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ABSTRACT
Type 2 diabetes (T2D) management is based on combined pharmacological and lifestyle interven
tion approaches. While their clinical benefits are well studied, less is known about their effects on 
the gut microbiota. We aimed to investigate if an intensive lifestyle intervention combined with 
conventional standard care leads to a different gut microbiota composition compared to standard 
care alone treatment in individuals with T2D, and if gut microbiota is associated with the clinical 
benefits of the treatments. Ninety-eight individuals with T2D were randomized to either an 
intensive lifestyle intervention combined with standard care group (N = 64), or standard care 
alone group (N = 34) for 12 months. All individuals received standardized, blinded, target-driven 
medical therapy, and individual counseling. The lifestyle intervention group moreover received 
intensified physical training and dietary plans. Clinical characteristics and fecal samples were 
collected at baseline, 3-, 6-, 9-, and 12-month follow-up. The gut microbiota was profiled with 
16S rRNA gene amplicon sequencing. There were no statistical differences in the change of gut 
microbiota composition between treatments after 12 months, except minor and transient differ
ences at month 3. The shift in gut microbiota alpha diversity at all time windows did not correlate 
with the change in clinical characteristics, and the gut microbiota did not mediate the treatment 
effect on clinical characteristics. The clinical benefits of intensive lifestyle and/or pharmacological 
interventions in T2D are unlikely to be explained by, or causally related to, changes in the gut 
microbiota composition.
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Introduction

The prevalence of type 2 diabetes (T2D) has 
increased rapidly over the past decades.1 Successful 
management of T2D improves individuals’ life 
expectancy and quality.2 The basic principles of 
T2D management are based upon a combination of 
pharmacological treatments and lifestyle 
interventions.3 The medical approach includes the 
preferred first-line medication metformin and 
potentially second-line medications, e.g. glucagon- 
like peptide-1 (GLP-1) analogue, to manage blood 
glucose levels. Healthy lifestyle involves increased 
physical activity levels and dietary changes aiming 
at a substantial weight loss. Many studies have 
reported that intensive lifestyle interventions can 
reduce the incidence of T2D,4–6 prevent further 

deterioration of impaired glucose tolerance,5,7 

decrease the hemoglobin A1c (HbA1c) level,8 and 
reduce the medication use in overt T2D.9

Accumulating evidence suggests that the gut 
microbiota have specific signatures for individuals 
with T2D,10 hence it raises the question if these two 
treatments (pharmacological treatments or inten
sive lifestyle interventions) have different impacts 
on the gut microbiota. For example, the first-line 
glucose-lowering medication (GLMED) metformin 
was shown to significantly affect gut microbiota, e. 
g. increase of Escherichia spp., Akkermansia muci
niphila, and decrease of Intestinibacter spp.,10–12 

and it has been suggested that the therapeutic ben
efits might be partly mediated via the gut 
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microbiota.13 Similarly, lifestyle interventions with 
a healthy diet and/or physical exercise training have 
also been shown to impact the gut microbiota 
composition. Diet, in particular, is a key determi
nant of the gut microbiota composition as dietary 
patterns (western or vegetarian diet), specific foods 
(fruits, grain, or vegetables), and food constituents 
(fiber, protein, or fat) can all lead to changes in the 
gut microbiota.14 Increased exercise levels are asso
ciated with enhanced fuel mobilization, muscle glu
cose uptake, and fat oxidation,15 and affect gastric 
emptying through interleukin-6 (IL-6), leading to 
reduced postprandial glycemia.16 However, it is still 
unclear how exercise influences gut microbiota.17 

Professional athletes with extreme exercise (e.g. 
rugby training athletes) and associated diets have 
higher gut microbial diversity, with enhanced pro
duction of amino acids and short-chain fatty acids 
(SCFAs) (likely contributed by genus Roseburia and 
family XIII Incertae Sedis), compared to more 
sedentary individuals.18,19 Recently, a study has 
linked extreme exercise (marathon running) with 
increased gut microbe Veillonella atypica,20 

although further validation is needed.21 However, 
only few randomized clinical trials have evaluated 
the effects of regular exercise on the microbiome in 
human populations, especially in individuals with 
T2D, and in these studies, the effects of exercise 
have been limited.22–24

We previously showed that an intensive lifestyle 
intervention in individuals with T2D maintained gly
cemic control while reducing the need for GLMED, 
and improved clinical characteristics compared to the 
standard care.9 In this post hoc analysis, we aimed to 
investigate how an intensive lifestyle intervention with 
a subsequent reduction in GLMED impacts the gut 
microbiota composition compared to standard care in 
individuals with T2D, and whether gut microbiota 
composition changes may contribute to the observed 
clinical treatment benefits.

