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Abstract: Graphene is emerging as a promising material for the integration in the most common Si
platform, capable to convey some of its unique properties to fabricate novel photonic and optoelec-
tronic devices. For many real functions and devices however, graphene absorption is too low and
must be enhanced. Among strategies, the use of an optical resonant cavity was recently proposed,
and graphene absorption enhancement was demonstrated, both, by theoretical and experimental
studies. This paper summarizes our recent progress in graphene absorption enhancement by means
of Si/SiO2-based Fabry–Perot filters fabricated by radiofrequency sputtering. Simulations and exper-
imental achievements carried out during more than two years of investigations are reported here,
detailing the technical expedients that were necessary to increase the single layer CVD graphene
absorption first to 39% and then up to 84%. Graphene absorption increased when an asymmetric
Fabry–Perot filter was applied rather than a symmetric one, and a further absorption increase was
obtained when graphene was embedded in a reflective rather than a transmissive Fabry–Perot filter.
Moreover, the effect of the incident angle of the electromagnetic radiation and of the polarization
of the light was investigated in the case of the optimized reflective Fabry–Perot filter. Experimental
challenges and precautions to avoid evaporation or sputtering induced damage on the graphene
layers are described as well, disclosing some experimental procedures that may help other researchers
to embed graphene inside PVD grown materials with minimal alterations.

Keywords: graphene absorption; Fabry–Perot filter; radio frequency sputtering; CVD graphene

1. Introduction

Graphene-based absorbers are receiving a considerable interest due to their potential
applications in photovoltaics [1–3], as wave modulators [4–8], biological sensors [9–11],
photodetectors [12–15], etc. Achieving graphene-based perfect absorbers is quite challeng-
ing because single layer graphene has got a weak and spectrally broad absorption of 2.3%
over a wideband wavelength range from Vis to FIR (far infrared) [16–21].

In the THz and IR regions, however, high quality graphene may show strong in-
teraction with light thanks to generation of surface plasmon polaritons (SPPs), making
graphene a promising alternative to typical plasmonic materials [22–25]. This is thanks to
the capability of graphene to support plasmon modes with extremely tight confinement,
long lifetime, and low losses at IR and THz frequencies [26–29].

In addition, tunable graphene electromagnetic response may be achieved by chemical
and/or electrical doping or by using a magnetic field [30–32].
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In the Vis and NIR regions, on the contrary, absence of SSPs makes it necessary to
couple graphene with resonant structures such as metamaterials, photonic crystals and
plasmonic materials [33–39].

Many examples of perfect graphene-based absorbers have been reported in the litera-
ture basing on the critical coupling concept [40–42].

Thongrattanasiri et al. have simulated 100% absorption in doped graphene nanodisks
by exploiting the critical coupling conditions [43].

Piper et al. [44] have demonstrated numerically perfect absorption in unpatterned
monolayer graphene in the Vis and NIR ranges by means of critical coupling with guided
resonances of a photonic crystal slab with a back reflector.

Liu et al. [45] have demonstrated experimentally close to total absorption (85%) in
monolayer graphene based on critical coupling with guided resonances in Fano resonance
photonic NIR filters, by using a structure with a back reflector.

Xiao et al. [46] have reported about a general theoretical method for tailoring the
absorption bandwidth of graphene via critical coupling in the NIR range by using a simple
two-port resonant structure composed of a graphene-covered two-dimensional photonic
crystal slab.

Jin et al. [47] have reviewed recent advances of graphene-based architectures for perfect
absorption from Vis to THz band, both narrowband and broadband, and have discussed
also about criticalities in the practical implementation of the simulated structures.

Another strategy to enhance graphene absorption is to exploit the electric field en-
hancement by resonant cavities [48–50]. Table 1 reports the graphene absorption values
obtained by many authors by exploiting the electric field enhancement inside Fabry–Perot
resonant cavities.

Table 1. Summary of simulated and experimental absorption of graphene inside Fabry–Perot struc-
tures in the Vis-THz region, as reported in the literature.

Authors Wavelength Absorption Simulation Experiment Ref.

