infectious on different surfaces for days; this indicates that fomite transmission could occur
but is dependent on viral loads and the presence of live virus [95,96]. Thus far, virus
isolation from fur samples from animals was evaluated only in one study, and no infectious
virus was detected [46]. Due to biosafety issues (BSL-3 requirements), determination of
the infectivity could not be attempted in the present study. The rather high viral RNA
loads found in the environment of the two cats and on some of the fur samples should
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be considered cautiously. Strict hygienic measures while in contact with animals from
COVID-19-affected households and, of course, with COVID-19 patients are essential to
prevent potential transmission of the infection [24].

A whole viral genome sequence from Cat 1’s nasal swab was obtained by next genera-
tion sequencing. The sequence was most closely related to a human isolate collected in the
same municipality, ten days before the sample was collected from Cat 1, which showed only
one SNP difference. This human-derived isolate belongs to the lineage B.1.1.39, which was
widely distributed in Switzerland at the time of sample collection in November 2020. Se-
quence comparison and phylogenetic analysis demonstrate the close relation and reinforce
the assumption that transmissions on the human–cat interface occur and feline specific
viral adaptions may not be required, as also emphasized with a sequence comparison to
other feline viral sequences available on GISAID respective to the viral genome sequence
of Wuhan-Hu-1. Four SNPs, shared among the cats’ isolates, were present. However, these
SNPs are not unique to cats and have also been found in isolates from humans across
the globe. Therefore, the case reported here and the other publicly available feline viral
sequences do not give reason to assume that cat-to-cat transmissions took place under
natural conditions. However, due to the unavailability of the owner’s viral sequence, the
exact change of sequence at the transmission interface remains unknown. Since late 2020, a
global shift to viral variants, which carry mutations which alter the fitness and infectivity of
SARS-CoV-2 in humans was noticed [97]. The impact of viral variants on the susceptibility
of cats and other companion animals needs to be closely monitored.

Taking account of the history, date of the onset of clinical signs, exclusion of other feline
viral infections, and viral genome sequence analysis, human-to-cat transmission seems
most likely in the case of Cat 1. Previous studies that reported natural SARS-CoV-2 infection
in cats also suspected human-to-cat transmission and so far, no zoonotic event has been
determined [21,25,36,37,39]. Until today, animal-to-human transmission of SARS-CoV-2
was only confirmed in infected mink [26,98–100]. The prospect of mink farms building a
reservoir and spreading novel viral variants to humans did raise international concerns
and led to the mandated culling of millions of minks. However, the high susceptibility
of mustelids and large number of animals in dense housing conditions fueled the spread
and establishment of mutations of SARS-CoV-2. By contrast, in pet cats, dense housing
conditions and intense inter- or intraspecies contact outside of the household are not very
common. Cat rescue and breeding facilities and cat hoarders may be exceptions to this
and may, therefore, be of special interest. However, obtaining clear evidence of zoonotic
transmission through pet cats will be extremely difficult, as veterinary epidemiologists
have stated [101].

Apart from epidemiologic concerns including widening of the host spectrum of the
virus and adding to the pool of viral replication, SARS-CoV-2 infection in cats should also
be considered as an animal health issue. Therefore, COVID-19 affected patients should
adhere to hygiene measures when in contact with cats as they are when in contact with
uninfected persons [24,102,103]. The European Advisory Board on Cat Diseases (ABCD)
recommends hygiene measures in cat-owning COVID-affected households that include
“handling cats only when wearing a mask, washing hands with soap and water for at
least 20 s before and after being in contact with the cats, their food, or litter box, as well as
avoiding kissing pet cats or sharing food, towels, or the bed with them” [104]. This will also
reduce any potential risk of cat-to-human transmission in a COVID-19-affected household.
However, human-to-human transmission remains the main route of infection and the
driving force in the SARS-CoV-2 pandemic. SARS-CoV-2 infected animals should never
be neglected or abandoned. Further surveillance and investigation in COVID-19-affected
households from a One-Health perspective will be required.

5. Conclusions

In conclusion, we report the first Swiss cat with SARS-CoV-2 infection, confirmed by
RT-qPCR from nasal swabs targeting two genes, genome sequencing, and the detection
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of anti-SARS-CoV-2 RBD-antibodies and neutralizing activity. The cat was living in close
contact with its COVID-19 positive owner and another cat and developed moderate res-
piratory signs three days after the owner tested positive with RT-qPCR. The cat had no
comorbidities and the clinical signs improved within 20 days after disease onset. In the
cohabiting cat, an infection could not be proven, due to the absence of blood samples for
serological testing. Our findings support the testing of cats when in contact with COVID-19
positive or suspected positive humans and with pertinent clinical disease. We concluded
that it is essential to investigate SARS-CoV-2 infections in pet cats, to determine potential
health risks posed by the infection and to further monitor the role of cats in the pandemic
in a One-Health context.
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Appendix A

Table A1. Publicly available genome sequences from the Global Initiative on Sharing All Influenza Data (GISAID.org) used
for bioinformatics analysis (26 January 2021).