Results

Taxonomic composition differences between 
treatments

At baseline 0 month (M0), the gut microbiota com
positions of individuals in the two treatment groups 
were not significantly different and no taxa differed in 

their relative abundances between groups at any taxo
nomic levels (from phylum to amplicon sequence 
variant [ASV], adjusted P (Padj) > .05). Specifically, 
at the phylum level, Firmicutes was the most abun
dant phylum (71.2% [lifestyle, median] vs. 74.3% 
[standard care, median], Padj = .921), followed by 
Actinobacteria (5.6% vs. 5.5%, Padj = .909), 
Proteobacteria (2.6% vs. 2.6%, Padj = .842), 
Bacteroidetes (2.6% vs. 0.7%, Padj = .755), and 
Verrucomicrobia (1.0% vs. 0.6%, Padj = .839). These 
five phyla accounted for the majority of the gut micro
biota abundances (98.9% [lifestyle] and 99.2% [stan
dard care]).

To investigate if the two treatments shifted gut 
microbiota similarly, we compared the changes in 
observed richness and Shannon diversity between 
groups at all time windows (Figure 1a, from base
line to 3 months [M0-M3], to 6 months [M0-M6], 
to 9 months [M0-M9], and to 12 months [M0- 
M12]). However, none of these changes were sig
nificantly different between groups (P > .05, shown 
with “ns”). Next, we assessed the changes in alpha 
diversity for each treatment. From M0 to M12, 
richness increased 17.1% in the lifestyle group 
(105.0 ± 30.3 [M0] vs. 123.0 ± 38.7 [M12], mean ± 
SD; 17.1% = [(123.0–105.0)/105.0] × 100) and 
42.9% in standard care (91.8 ± 33.3 [M0] vs. 
131.2 ± 30.3 [M12]; 42.9% = [(131.2–91.8)/91.8] × 
100). Specifically, both treatments had increased 
richness at M3 compared to M0 (lifestyle, 105.0 ± 
30.3 [M0] vs. 122.1 ± 30.4 [M3], mean ± SD, P < 
.001; standard care, 91.8 ± 33.3 [M0] vs. 110.8 ± 
31.2 [M3], P = .014), then slightly reduced until M9 
(119.7 ± 34.9 [lifestyle], P = .007; 107.3 ± 34.5 
[standard care], P = .022), thereafter increased 
quickly from M9 to M12. We also investigated 
ASVs (shown at the genus level) that were respon
sible for the increased richness (Figure S1) and 
found that they were mainly from the genera 
Bacteroides, Ruminococcaceae UCG 014, Alistipes, 
and Roseburia. From M0 to M12, Shannon diver
sity increased 11.3% in the lifestyle intervention 
(3.28 ± 0.51 [M0] vs. 3.65 ± 0.61 [M12], mean ± 
SD; 11.3% = [(3.65–3.28)/3.28] × 100) and 23.5% in 
standard care (3.06 ± 0.53 [M0] vs. 3.78 ± 0.50 
[M12]; 23.5% = [(3.78–3.06)/3.06] × 100). Only 
individuals in the lifestyle group showed increased 
Shannon diversity at M3 compared to M0 (3.28 ± 
0.51 [M0] vs. 3.55 ± 0.47 [M3], mean ± SD, P < 
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.001) and standard care did not induce significant 
difference during the first three months (3.06 ± 0.53 
[M0] vs. 3.28 ± 0.70 [M3], P = .106). Both treat
ments increased Shannon diversity significantly at 
M9 (119.7 ± 34.9 [lifestyle], P < .001; 3.33 ± 0.63 
[standard care], P = .014) and M12.

Additionally, we assessed the gut microbiota 
composition based on the weighted UniFrac dis
tance, visualized by principal coordinates analysis 
(PCoA), stratified by time point (Figure 1b). Two 
treatments did not lead to different gut microbiota 
compositions at M12 (P = .127) and other time 
points (P = .138 [M6], P = .063 [M9]), except for 
M3 (P = .010). We also compared the distance for 
each patient at different time windows as a way to 
assess the changed beta diversity over time (Figure 

S2). However, none of the changed beta diversities 
were significantly different between groups at all 
time windows (P > .05).

We then compared the group variance based on 
weighted UniFrac distance, by assessing the change 
of group dispersion (mean UniFrac distance to 
group centroid in multivariate space) over time 
(Figure S3). When comparing the differences 
between treatments in the change of sample disper
sion, no significant difference was observed at M12 
or any other time points (P > .05, shown with “ns”, 
in all conditions). From M0 to M12, both treatments 
led to reduced group dispersion (0.276 ± 0.103 
[M12] vs. 0.316 ± 0.085 [M0], P = .022, lifestyle, 
[mean ± SD]; 0.232 ± 0.058 [M12] vs. 0.316 ± 0.085 
[M0], P = .001, standard care). Specifically, for the 