Nulli et al. Wavelength regardless 0.5 Yes No [48]

Ferreira et al. Wavelength regardless ~1 Yes No [49]

Xu et al. Telecommunication wavelengths 0.5 Yes No [51]

Shuhan Chen 1600 nm 0.889 Yes No [52]

Yu et al. 550 nm 0.995 Yes No [53]

Wei et al. 1537 and 1579 nm 0.995 Yes No [54]

Bian et al. 2.5146 THz 0.997 Yes No [55]

Vasić et al. Near-infrared to Terahertz ~1 Yes No [56]

Deng et al. THz range ~1 Yes No [57]

Zheng et al. 600 nm ~1 Yes No [58]

Bian et al. THz range ~1 Yes No [59]

Doukas et al. 1550 nm ~1 Yes No [60]

Zand et al. 1200, 1550 and 1900 nm ~1 Yes No [61]

Chen et al. THz range ~1 Yes No [62]

Furchi et al. 855 nm 0.6 Yes Yes [63]

Nulli et al. reported theoretically that the optical absorption of single-layer graphene
can be enhanced up to 50% by increasing the electric field on the surface of undoped
graphene by placing graphene inside symmetric Fabry–Perot structures [48].

Ferreira et al. have calculated the same absorption result for single layer graphene
by utilizing one Fabry–Perot cavity and they have simulated also that graphene optical
absorption can increase up to 100% using two symmetric Fabry–Perot cavities [49].
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Zand et al. have used a genetic optimization algorithm coupled to a transfer matrix
code to design one-dimensional aperiodic multilayer microstructure embedding single layer
graphene, where near-total absorptions at selected wavelengths is obtained by existence
of critical coupling [61]. They simulated that, compared with asymmetric Fabry–Perot-
based designs, aperiodic structures may provide higher efficiency for the spatial selective
localization of the resonant modes.

Furchi et al. [63] have demonstrated experimentally in 2012 a graphene-based pho-
todetector. Absorption enhancement up to 60% at 855 nm was demonstrated by inserting
exfoliated µm-sized graphene flakes inside a dielectric multilayer stack grown by combin-
ing plasma-enhanced chemical vapor deposition and molecular beam epitaxy.

Many of the theoretical studies found in the literature simulating perfect graphene
absorption consider for single layer graphene a very high mobility µ of about 10,000 cm2/Vs,
which is generally much higher than the real one (non-isolated from the environment, CVD
graphene), leading sometimes to too overoptimistic predictions [64,65].

Apart from the work from Furchi et al., the enhancement of graphene absorption
by using an optical resonant cavity has been rarely explored experimentally due to the
many experimental challenges related to embedding graphene inside metals or dielectric
stacks [63,66].

The graphene absorption enhancement inside an optical resonant cavity is generally
narrowband and is, therefore, more suitable for application in photodetectors, sensors, or
absorption filters [63,66,67].

In the present work, we summarize our recent studies [67–69] on CVD graphene
absorption inside three different Fabry–Perot (FP) filters fabricated by radiofrequency sput-
tering. Experimental challenges related to graphene-based Fabry–Perot filters fabrication
are described in detail with the aim to provide a useful recipe which can help researchers to
embed graphene inside materials grown by conventional physical vapor deposition (PVD)
techniques, without altering its properties.

In the optimized structure, a high absorption of 84% at 3150 nm was measured [67]
in case of large area (1 inch) single layer CVD graphene, which is the highest value of
absorption so far experimentally achieved for single layer graphene inside a Fabry–Perot
optical cavity.

2. Materials and Methods
2.1. Fabry–Perot Filter: Simulation

A Fabry–Perot optical filter consists of a cavity separated by two flat and parallel high
reflecting mirrors where light experiences multiple reflections. Simulation of FP filters
was carried out by using the Wave Optics Module of Comsol Multiphysics software. Our
Fabry–Perot filters consisted of a sequence of alternate quarter wave thick high refractive
index Si (H) and low refractive index SiO2 (L) layers, for use in the near to mid IR. Three
different Fabry–Perot filters were simulated: (i) a symmetric FP filter with identical top and
bottom mirrors (FP1), (ii) an asymmetric FP filter where the bottom mirror had a higher
reflectance due to a larger number of layers with respect to the top mirror (FP2), and (iii) an
asymmetric reflective FP filter obtained by further increasing the bottom mirror layers (FP3).
FP1 and FP2 filters worked in transmissive mode, while FP3 worked in reflective mode,
due to the high reflectance of the bottom mirror (99.7%). The structure of FP1, FP2, and FP3
filters was the following: (i) air/HLH LL HLH/sub, (ii) air/HLHL HH LHLHLH/sub, and
(iii) air/HLH LL HLHLHLHLH/sub, respectively. For FP1 and FP3 the cavity was (LL),
i.e., constituted by a half wavelength thick SiO2 layer, for FP2 the cavity (HH) was made by
a half wavelength thick Si layer. This last FP structure, a bit different from the other two,
was chosen because of its particular distribution of the electric field characterized by two
maxima. A single layer graphene (SLG) was embedded inside the FP structure and located
at the position where the electric field was maximum to enhance its absorption. SLG was
covered by a 30 nm thick MgF2 layer, meant to protect graphene during the later sputtering
deposition. Figure 1 shows the three FP filters embedding SLG, and Figure 2 shows the
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simulated reflectance of the bottom mirrors in the three cases, R1, R2, and R3. R1 is also the
reflectance of the top mirror, being identical for the three filters.
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Figure 2. Simulated reflectance curves of the bottom mirrors shown in Figure 1. R1, R2, and R3 are
the reflectance of bottom mirrors of FP1, FP2, and FP3, respectively.

