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Abstract
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Background: Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping
of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem
repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially
greater discriminatory power to support infectious disease surveillance.

Methods: We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically
independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of
case and environmental isolates were sequenced using HiSeq (lllumina) and the genetic distance between them was
assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context.

Results: The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly
identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to
outbreak cases may represent an unidentified common food source that may warrant further public health follow up.

Previously unrecognised mini-clusters were detected.

Conclusions: WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our
findings support the translation of WGS into public health laboratory surveillance of salmonellosis.
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Public health surveillance

Background

Salmonella gastroenteritis is responsible for considerable
disease burden in both developed and developing coun-
tries, with an estimated 93.8 million cases and 155,000
deaths each year [1]. The majority of these cases are
foodborne [1-3], although transmission may occur dir-
ectly from infected persons [4]. Salmonella is frequently
identified as the aetiological agent in foodborne
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outbreaks in Australia, with Salmonella enterica subsp.
enterica serovar Typhimurium (S. Typhimurium/STM)
being the predominant serovar [5].

Timely subtyping of Salmonella and integration of la-
boratory findings into public health actions are critical
in reducing delays in outbreak investigation [6]. In New
South Wales (NSW), Australia, where STM accounts for
around half of all culture-confirmed cases of salmonel-
losis [7], multi-locus variable number tandem repeat
analysis (MLVA) has been used since 2006 to prospect-
ively subtype STM and identify potential clusters. MLVA
measures the variable length of five STM loci and has
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been considered faster and more discriminatory than
other historical typing methods [7, 8]. However, com-
mon or endemic MLVA types may cause multiple out-
breaks along with sporadic cases and a few selected
MLVA types may represent a large portion of isolates
observed in a geographical location [9].

Whole genome sequencing (WGS) has offered the ul-
timate discriminatory power with the potential to en-
hance epidemiological investigations and elucidate
transmission pathways [9-11]. As WGS continually be-
comes quicker and more cost effective, and data quality
improves [12-15] its potential to be used in routine epi-
demiological typing increases [15]. WGS has been
recently used to understand outbreak sources and trans-
mission patterns of other diseases, including enteric dis-
eases (such as Shigella sonnei and enterohaemorrhagic
Escherichia coli) [12, 14, 16—18]. Furthermore, WGS has
the potential to discriminate between sporadic and out-
break isolates which may be indistinguishable by current
methods of subtyping [14, 17, 19, 20].

Recently, the potential of WGS for characterising
Salmonella outbreaks and differentiating outbreak and
sporadic strains has been explored [15, 21] and the im-
portance of correlating WGS and epidemiological data
has been emphasised [15]. With increased understanding
of the significance of genomic variability, there is poten-
tial to progress to near real-time, discriminatory geno-
typing of outbreak cases [21].

The primary aim of this study was to examine the util-
ity of WGS in discriminating sporadic and outbreak-
linked STM infections within the same endemic MLVA
type. This has the potential to improve the accuracy of
cluster definitions and timeliness of outbreak response.
We report the WGS analysis of human and food STM
isolates from two epidemiologically independent out-
breaks of a single MLVA type in NSW during 2014,
along with interspersed sporadic cases.

Methods

Isolate selection

Salmonellosis is a notifiable disease in Australia. Details of
cases are maintained in the NSW jurisdictional Notifiable
Conditions Information Management System (NCIMS)
Database by the Communicable Disease Branch, Health
Protection NSW. All case isolates presumptively identified
as Salmonella by pathology service providers in NSW are
forwarded to the NSW State Enteric Reference Laboratory
at the Centre for Infectious Diseases and Microbiology,
Institute for Clinical Pathology and Medical Research-
Pathology West (ICPMR) in Sydney. Isolates undergo
confirmatory testing, serotyping and MLVA-5 typing at
ICPMR. Relevant food isolates from outbreak investigations
are also typed and stored.
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A common MLVA type (2-15-9-10-0212 or 3-17-10-11-
523 according to the European CDC [22] and Australian
conventions [23], respectively) that was known to have
caused two food-borne outbreaks along with sporadic cases
between January and May 2014 in metropolitan Sydney
was selected for this study. STM of this MLVA type was re-
sponsible for 3.7 % of all STM infections in 2014. These
isolates belonged to phage type DT135. The two outbreaks
were dispersed in time and space such that sporadic cases
occurred within two months of either or both outbreaks.