Figure 1. Taxonomic composition differences between treatments over time (0, 3, 6, 9, 12 months). (a) Change of alpha diversity 
for each individual averaged within groups compared to baseline (M0). The dots refer to the mean and error bars refer to the 95% 
confidence interval. For the sake of interpretation, if the error bar overlaps the horizontal line (value of zero), it indicates that the 
change of alpha diversity is not significantly different from zero (no change). The comparison alpha diversity between a time point and 
baseline was performed with paired two-sided t-test. The comparison of changes in alpha diversity between treatments was performed 
with two-sided t-test and the significance was shown as “ns” (P > .05). (b) Distribution of samples based on weighted UniFrac distance 
visualized with principal coordinates analysis (PCoA) with ellipses indicating 75% confidence regions for clusters. The P value is from 
the multivariate permutational analysis of variance (PERMANOVA).
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lifestyle intervention, the group dispersion was sig
nificantly reduced at M3 (0.271 ± 0.068, P = .003), 
M9 (0.270 ± 0.091, P = .006), and M12 (0.276 ± 
0.103, P = .022), compared to M0 (0.316 ± 0.085). 
For standard care, no significant change was 
observed at M3 (0.300 ± 0.072, P = .532), M6 
(0.308 ± 0.109, P = .743), or M9 (0.311 ± 0.084, 
P = .743), compared to M0 (0.316 ± 0.085).

Next, we found that due to the large group dis
persion, the inter-individual variation at M0 was 
higher than the intra-individual development 
between M0 and M12 (Figure S4, 0.442 ± 0.159 
[M0] vs. 0.404 ± 0.206 [M0-M12], P = .019, lifestyle, 
median ± IQR [interquartile range]; 0.460 ± 0.185 
[M0] vs. 0.320 ± 0.201 [M0-M12], P = .010, stan
dard care, median ± IQR), or M0 and M3 (0.442 ± 
0.159 [M0] vs. 0.302 ± 0.189 [M0-M3], P < .001, 
lifestyle; 0.460 ± 0.185 [M0] vs. 0.352 ± 0.205 [M0- 
M3], P = .001, standard care), based on the 
weighted UniFrac distance.

Finally, we compared the change of taxa abun
dances between treatments at different taxonomic 
levels (from phylum to ASV) and different time 
windows (M0-M3, M0-M6, M0-M9, and M0-12). 
However, no taxa differed in the changes of their 
relative abundances at any time windows (Padj > 
.05, in all conditions).

Functional composition differences between 
treatments

Based on the phylogenetic investigation of commu
nities by reconstructing unobserved states 
(PICRUSt, version 2) program,25 we assessed the 
imputed functional composition of microbial com
munities. A total of 428 enzyme-catalyzed reactions 
(ECs) and 147 KEGG orthologs (KOs) were 
selected and their changes of relative abundances 
in time windows between treatments were com
pared, with the same method as the taxa abun
dances comparison. It showed that no ECs and 
KOs had significantly different changes in their 
relative abundances at any time windows (Padj > 
.05, in all conditions). In addition, we also grouped 
enzyme-catalyzed reactions into pathways and the 
changes of relative abundances for 193 pathways 
were compared. Again, no pathways had signifi
cantly different changes in their abundances at 
any time windows (Padj > .05, in all conditions).

Clinical characteristics and differences between 
treatments

In contrast to the similar changes in gut microbiota 
taxonomic and functional compositions between 
treatments, clinical characteristics, as reported ear
lier, changed differently during the 12-month inter
vention (M0 vs. M12).9,26–28 Specifically, 
individuals randomized to lifestyle intervention 
decreased their HbA1c levels by 3.4 ± 7.5 mmol/ 
mol (mean ± SD) and reduced their need for and 
use of pharmacological treatments (GLMED score 
decreased by 1.6 ± 1.6). Intensive lifestyle interven
tions were in addition associated with increased 
physical fitness by 6.5 ± 5.7 ml/kg/min, and 
improved body composition by increasing lean 
mass (0.7 ± 2.4 kg) and decreasing fat mass (6.3 ± 
6.5 kg) (Table S1). In contrast, individuals rando
mized to standard care either did not progress 
toward improved health status (e.g. GLMED score 
increased 0.5 ± 1.9), or to a less extent (e.g. physical 
fitness increased 0.3 ± 4.9 ml/kg/min, fat mass 
decreased 1.5 ± 4.7 kg).

To further describe the changing trend of clinical 
characteristics, we assessed the change of character
istics over time compared to M0 within each indi
vidual and grouped by treatments (Figure S5). We 
found that the change in clinical characteristics 
largely occurred during the first three months for 
individuals in the lifestyle intervention group. In 
contrast, the characteristics of individuals allocated 
to the standard care were quite stable during the 
whole intervention period. Additionally, we also 
compared the difference in the change of clinical 
characteristics between treatments, and most of 
them started being different between treatments 
from M3 and remained until M12 (Figure S5).