Sequence Identifier on GISAID Submitting Laboratory Originating Laboratory Analysis

EPI_ISL_536400 MRC-University of Glasgow Centre
for Virus Research Fareham Creek Veterinary Surgery isolate from cat

EPI_ISL_487275 Department of Veterinary Pathology,
University of Liege-FARAH

Department of Veterinary Pathology,
University of Liege-FARAH isolate from cat

EPI_ISL_717979
Laboratory of Biology, Department
of Medicine, Democritus University
of Thrace, Alexandroupolis, Greece

Laboratory of Microbiology and Infectious
Diseases, Faculty of Veterinary Medicine,

Aristotle University of Thessaloniki,
University Campus, 541 24,

Thessaloniki, Greece

isolate from cat

EPI_ISL_722300 Erasmus Medical Center Dutch COVID-19 response team isolate from cat

EPI_ISL_683164
Albertsen Lab, Department of

Chemistry and Bioscience, Aalborg
University, Denmark

Department of Virus and Microbiological
Special Diagnostics, Statens Serum Institut,

Copenhagen, Denmark
isolate from cat

EPI_ISL_683165
Albertsen Lab, Department of

Chemistry and Bioscience, Aalborg
University, Denmark

Department of Virus and Microbiological
Special Diagnostics, Statens Serum Institut,

Copenhagen, Denmark
isolate from cat

EPI_ISL_683166
Albertsen Lab, Department of

Chemistry and Bioscience, Aalborg
University, Denmark

Department of Virus and Microbiological
Special Diagnostics, Statens Serum Institut,

Copenhagen, Denmark
isolate from cat

EPI_ISL_759858 School of Public Health, The
University of Hong Kong

School of Public Health, The University of
Hong Kong isolate from cat

EPI_ISL_873040 WHO National Influenza Centre
Russian Federation

WHO National Influenza Centre Russian
Federation isolate from cat

EPI_ISL_873210 Virology, Ecole Nationale
Veterinaire de Toulouse

Virology, Ecole Nationale Veterinaire de
Toulouse isolate from cat

EPI_ISL_811147 WHO National Influenza Centre
Russian Federation

WHO National Influenza Centre Russian
Federation isolate from cat

EPI_ISL_437349 Institut Pasteur CIBU-ERI

Ecole nationale vétérinaire
d’Alfort-laboratoire de santé animale

Anses UMR 1161 de virologie
ENVA-Anses-INRAE

isolate from cat

EPI_ISL_699509
Diagnostic Virology Laboratory,

USDA National Veterinary
Services Laboratories

Diagnostic Virology Laboratory, USDA
National Veterinary Services Laboratories isolate from cat

EPI_ISL_699507
Diagnostic Virology Laboratory,

USDA National Veterinary
Services Laboratories

Diagnostic Virology Laboratory, USDA
National Veterinary Services Laboratories isolate from cat

EPI_ISL_699506
Diagnostic Virology Laboratory,

USDA National Veterinary
Services Laboratories

Diagnostic Virology Laboratory, USDA
National Veterinary Services Laboratories isolate from cat

EPI_ISL_482820 IrsiCaixa AIDS Research Lab Centre de Recerca en Sanitat Animal
(IRTA-CReSA) isolate from cat

EPI_ISL_483063 Virology, Ecole Nationale
Veterinaire de Toulouse unknown isolate from cat

EPI_ISL_483064 Virology, Ecole Nationale
Veterinaire de Toulouse unknown isolate from cat

EPI_ISL_854043

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854044

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854047

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny
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Table A1. Cont.

Sequence Identifier on GISAID Submitting Laboratory Originating Laboratory Analysis

EPI_ISL_854048

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854056

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854062

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854064

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854081

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854082

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854087

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_854108

Bergthaler laboratory, CeMM
Research Center for Molecular

Medicine of the Austrian Academy
of Sciences

Austrian Agency for Health and Food
Safety (AGES) phylogeny

EPI_ISL_603551 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603729 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603513 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_737750 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_857526 Swiss National Reference Centre
for Influenza

Swiss National Reference Centre
for Influenza phylogeny

EPI_ISL_830757 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830752 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830762 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_603459 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603460 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_830872 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830879 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830881 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830882 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830884 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830888 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830891 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny
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Table A1. Cont.

Sequence Identifier on GISAID Submitting Laboratory Originating Laboratory Analysis

EPI_ISL_830901 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830903 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830906 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830907 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830914 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830992 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830993 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830925 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830928 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830929 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830998 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830959 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830965 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_830972 University Hospital Basel,
Clinical Bacteriology

University Hospital Basel,
Clinical Virology phylogeny

EPI_ISL_614899 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614901 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614902 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614904 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614906 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_721846 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_721853 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_768144 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_693893 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_693894 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_693936 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_796492 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_737782 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_899802 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_721921 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603423 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603490 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603499 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_603509 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny
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Table A1. Cont.

Sequence Identifier on GISAID Submitting Laboratory Originating Laboratory Analysis

EPI_ISL_603514 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614967 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614971 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_614974 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_693792 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_693838 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729237 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729214 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_693948 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_721950 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729029 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_728979 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729071 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729074 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729078 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_729084 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_737401 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_737919 Department of Biosystems Science
and Engineering, ETH Zurich Viollier AG phylogeny

EPI_ISL_402125

National Institute for
Communicable Disease Control and
Prevention (ICDC) Chinese Center
for Disease Control and Prevention

(China CDC)

National Institute for Communicable
Disease Control and Prevention (ICDC)
Chinese Center for Disease Control and

Prevention (China CDC)

phylogeny
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