Figure 3a shows the simulated transmittance (T), reflectance (R), and absorption (A) of
the FP1, FP2, and FP3 filters, centered at λ = 2315, 4342, and 3150 nm, respectively. Figure 3b
shows the electric field distribution inside the filters. The simulation has been carried out
in case of a TE polarized light at normal incident angle.

Table 2 reports the simulated and experimental absorption values of SLG embedded in
the three FP filters and the value of electric field (EG) where SLG is positioned. The central
wavelength of the Fabry–Perot filters is different for the three cases because it results from
different experiments, however, central wavelength position in the considered wavelength
range, only causes small variations of T, R, and A due to the wavelength dependence
of Si and SiO2 optical constants. As we can observe from Table 2, the highest graphene
absorption is obtained in the structure where the electric field is maximum.
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Table 2. Graphene-based Fabry–Perot characteristics. Simulated and experimental absorption and
electric field value at SLG position (maximum of electric field).

Wavelength (nm) A_SIM (%) A_EXP (%) EG (V/m)

FP1 2315 40 39 106,604

FP2 4342 53 50 125,941

FP3 3150 87 84 172,663

2.2. Fabry–Perot Filter: Fabrication

The Fabry–Perot filters consisted of alternate layers of Si and SiO2 with optical thick-
ness equal to a quarter wavelength (λ/4, where λ is the central wavelength of the FP filter).
Si and SiO2 layers were fabricated by radio frequency sputtering in MRC (Material Research
Corporation) systems, starting from 99.999% purity Si and/or SiO2 targets, as described
elsewhere [67–69]. For FP1 and FP2, two different sputtering conditions were chosen: in
case of all the layers except for the first 30 nm of the SiO2 layer covering graphene, a
radiofrequency sputtering of 200 W and a sputtering pressure of 1 Pa were used. For the
first 30 nm of SiO2 layer deposited onto graphene, a milder sputtering condition was used:
i.e., sputtering power of 50 W and sputtering pressure of 3 Pa. For FP3 filter, grown in a
different system, the same sputtering conditions (sputtering power of 200 W and sputtering
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pressure of 0.53 Pa) were used for Si and all the SiO2 layers, due to the fact that such system
geometry allowed a milder sputtering process.

MgF2 layer was carefully evaporated in a Balzer BAE 250 evaporation system, and the
evaporation rate was controlled by a quartz crystal microbalance.

2.3. CVD Graphene: Fabrication and Transfer

Single layer graphene was grown by CVD on Cu foils previously submitted to a
pre-oxidation treatment at 250 ◦C for 90 min. CVD growth conditions were the following:
substrate temperature 1070 ◦C, 10 mbar pressure by using 0.025 SCCM ethanol vapor with
20 SCCM Ar and 10 SCCM H2. After the growth, graphene was removed from the back
of the Cu substrate by means of an oxygen plasma cleaner (100 W, 4 min). For graphene
transfer, a procedure reported elsewhere was applied [70]. Summarizing: a few drops of
cyclododecane (20% solution in dichloromethane) were spin coated on top of graphene, and
the Cu foils were left floating on an ammonium persulfate (PSA) water solution (120 g/L)
for 3 h at 4 ◦C, until complete copper etching occurred. Afterword, the sample was rinsed
in distilled water and scooped directly with the bottom multilayer, then submitted to a
heating treatment @70 ◦C for a few hours and to ethyl acetate vapor cleaning to remove
cyclododecane residues. The same transfer procedure was applied for transferring SLG
onto other kinds of substrates (Si or quartz) used for graphene characterization.