Gut microbiota composition was shifted in both 
treatments

Next, we performed a distance-based redundancy 
analysis (dbRDA) to assess the change of gut 
microbiota composition from M0 to M3 or M12, 
and interrogated if such changes could be corre
lated with clinical characteristics and/or treatments 
(Figure 2). Of all assessed characteristics (Figure S5, 
Table S2), only GLMED score significantly 
explained a proportion of variance at M3. Besides, 

e2005407-4 S. WEI ET AL.



the diabetes treatments (lifestyle intervention and 
standard care) were also significantly correlated 
(Figure 2a). While, at M12, significantly correlated 
factors were GLMED score, physical fitness, and fat 
mass (Figure 2b). In agreement with the arrows’ 
direction (characteristics increasing gradient), indi
viduals from the lifestyle intervention significantly 
reduced the GLMED score, fat mass, and signifi
cantly increased physical fitness over time (Figure 
S5). Individuals from the standard care also tended 
to change in the beneficial direction (e.g. increased 
physical fitness, decreased fat mass), though none 
of these characteristics changed significantly over 
time.

Samples from both treatments largely over
lapped with each other both at M0 (R2 = 0.010, 
P = .613) and M12 (R2 = 0.022, P = .130), except 

M3 (R2 = 0.032, P = .010, also shown in Figure 1b). 
However, they all differed significantly from their 
baseline at both M3 (R2 = 0.040, P < .001, M0 vs. 
M3, lifestyle; R2 = 0.047, P = .026, M0 vs. M3, 
standard care) and M12 (R2 = 0.074, P < .001, M0 
vs. M12, lifestyle; R2 = 0.105, P < .001, M0 vs. M12, 
standard care). To investigate which taxa were 
responsible for the changed beta diversity at M3 
and M12 in comparison with M0, we compared the 
relative abundances between time points for each 
treatment (Table S3). We observed that many gen
era changed their abundances significantly at M3 or 
M12, such as Bacteroides, Blautia, Roseburia, 
Escherichia, and Faecalibacterium. Besides, we also 
observed a sharp reduction of Firmicutes to 
Bacteroidetes ratio for both treatments at M3 and 
M12 (26.9 ± 62.2 [M0, median ± IQR], 8.0 ± 10.4 

Figure 2. The weighted UniFrac distance-based redundancy analysis (dbRDA) showing the distribution of samples at M0 and 
M3 (a) or M0 and M12 (b), and the associations with clinical characteristics and/or treatments. Each dot is a sample. Colors refer 
to different time points. Solid dots and solid lines refer to lifestyle intervention; hollow dots and dashed lines refer to standard care. 
Ellipses indicate 75% confidence regions for clusters. The direction and magnitude of arrows indicate which clinical characteristics that 
taxa abundance responds to the most strongly. The black crosses in (a) indicate the direction and magnitude of treatments.
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[M3], 4.7 ± 6.1 [M12], P < .001 for both M3 and 
M12 against M0, lifestyle; 63.9 ± 92.1 [M0], 8.1 ± 
15.2 [M3, P = .003], 7.8 ± 5.5 [M12, P < .001], 
standard care).

Gut microbiota alpha diversity does not correlate 
with clinical characteristics

The gut microbiota alpha diversity has been sug
gested as an indicator of health status.29,30 To vali
date if this notion is reflected in our study, we 
assessed the correlations between the shift in gut 
microbiota alpha diversity and the change in clin
ical characteristics for each treatment (pooling all 
time windows together), which is shown in 
Figure 3. Overall, almost none of these correlations 
was significant (P > .05, Table S4). In detail, body 
fat-related characteristics, such as android fat mass, 

gynoid fat mass, fat percentage, and fat mass tended 
to be inversely correlated with gut microbiota alpha 
diversity in the lifestyle group; The lean mass, fat- 
free mass, and physical fitness positively correlated 
with alpha diversity in the lifestyle group. However, 
these correlations were almost inverted in the stan
dard care group. HbA1c showed quite small corre
lation coefficients in both groups and were far from 
being significant (Table S4). GLMED score showed 
negative correlations with observed richness and 
positive correlations with Shannon diversity in 
both groups, but none of them were significant.

Mediation analysis of gut microbiota

Our study showed clear relevant changes in 
a number of clinical characteristics (Figure S5). 
However, it remains unknown the extent to which 
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Figure 3. The correlations between the change of clinical characteristics and the change of alpha diversity. The Y axis is the 
correlation coefficient obtained from the linear mixed models, the effects of age, gender, and time windows were adjusted, and patient 
was used as the random effect. X axis is the clinical characteristic. Vertical lines are the 95% confidence interval of the correlation 
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gut microbiota may mediate any of these clinical 
benefits and/or differences under the treatment 
effects. We, therefore, applied a robust distance- 
based mediation analysis to evaluate the overall 
mediation effect of gut microbiota. Among all med
iation conditions (see Materials and methods), only 
one mediation came out as statistically significant, 
namely the treatments’ effect on GLMED score at 
M3, which appeared to be significantly mediated by 
the gut microbiota at this specific time point M3 
(P = .030). However, this specific effect was not 
further validated by another mediation method 
“SparseMCMM” (P = .505, overall mediation 
effect).