Each case isolate used in this study was classified as
“outbreak”, “sporadic” or “secondary” by an epidemiologist
at the Communicable Disease Branch based on information
that was available for each case in NCIMS. This informa-
tion was a case interview, a completed online questionnaire,
and/or demographic information. Outbreak cases were
those with documented exposure at one of the established
outbreak venues. Sporadic cases were those with no docu-
mented exposure to one of these venues in the time frame
that fitted with the incubation period for Salmonella. Sec-
ondary cases were defined as those with documented
household contact with a confirmed case of the same
MLVA type within a time frame that fitted with the incuba-
tion period for Salmonella. Environmental isolates cultured
from food samples or surface swabs during the public
health investigation of the two outbreak venues were also
included in the analysis. Background information on the
two outbreaks was provided by the Communicable Disease
Branch and the NSW Food Authority. Isolates were la-
belled according to a study number and partial laboratory
accession number.

DNA sample preparation

A single colony of each STM isolate was sub-cultured
on blood agar plates at 37 °C for 24 h. DNA extraction
for MLVA-5 was prepared using a boiling method [23].
For whole genome sequencing, the DNA was extracted
and purified using a DNeasy Blood and Tissue Kit (Qia-
gen) according to the manufacturer’s instructions. DNA
quantities were estimated using the Qubit dsDNA HS
Assay Kit and the Qubit Fluorometer (Life Technologies,
Germany) according to the manufacturer’s instructions.

MLVA-5

All isolates were MLVA typed using 5 VNTR loci
(referred to as MLVA-5) based on an original method by
Lindstedt et al. [24] with modifications as described in
Wang et al. [23], compatible to the European CDC
Scheme [22].

Genome sequencing

A 100 bp paired-end library (200 cycles) was prepared
for each purified DNA sample using the NexteraXT kit
(llumina). Each of the DNA samples was barcoded
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using the Nextera XT index kit v2 Set A (Illumina) then
pooled and sequenced on the HiSeq platform (Illumina,
Inc, San Diego, CA, USA) using a single lane of a HiSeq
flow cell. Quality control of the libraries was performed
by assessing library size distribution on an Agilent 2200
Tapestation (fragment sizes typically range between
250-1000 bp) and libraries were quantified by real time
PCR using the KAPA library quantification kit according
to the manufacturer’s protocol (Kapa Biosystems). Raw
short read sequence data was submitted to Sequence
Read Archive (SRA) at the National Centre for Biotech-
nology Information (NCBI) under the SRA accession
number SRP074336.

SNP analysis

FastQ files were imported into CLC Genomics Work-
bench v 7.0 (CLC bio, Aarhus, Denmark) and reads were
trimmed to remove Nextera transposase adapter se-
quences then mapped to the reference genome of S.
Typhimurium LT2 (NCBI GenBank Accession No.
NC_003197). Quality-based variant detection was per-
formed using settings of a minimum neighborhood qual-
ity of 15 and minimum central quality of 20. Variant
detection thresholds were set for a minimum coverage
of 10 reads and minimum variant frequency of 75 %. De
novo assembly was performed on reads from one of the
study isolates (isolate 65_E2330) using CLC Genomics
Workbench and the resulting contigs were scaffolded
using the CLC Microbial Genome Finishing Module.
The consensus sequence was extracted from the scaf-
folded contigs and was then used as a second reference
genome for read mapping and variant detection, as de-
scribed above, to validate SNPs. All predicted SNPs were
visually examined by locating the SNP positions in the
read-mapping files and comparing the consensus calls to
the reference genome. Gene and amino acid allele
changes associated with each SNP were determined from
the annotated reference genome. We also compared the
SNP calls with the method used by us previously [25]
and found that the two methods gave highly concordant
results with only 2 SNPs not detected in our assembly
based method. However, CLC Workbench offers poten-
tially better reproducibility.

Ethics approval

This study was approved by the Western Sydney Local
Health District Human Research Ethics Committee
(LNR/14/WMEAD/235, granted 21 July 2014).