2.4. Embedding Graphene Inside the Fabry–Perot Filters

Figure 4 shows the experimental steps used for the insertion of SLG inside the FP
filters. In our experiments, to maximize absorption, graphene was always positioned inside
the multilayer where the electric field was maximum [48,57]. In the symmetric FP1 filter,
graphene was positioned in the middle of the cavity (LL), i.e., sandwiched between the two
SiO2 layers which separate the top and bottom mirrors. In the asymmetric FP2 filter, two
maxima of electric field occurred, and graphene was positioned onto the upper Si layer of
the cavity (HH). In the asymmetric reflective FP3 filter, graphene was positioned in the
middle of the cavity (LL), i.e., sandwiched between the two SiO2 layers.
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The fabrication procedure of the multilayer structure was the following. First, the
bottom multilayer structure and two CVD graphene layers were fabricated separately
in the sputtering and CVD chambers, respectively. For each sputtering deposition run,
two substrates (quartz or Si) were loaded in the chamber, one for the reference and the
other for the graphene-based FP filter. Similarly, two graphene layers were prepared
in the same run, one for insertion into the FP filter and the other for characterizations.
Then, the graphene layer was transferred on the top of the bottom multilayer by the mild
transfer process described above. The multilayer structure topped by graphene and the
reference multilayer (without graphene) were transferred into the evaporation chamber for
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the growth of 30 nm MgF2 protective layer. After the evaporation of the MgF2 layer, the
two samples were transferred back into the sputtering chamber for the deposition of the
top multilayer structure.

2.5. Materials Characterizations

Transmittance and reflectance measurements in the NIR were carried out with a
PerkinElmer 900 spectrophotometer, while MIR measurements were performed with a
high resolution FTIR Perkin Elmer instrument. The reflectance measurements were ob-
tained by using calibrated standards, i.e., an Ocean Optics Al mirror certified in the range
250–2500 nm in the first case and an Al infrared reflectance standard with a SiO overcoat cer-
tified by the National Physics Laboratory (NPL) in the wavenumber range of 4000–200 cm−1

in the latter case. For FTIR measurements, a Fixed-Angle Specular Reflectance Accessory
from Perkin Elmer was used.

The Raman measurements were carried with a Renishaw inVia Reflex Raman spec-
trometer using a 514.5 nm excitation source.

3. Results and Discussion
3.1. Graphene Absorption Simulation

Figure 5a shows the simulated absorption of graphene inside the three FP filters while
Figure 5b shows the FPs’ absorption without the single layer graphene. The wavelength-
dependent absorption A(λ) was inferred from the wavelength-dependent transmittance
T(λ) and reflectance R(λ) (A(λ) = 1 − R(λ) − T(λ)) [71,72], by using the Wave Optics
Module of Comsol Multiphysics software. Graphene optical properties were simulated

by a wavelength-dependent complex refractive index ng(ω) =
√

εg(ω) [73,74], where the
single-layer graphene permittivity was [75–77]:

εg(ω) = εb +
iσ(ω)

tGωε0

being εb(2.5) [78,79], tG (0.35 nm) [80,81], and σ(ω) the intrinsic contribution to the graphene
relative permittivity, the thickness of single layer graphene and the graphene optical
conductivity, respectively.

The graphene optical conductivity was considered as the sum of interband transitions
and Drude-like intraband conductivity [82–85]:

σ(ω) = σ0
2 [tanh(

}ω+2E f
4kBT ) + tanh(

}ω−2E f
4kBT )]

− iσ0
2π log(

(}ω+2E f )
2

(}ω−2E f )
2+(2kBT)2 )

+i 4σ0
π

E f
}ω+i}γ

with σ0 = (e2/4}) [82,86], E f the Fermi energy, and γ the intraband scattering rate. In the
simulation, }γ = 40 meV [83] and E f = 190 meV corresponding to slightly doped graphene
as reported elsewhere [83,87].

Single layer graphene permittivity was simulated also as a function of the wavelength
and Fermi level, as shown in Figure 6.
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3.2. Graphene Quality Assessment

The quality of graphene was checked after each experimental step, i.e., after MgF2
evaporation, after SiO2 sputtering on MgF2/graphene layers and after the whole filter
fabrication process.