Gut microbiota differences stratified by GLMED 
score change

Based on our dbRDA (Figure 2) and mediation 
analysis, the clinical characteristic GLMED score 
possibly best reflected gut microbiota change 
related to treatments. When considering 
a reduction of GLMED score at M12 as an indicator 
of a successful lifestyle change, 17.6% of individuals 
treated with standard care (three out of 17 persons 
reduced GLMED score) changed their lifestyle 
without supervision. Similarly, 23.3% of individuals 
in the lifestyle intervention (10 out of 43 persons 
did not reduce GLMED score) failed to change 
lifestyles. Therefore, to assess the actual impact of 
lifestyle interventions on gut microbiota, we re- 
grouped individuals into GLMED score groups: 
Same (N = 8), Increase (N = 16), and Decrease 
(N = 36) based on the change of GLMED score 
(individuals not having samples at both M0 and 
M12 were removed) (Figure S6). To assess if the 
direct effect of GLMEDs confounded our GLMED 
score grouping, we assessed the influence of differ
ent intensities of mediation treatment on the gut 
microbiota by comparing the alpha diversity 
between different medication intensities (GLMED 
score 1 to 6) and medication discontinuation 
(GLMED score 0) (Figure S7, Table S2). In most 
of the conditions, GLMED did not lead to different 
gut microbiota alpha diversity compared to 
GLMED free individuals (P > .05).

By comparing the GLMED groups (decrease vs. 
increase), we observed that the changing trend of 
gut microbiota Shannon diversity only differed at 

M3 (Figure S8a), the change of group dispersion 
differed at M3 and M9 (Figure S8b), gut microbiota 
beta diversity differed at M3 (P = .002, Figure S8c), 
the change of relative abundance of KOs, ECs, and 
metabolic pathways did not differ at any time win
dows. Among all assessed taxonomic levels, only 
very few taxa changed their relative abundances 
differently between groups (Table S5).

Discussion

After the 12-month trial, we did not observe statis
tical differences in the change of gut microbiota 
composition between the intensive lifestyle inter
vention and standard care. The gut microbiota 
alpha diversity did not correlate with the clinical 
characteristics, and the gut microbiota did not 
mediate the treatment effects on the clinical 
characteristics.

Two treatments led to similar gut microbiota 
changes

After 12 months of intervention, the two groups did 
not differ in their gut microbiota in any relevant 
aspects. (i) The change of alpha diversity was not 
different between groups at M12 (Figure 1a). (ii) 
The beta diversity was not different between groups 
at M12 (Figure 1b). (iii) The change of group dis
persion was not different between groups at M12 
(Figure S3). (iv) The change of taxa abundance at 
all assessed taxonomic levels was not different 
between groups at M12. (v) The change of func
tional abundance was not different between groups 
at M12. (vi) Based on our GLMED score grouping, 
potentially a way to better reflect actual lifestyles, 
almost none of the above-mentioned outcome 
measurements differed between GLMED score 
groups (increase vs. decrease) at M12 (Figure S8).

However, we did observe some weak differences 
in the gut microbiota at M3 between treatments, 
such as the changing trend of Shannon diversity 
compared to baseline (Figure 1a), beta diversity 
between groups (Figure 1b), change of group dis
persion compared to baseline (Figure S3), and the 
dbRDA analysis (Figure 2a). Other than gut micro
bial changes during the first three months, the shift 
of clinical characteristics also largely occurred dur
ing the first three months (Figure S5). Individuals 
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allocated to lifestyle interventions almost improved 
all these clinical characteristics during this time 
window compared to standard care. Thereafter, 
the improvement in clinical characteristics 
remained stable and barely further improved.

Importantly these time-wise co-occurred changes 
of gut microbiota and clinical characteristics at M3 do 
not necessarily imply that gut microbiota and clinical 
characteristics were associated, since we almost did 
not observe any significant associations between the 
change of the gut microbiota alpha diversity and the 
change of clinical characteristics, and many of these 
associations were not consistent between treatments 
(positive or negative) (Figure 3). Indeed, the lack of 
differences in gut microbiota composition between 
treatments after 12 months makes any causal effects 
of gut microbiota on clinical outcomes highly unlikely.

Do the two treatments beneficially alter gut 
microbiota?

After a 12-month intervention, both treatments were 
associated with extensive and potentially beneficial gut 
microbiota changes compared to the baseline pre- 
treatment gut microbiota profiles. The changes 
included increased richness (17.1% [lifestyle] and 
42.9% [standard care]) and Shannon diversity (11.3% 
[lifestyle] and 23.5% [standard care]). Generally, 
increased gut microbial diversity and richness have 
been considered metabolically beneficial,29,30 which 
in turn could have contributed to the beneficial clinical 
outcomes for both treatments after 12 months. In 
support of this, the dbRDA analysis revealed that 
along with the change of gut microbiota composition 
over time, the physical fitness was improved and the 
fat mass and GLMED score were reduced (Figure 2b).