Results

Isolate selection and outbreak investigation

Of 85 isolates of MLVA 2-15-9-10-0212 recovered from
human cases diagnosed between January and May 2014
(inclusive), 56 isolates were epidemiologically classified
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from the available data and were sequenced in this
study. One case was classified as secondary to an out-
break case. A further 10 environmental isolates from the
two outbreaks were also included for sequencing. One
environmental isolate (65_E2330) from outbreak M had
a slightly different but related MLVA profile 2-15-9-9-
0212. An isolate with one repeat difference can be
regarded as part of this cluster due to rapid evolution at
this locus [26].

Following whole genome sequencing, two case isolates
from Outbreak A and two from Outbreak M were ex-
cluded from the analysis due to the poor quality of se-
quences. The total number of case isolates included in
the study was 52.

Outbreak A was linked to chicken liver pate produced
weekly from fresh ingredients at a Sydney café. The con-
taminated ingredient was likely to have been brought
in on or around the 25" of January 2014 as a single
event [Food Authority NSW, personal communication,
14 August 2014]. Outbreak M appeared to be caused by
contamination of a number of foods and environmental
surfaces at a Sydney hot bread shop. All sporadic cases
occurred within two months of one or both outbreaks

(Fig. 1).

Whole genome sequencing

SNP identification

The genomes were sequenced in one multiplex with an
average depth of coverage of 80X ranging from 37X to
154X. A total of 30 SNPs were identified from the 62
isolates. The SNPs called were identical independently of
whether the reads were mapped to STM LT2 or to the
de novo assembly of isolate 65. Based on SNP profiles,
all isolates were clustered into groups consistent with
their known epidemiological sources (Fig. 2). All case
isolates from outbreak M had a unique non-synonymous
SNP (C to T) at position 723663 (reference STM LT2
base position), which was also present in the environ-
mental and food isolates obtained from outbreak M. All
of the isolates from outbreak M also had a single nucleo-
tide insertion (A) at position 1789781, apart from one
case isolate (isolate 44_M4945). In addition, two isolates
from outbreak M (one case isolate 42_M5132 and one
environmental isolate 61_E4721) carried unique genomic
variations at positions 2162287 (a deletion) and 3983630
(a synonymous SNP), respectively.

All of the case and environmental isolates from out-
break A shared a unique single nucleotide insertion (A)
at position 7408. One of the case isolates (isolate
11_A2137) also had a unique SNP at position 185058.

The effect of genomic changes on translation was vari-
able. The genomic features of SNPs identified, including
the SNP position and type, allele length, annotation,
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coding region and amino acid changes are provided in
the supplementary Additional file 1: Table S1.

Along with SNP differences described above, a seven
base-pair deletion at position 2332558 was identified
(Fig. 2). This deletion was present in all of isolates from
Outbreak M but not those from Outbreak A. The dele-
tion is in oafA gene which affects the function of the
somatic O antigen of STM — those with the deletion
were O antigen factor v (1, 4, 5, i, 1, 2) and those with-
out were O antigen factor xii (1, 4, 12, i, 1, 2) [27].

Sporadic case isolates showed distinct SNP profiles com-
pared to the isolates from Outbreak A and M (Fig. 2).
Around half had two additional SNPs (A to C at position
3491775 and 4273259) and there were several unique SNPs
randomly distributed among the sporadic isolates. Four
cases were distinguished by only one SNP from Outbreak
A (isolates 1_N4472, 22_N2054, 31_N4583 and 32_N5047).
On examining the epidemiological data, these cases were
not linked to OQutbreak A. Case 1_N4472 had an onset date
well before the introduction of a contaminated ingredient
to the Outbreak A venue and 22 _N2054 confirmed no link
with the venue on interview. Neither 31_N4583 nor
32_N5047 stated any link to Outbreak A during online sur-
vey. One of the sporadic isolates (54_N4956) had the same
insertion at position 1789781 as the Outbreak M isolates
and also had the seven base-pair deletion. However, this
isolate also had a SNP at position 3413980 and did not have
the other SNPs characteristic of Outbreak M (723663).