Initially, for the growth of the first 30 nm of SiO2 layer directly onto SLG, a mild
sputtering condition was applied by increasing the sputtering pressure and decreasing
the radiofrequency power. Notwithstanding, graphene damage could not be avoided, as
demonstrated by Raman analysis (not shown here), and a further graphene protection was
necessary. Therefore, to avoid the sputtering of the SiO2 layer directly onto graphene, a
thin protective MgF2 layer was evaporated prior to the sputtering of SiO2. We have chosen
MgF2 due to its refractive index and extinction coefficient values, very close to those of SiO2.
This is necessary since MgF2 becomes part of L (the low index layer) of the multilayer stack.
Other fluoride materials could have served the purpose. Furthermore, the evaporation
of the MgF2 layer required some care since we observed that if evaporation occurred at
a high rate, graphene defects band D increased. Figure 7a compares the Raman spectra
of pristine graphene and graphene after evaporation of MgF2 at high (2 Å/s) and low
(0.1 Å/s) evaporation rates. Only the latter case left graphene unchanged. The effect of
deposition rate of SiO2 was preliminarily evaluated in experiments with ML graphene with
unoptimized MgF2 deposition (curve of Figure 7b). The effect of the optimized (low power
and high pressure) SiO2 deposition on SL graphene can be seen in the red and blue curves
of Figure 7c. Here the comparison of the red (Raman from the back of the peeled stack)
and blue curves (Raman from the top through the SiO2), suggests that some extent of the
modifications of the D and 2D bands by SiO2 is not due to lattice damage but to optical
and electronic “proximity” influences on graphene by the stack.

Despite the increase of the defectiveness D band, the optical properties of graphene
were preserved, as shown by the comparison of UV-Vis absorbance curves of pristine
graphene transferred on a quartz substrate and graphene after MgF2 and SiO2 deposition
(Figure 7d). Moreover, two-point probe measurements of SLG resistance prior and after the
MgF2 evaporation and the SiO2 sputtering confirmed that graphene resistance was almost
unaffected by these processes. SLG sheet resistance increased, in fact, of less than 10% with
respect to the initial value of about 800 Ω/sq.
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Perot filter. (d) Comparison of absorbance of SLG pristine (as transferred on quartz substrate) and
after MgF2 evaporation and SiO2 sputtering.
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The results obtained after several attempts to not damage graphene can be summarized
as following: (i) a thin MgF2 layer is essential to protect graphene, (ii) evaporation of the
thin MgF2 layer should occur with a very low rate, (iii) the presence of the thin MgF2 layer
is not by itself sufficient to avoid the damage if the sputtering process is too energetic,
(iv) the combination of evaporated MgF2 and mild SiO2 sputtering increases the graphene D
band but preserves the optical and electrical properties of pristine graphene, finally (v) we
cannot certainly assign the measured D band increase to an effective graphene “damage”
while inside the stack due to possible proximity effects by the embedding layers on the
Raman spectrum itself.

3.3. Graphene Absorption Inside the Fabry Perot Filters: Experimental

Figure 8a–c shows the comparison between the simulated and measured total absorp-
tion curves of graphene inside the three Fabry–Perot filters. The total absorption values
(Table 2) include, also, the contribution of SLG absorption (2.3%) and of the FP materials
(Figure 5b). A very good agreement between the simulated and measured absorption
values was obtained, and only some broadening of the experimental curves was found in
all cases. As it can be noticed, the experimental graphene absorption trend is to increase
when passing from a symmetric structure to an asymmetric one and it increases further by
increasing the reflectance of the bottom mirror. Even though a comparison of the absolute
absorption values is not possible due to the different FPs’ central wavelengths, the absorp-
tion trend strongly suggests that inside a Fabry–Perot cavity a high graphene absorption
may be obtained only in asymmetric reflective structures. In our experiments, for example
graphene absorption values increased from 39 to 84% when passing from a symmetric
transmissive to an asymmetric reflective structure. The highest absorption value obtained
in the asymmetric reflective FP3 filter is due to the fact that the incident light inside the
cavity is reflected a greater number of times which allows to graphene a higher number of
multiple absorptions. The number of reflections is in fact related to the Fabry–Perot finesse
which is defined by [68,88–90]:

Fs =
π
√

R
1− R

and Fas =
π 4
√

RTopRBottom

1−
√

RTopRBottom

Above, the left-hand side formula represents the finesse of the symmetric FP filter
(FP1), where R is the reflectance of the top and bottom mirrors, while on the right-hand is
the finesse of the asymmetric filters (FP2 and FP3). In our FP filters, the finesse increased
from 21 to 31.5 when passing from the symmetric structure of Figure 1a (FP1) to the
asymmetric reflective structure of Figure 1c (FP3).