A number of taxa were significantly shifted over 
time (Table S3), which likely reflected the clinical 
benefits of treatments. For example, Bacteroides has 
been suggested to be beneficial for glucose metabolism 
in mice,31,32 and negatively associated with T2D in 
humans.33–35 In our study, both lifestyle intervention 
and standard care led to increased occurrence and 
abundance of Bacteroides (Figure S1, Table S3). 
Roseburia was reported to be higher in abundances 
in healthy control than diabetic individuals.10,36 In the 
present study, Roseburia was the top genus contribut
ing to the increased richness and was more abundant 
at M3 and M12 than baseline (Figure S1, Table S3). 

Other genera were possibly also involved in the 
improvement of clinical outcomes, such as Blautia, 
Escherichia, and Faecalibacterium.37,38 To be noted, 
though two diabetes treatments (lifestyle intervention 
and standard care) indeed changed the gut microbiota 
composition along with potential beneficial effects on 
clinical outcomes, there are few data, if any, to suggest 
that the clinical benefits are caused directly by the 
changes in the gut microbiota composition.39

Besides, although controversial,37,40 the ratio 
between Firmicutes and Bacteroidetes has been 
positively associated with obesity and T2D in pre
vious studies.41–45 In this study, the Firmicutes to 
Bacteroidetes ratio in both treatments decreased 
dramatically in the supposed beneficial direction.

Treatments likely do not impact clinical 
characteristics through gut microbiota

Although the GLMED score was observed to be 
significantly mediated by the gut microbiota at 
M3 based on the distance-based mediation analysis, 
such mediation effect was not confirmed using an 
alternative method SparseMCMM (P = .505). 
Therefore, we do not have sufficient statistical evi
dence to prove a mediation effect. Even if we con
sider GLMED score as being mediated by the gut 
microbiota, the mediation effect of gut microbiota 
does not seem to be strong, considering that 14 
clinical characteristics (shown in Figure S5) were 
assessed, but only GLMED score was significant. 
A better application of mediation analysis would be 
to assess the mediation effect between the change of 
gut microbiota and the change of clinical charac
teristics; however, to our knowledge, such 
a longitudinal mediation method is not yet 
available.46

Difficulties in inferring general principles

In our study, it seems that general and strong asso
ciations were not present between gut microbiota 
and clinical characteristics or treatments. A few 
reasons may have contributed: (i) We observed 
that the differences between individuals at baseline 
M0 were larger than the differences within indivi
duals between M0 and M3, or between M0 and 
M12, based on weighted UniFrac distance (Figure 
S4). It is consistent with the study by Taniguchi 
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et al.24 that the effect of exercise was not greater 
than the individual variation. Thus, high inter- 
individual variation may lead to reduced detection 
power. But our paired t-test, paired Wilcoxon rank 
sum test, and linear mixed model have avoided or 
taken into account such inter-individual variation. 
A good control of influencing factors (e.g. medica
tions, diet) for gut microbiome would help decrease 
the large individual variation. (ii) Small effect size 
of physical exercise on the gut microbiota makes it 
difficult to detect differences between treatments. 
Prior studies only reported “subtle”23 and 
“modest”22 effect of exercise on the gut microbiota. 
Increasing the sample population and the intensity 
of lifestyle interventions would facilitate the detec
tion of microbial differences. (iii) Lack of adherence 
to treatments, derived from that e.g. not all patients 
in lifestyle intervention group changed their life
styles and not all patients in standard care group 
continued their lifestyles, decreased the ability to 
differentiate changed lifestyles from constant life
styles. However, this is alleviated by regrouping 
individuals based on the GLMED score change 
and consistent results were observed as compared 
to the intention-to-treat therapy-based grouping 
(Figure S8). A direct measurement of lifestyles for 
both treatments, such as daily calories intake, foot
steps, and physical activity intensities, would help 
regroup and compare patients based on the actual 
lifestyles. (iv) The use of the 16S rRNA gene 
sequencing technique has limited us to estimate 
the microbial functions (though can be predicted 
with PICRUSt2, but still with limitations, https:// 
github.com/picrust/picrust2/wiki/Key-Limitations) 
and does not provide enough resolution (e.g. strain 
level) to detect differences. Including other “omics” 
techniques would certainly increase the assessment 
dimensions.

Conclusions

In this post-hoc analysis, we did not observe signif
icant differences in the change of gut microbiota 
composition between intensive lifestyle and stan
dard care interventions after 12 months, except for 
a weak difference observed at the three-month fol
low-up. Gut microbiota did not correlate with 
assessed clinical characteristics and did not appear 
to mediate the treatment benefits on clinical 

characteristics. Overall, our results imply that clin
ical benefits of intensive lifestyle interventions and/ 
or conventional standard care with multifactorial 
and pharmacological treatments, were unlikely to 
be attributable to the observed changes in the gut 
microbiota.

Materials and methods

Study design, participants, and randomization

This is a post-hoc analysis of a randomized clin
ical trial9,26–28 where the primary aim was to 
investigate the effect of an intensive lifestyle 
intervention on glycemic control. A total of 878 
individuals were screened for inclusion (Figure 
S9). Based on the inclusion criteria (e.g. above 
18 years old, T2D diagnosis for less than 
10 years) and exclusion criteria (e.g. HbA1c 
level greater than 9%, insulin-dependence), 98 
participants were included in the study. 
Participants were randomized to either standard 
care alone or intensive lifestyle and standard 
care in a ratio of 1:2, respectively (stratified by 
sex). To reduce the confounding influence of 
dysregulated baseline HbA1c levels, GLMED 
was standardized to obtain glycemic control at 
least six weeks prior to baseline assessment. 
A full protocol paper has been published.47 

This study was performed in Region Zealand 
and the Capital Region of Denmark from 
April 2015 to August 2016. This study was 
approved by the Scientific Ethical Committee at 
the Capital Region of Denmark (clinicaltrials.gov 
registration: NCT02417012). All participants 
provided oral and written informed consent.

Outcomes for the post-hoc microbiome analysis

The outcomes were: (i) Differences in gut micro
biota taxonomic and functional compositions (or 
changes in compositions) between treatments at 
each time point (or time window). (ii) Gut micro
biota changes from baseline to 12 months for each 
lifestyle and standard care treatment. (iii) 
Correlation and mediation analysis of gut micro
biota with the treatments and/or the clinical 
characteristics.
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Interventions

The intensive lifestyle intervention has been pre
viously described in detail elsewhere.47 Briefly, all 
participants received standard care, such as educa
tion in T2D and blinded treat-to-target medical 
regulation based on a pre-specified algorithm. 
Participants from both groups were encouraged to 
be physically active in their leisure time (≥ 10,000 
steps per day).

In addition, the intensive lifestyle group partici
pants additionally completed five to six weekly 
aerobic sessions whereof two to three sessions 
were combined with resistance training. All exer
cise sessions were supervised during the first four 
months, and supervision was gradually reduced 
throughout the intervention period. Also, partici
pants in the lifestyle intervention group were given 
a hypocaloric diet with a macronutrient distribu
tion of 45% to 60% carbohydrate, 15% to 20% 
protein, and 20% to 35% fat (< 7% saturated fat). 
During the first 4 months the total energy intake 
was restricted (−500 kcal/day relative to individu
ally calculated energy need) and thereafter an iso
caloric diet was given, aiming for a body mass index 
of 25 kg/m2. Participants were also asked to register 
their diet and weigh their food. Individual and 
group-based dietary counseling were offered by 
clinical dietitians and progressively reduced over 
time. Food frequency questionnaire was used for 
both groups at baseline and 12 months. Participants 
in the standard care group were not monitored for 
their daily diet or physical activity.

Assessment of outcomes and fecal samples

The gut microbiota was assessed by 16S rRNA gene 
sequencing of the fecal samples collected at baseline 
(M0), 3- (M3), 6- (M6), 9- (M9), and 12-month 
(M12) follow-up (Figure S9). Basic techniques and 
principles used to study the microbiota in a clinical 
context were previously reviewed.48 The clinical 
characteristics were collected at the same time 
point as the fecal samples and the baseline clinical 
characteristics are shown in Table S6.

The fecal samples were taken by the participants 
themselves at home with OMNIgene·GUT|OM-200 
kit and immediately stored in the freezer at −20°C. 
The samples were transported (30–45 min) in 

insulated envelopes alongside a freezer pack and 
brought to the lab by participants along with the 
visit. The feces collection date was as close to parti
cipants’ scheduled visits as possible and not earlier 
than 48 hours. The samples were immediately 
stored at −80°C upon arrival in the lab.

Sample population

In total, 413 fecal samples were collected from 98 
individuals, of which 389 were successfully 
sequenced (19,884 ± 9,180 sequences [mean ± 
SD], samples lower than 2,000 sequences were 
removed, Figure S10),49 from 86 individuals (age 
[54.3 ± 8.9, years], mean ± SD; sex male 52.7%; N = 
60 [lifestyle] vs. N = 26 [standard care]), having at 
least three samples among the five time points (M0, 
M3, M6, M9, and M12) (Figure S9). Baseline char
acteristics of the included individuals by groups are 
shown in Table S6.

DNA extraction, sequencing, and bioinformatics

The total microbial DNA was extracted using the 
PowerMag® Soil DNA Isolation Kit on the 
EpMotion® 5075vt automated pipetting system 
(Eppendorf). The V3-V4 region of 16S rRNA gene 
was amplified by a two-step PCR procedure (30 + 
15 cycles) using the modified broad range primers 
Uni341F (5ʹ-CCTAYGGGRBGCASCAG-3ʹ) and 
Uni806R (5ʹ-GGACTACHVGGGTWTCTAAT 
-3ʹ).50,51 The PCRBIO HiFi polymerase was used 
for PCR with the recommended reaction setup and 
cycling conditions. The amplified products were 
purified with Agencourt AMPure XP Beads 
(Beckman Coulter Genomics, MA, USA), normal
ized with SequalPrep™ Normalization Plate (96) Kit 
(Invitrogen), and pooled in sequencing libraries 
with up to 192 samples, including positive (mock 
communities, Figure S11a) and negative (blank 
DNA extraction and blank PCR, Figure S11b) con
trols. The concentration of the pooled libraries was 
then determined using the Quant-iT™ High- 
Sensitivity DNA Assay Kit (Life Technologies). 
Paired-end sequencing was performed on the 
Illumina MiSeq System (Illumina Inc., Ca, USA) 
with 5.0% PhiX. All reagents used were from the 
MiSeq Reagent Kits v2 (Illumina Inc., CA, USA). 
Adaptors and sequencing primers of raw FASTQ 

e2005407-10 S. WEI ET AL.