Absorption of unpatterned and undoped single layer graphene up to 84% has been
never reported experimentally in a Fabry–Perot filter. Comparable or even higher absorp-
tion values have instead been obtained by other authors by using graphene coupled to
non-planar resonant plasmonic structures [45,91,92].

Enhancing the light-matter interaction in single-layer graphene by the use of optical
microcavity requires no stringent constrains on the graphene electrical properties, such as
the sheet resistance, and may find application in a variety of graphene-based devices, such
as optical absorption modulators, light emitters, and optical attenuators, and provides new
routes to graphene photonics for applications in spectroscopy, communications, sensing,
and security.

Results, validated here at NIR and MIR wavelengths, may be applied in principle
at different wavelengths ranging from Vis to THz by properly choosing the materials
of the layers and of the substrate. Moreover, as obtained by our previous simulations,
modification of the filter amplitude and bandwidth may be achieved by: (i) using multilayer
graphene instead of single layer graphene [68], (ii) using two or more SLGs positioned in
the filter where the electric field has its maxima [69], and (iii) increasing the number of
cavities of the multilayer structure [68].
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Figure 8. Comparison between simulated and experimental absorption curves of single layer
graphene inside the Fabry–Perot filters: (a) symmetric FP1, (b) asymmetric FP2, and (c) asymmetric
reflective FP3.

Figure 9a shows, as an example, the simulated absorption of a single layer graphene,
of a double-layers graphene (DLG) and of a five-layers graphene (MLG) embedded in the
symmetric FP1. As it can be noticed, absorption bandwidth increases by increasing the
number of layers, while absorption amplitude increases in DLG and decreases in MLG. The
latter behavior can be attributed to the higher intrinsic absorption of MLG which reduces
the reflections of the light inside the optical cavity, and to the fact that MLG perturbs largely
the optical quality of the Fabry–Perot cavity [68].
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Figure 9. Absorption of graphene layers inside the FP1 as a function of number of graphene layers
(a) and absorption of a single layer graphene in a single Fabry–Perot cavity and in a dual Fabry–Perot
cavity (b).

Figure 9b shows the effect of the number of Fabry–Perot cavities on the absorption of
a single layer graphene [68], showing a higher graphene absorption inside a dual cavity
Fabry–Perot filter.

Results are in accordance with what has been reported by other authors. In [46],
Xiao et al. have numerically modeled, in a structure different from ours, the bandwidth
absorption as a function of the number of graphene layers finding a broader absorption
band by increasing the number of graphene layers from 1 to 7. In [49], Ferreira et al. have
numerically simulated that absorption of single layer graphene increases by using a dual
cavity Fabry–Perot filter instead of a single cavity one.

Graphene absorption discussed so far was obtained in the case of a TE polarization.
For the optimized FP structure, i.e., the FP3 filter, the simulation was carried out, also, in
case of TM polarization. Figure 10 shows the comparison between the simulated absorption
of SLG for TE and TM polarizations as a function of the incident angle. As it can be noticed,
in case of TE polarization the absorption maximum is reached for incident radiation, while
for TM polarization it occurs at a higher incident angle of 60◦.
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4. Conclusions

This work summarizes our recent findings on single layer graphene absorption when
embedded in dielectric multilayer stacks. The increase of single layer graphene absorp-
tion obtained by exploiting the electric field enhancement inside a resonant optical cavity
was modeled and experimentally demonstrated in three different Fabry–Perot filters with
central wavelengths varying in the NIR-MIR spectral ranges. The Fabry–Perot filters were
fabricated by radiofrequency sputtering, and consisted of alternate quarter wave thick Si
and SiO2 layers. Results demonstrated that graphene absorption greatly increases when
graphene is embedded inside an asymmetric Fabry–Perot structure, reaching its maximum
in case of a reflective Fabry–Perot filter. SLG properties were preserved during the sput-
tering process by applying a thin, slowly evaporated MgF2 layer, allowing the effective
embedding of graphene inside thick monolithic structures fabricated by conventional PVD
techniques. Such a high graphene absorption discloses exciting potentiality for exploitation
of 2D materials in new optoelectronic devices for application in the NIR-MIR spectral range.
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