files were removed using “cutadapt” (version 
1.15).52 Trimmed reads were denoised and 
assembled into amplicon sequence variants 
(ASVs) using a modified QIIME2 (version 2018.2) 
implementation of the DADA2 pipeline, where 8 
nucleotides were removed at the 5ʹ end of both 
forward and reverse, without 3ʹ truncation, the 
default overlap length of forward and reverse 
reads was decreased to six nucleotides, and all 
other parameters were set as default.53,54 

Taxonomy was assigned against the Silva database 
(SSU Ref NR 99, release 132).55

Statistical analysis

Alpha diversity (observed richness and Shannon 
diversity, at the ASV level) was assessed with 
R-package “phyloseq” after sample size rarefaction 
(function “rarefy_even_depth”),56 the change of 
alpha diversity compared to baseline within each 
treatment was tested with paired t-test, and the 
comparison of changes between treatments was 
performed with t-test. Their associations with 
clinical characteristics were performed with 
a linear mixed effect model with R-package 
“lmerTest” (age, gender, and time point were 
included as covariates; patient was included as 
the random effect).57 For beta diversity (at the 
ASV level), weighted UniFrac distance was calcu
lated with function “diversity beta-phylogenetic” 
in QIIME2,53 tested with permutational multivari
ate analysis of variance (PERMANOVA) with 
“adonis” (R-package “vegan”).58–60 The dispersion 
of samples was assessed with the function “beta
disper” (R-package “vegan”). The change of dis
persion within treatments and comparison of 
changes between treatments was tested with the 
same method as for alpha diversity. The compar
ison of individual variation and individual devel
opment based on UniFrac distance was performed 
with Wilcoxon rank sum test (R-package “stats”). 
The functional potential of the gut microbiota was 
predicted with phylogenetic investigation of com
munities by reconstruction of unobserved states 
(PICRUSt2) and identified as enzyme-catalyzed 
reaction (EC), KEGG ortholog (KO), and meta
bolic pathways (MetaCyc).25,61–63 ECs, KOs, and 
metabolic pathways were removed before further 
analysis when their relative abundances were 

lower than 0.1%. The comparison change in func
tional composition and metabolic pathways 
between groups was performed with Wilcoxon 
rank sum test. The weighted UniFrac distance- 
based redundancy analysis (dbRDA) was per
formed with the function “ordinate” in 
R-package “phyloseq” to correlate gut microbiota 
with clinical characteristics. The clinical charac
teristics that significantly explain proportions of 
variance in the constrained ordination were 
selected with the function “ordistep” in 
R-package “vegan”. The change of clinical char
acteristics within treatments and the comparison 
of changes between treatments was tested in the 
same way as for alpha diversity. The mediation 
analysis was performed with R-package 
“MedTest”,64 to assess if treatment effect on the 
outcome is mediated by the mediator. Specifically, 
the mediation analysis was performed at each 
time point with standard care and lifestyle inter
vention as the treatments, the value of each clin
ical characteristic as the outcome (assessed 
characteristics are shown in Figure S5), and the 
weighted UniFrac distance as the mediator gut 
microbiota. Besides, we also permutated the med
iator and outcome at different time points, which 
means that the mediator gut microbiota at a time 
point was tested against clinical characteristics at 
all time points (e.g. gut microbiota at M3 can be 
tested against GLMED score at M12) to account 
for possible delayed mediation effect. The signifi
cant results derived from the MedTest were vali
dated with another mediation method 
“SparseMCMM” (R-package SparseMCMM),65 

done at the genus level and only for genera having 
higher than 0.1% of relative abundances, the 
P value was obtained with 100 times permuta
tions. The comparison of taxa abundances or 
Firmicutes to Bacteroidetes ratio between time 
points within treatments was performed with 
paired Wilcoxon rank sum test. The comparison 
of alpha diversity across the glucose-lowering 
mediation (GLMED) score was tested with paired 
Wilcoxon rank sum test. The Benjamini- 
Hochberg correction to control false discovery 
rate for multiple testing66 was only applied for 
taxonomic, functional potential and metabolic 
pathway analysis (shown as Padj). The significance 
level was set at 0.05 (two-sided statistical tests). 
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The ASVs whose prevalence lower than 1% (pre
sent in less than 4 samples) were not included in 
all the analyses. Most plots were generated with 
R-package “ggplot2”.67
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