Among the sporadic isolates, there were mini-
clusters detected by WGS analysis (Fig. 2). One of
these clusters contained four cases (3_N2463,
29 N4955, 24__N4802 and 36_N5175), all of which had
a common SNP and shared the seven base-pair dele-
tion. The cases occurred over a period of 52 days be-
tween January and March 2014. The later three cases
shared an additional common SNP and all resided a
one geographical area in metropolitan Sydney. Cases
in another cluster (52_N5064 and 53_N5139a) shared

three common SNPs and were clustered in time (oc-
curring six days apart). In the last cluster (37_N4954
and 67_N4799), the isolates were indistinguishable by
SNP analysis, but appeared genetically variable be-
cause of the presence of the seven base-pair deletion
(different strains with different O antigens). These
cases were also separated in time by seven weeks and
did not reside in the same geographical area.

Concatenated SNP profiles were further analysed
using a minimum spanning tree (MST) approach
(Fig. 3). The MST demonstrated that the two out-
breaks were clustered separately and that most spor-
adic cases were more than two SNPs away from the
outbreaks and from each other, with only a few excep-
tions. The four isolates cluster separated by one SNP
from outbreak A is actually two nucleotide poly-
morphism variations when the 7-base pair deletion is
included (Fig. 2).

The phylogeny of the outbreak strains was consid-
ered in the context of national and international STM
isolates. We included 137 isolates from other studies
including 75 Australian isolates and 62 global isolates
for comparison [15, 21, 25, 28-30]. The phylogenetic
tree (Additional file 2: Figure S1) showed that the
isolates from this study were tightly clustered together
as one group.

Discussion
Our study examined a collection of STM isolates repre-
senting two epidemiologically distinct outbreaks in an
urban area along with spatiotemporally associated spor-
adic cases that were initially linked by MLVA typing.
WGS clearly differentiated these isolates in concordance
with epidemiological evidence, providing greater dis-
crimination than MLVA-5 alone.

Our study demonstrated unique genomic variations in
each of the outbreak clusters, with one or two specific
nucleotide variations in each outbreak group. This is
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SNP No. 1 2 3 4 51617 |8]9([10]11][12[13]|14[15|16[17|18[19[20|21[22)|23|24|25]|26|27)|28|29]|30
111111 {11 f{1|1212(2]12(2]|3[3|3|3[3|3[4|4|4]|4 2
1 3 6 7|17{0|3|4|6|6|6|7|8|9|0(0|0|1|3|4|4|5(5|7[9|0|2|5]|86 3
8 |0 1 2|5(4|6|5(1]|1|(1]|8|6|8|1([1]|4[6|3|1[9]9([9]|9[8|9]|7([1]5 3
715 |4 3 3|1(1|7|5|4|6[9]|9|6|5|3(9|1[2|6|3|1]|6(|8|1[3|8|3[7]|7 2
410 |5 6 6|6(7|1]9(0|3(4|7|6|0|3(5|4(2|2|9|7|7|9|6|6|0]|2|6]7 5
Genome 0| 5 (8 2 6|7(2|9|7|7|2|0|8|0|9|6(6|1[8|5|8|7|2[8|9[3|1]|5([2]|0 5
Positiont 8|18 [2 0 3|7[4)|8|4|3|9(8|1][]0|7|7[0]|]9[7]|]9|0|5]|7([3]|]6[0]|6|9|5]4 8
Isolate W efcjcjcje|G|Cc|C|C|CICIAC|G|C|G|G|A|G|G|C|T|A|G|G|G]|C]|C]|G]|ATTTTAT |Epi-confirmed source
5_A4078 | A. A A . Outbreak A (C)
6_A4103 | A. A A Outbreak A (C)
7_A2128 | A. A A Outbreak A (C)
8_A2097 | A. A A Outbreak A (C)
9_A2096 | A. A A Outbreak A (C)
10_A2099 [ A. . A A Outbreak A (C)
11_A2137 [A. A A A Outbreak A (C)
14_A1970 | A. A A Outbreak A (C)
15_A1974 | A. A A Outbreak A (C)
16_A1954 | A. A A Outbreak A (C)
17_A1965 | A. A A Outbreak A (C)
18_A2474 | A. A A Outbreak A (C)
19_A4521 | A. A A Outbreak A (C)
20_A2475a | A. A A Outbreak A (C)
21_A2472 | A. A A Outbreak A (C)
23_A2465 | A. A A Outbreak A (C)
24_A2471 | A. A A Outbreak A (C)
25_A4615 | A. A A Outbreak A (C)
26_A4611 | A. A A Outbreak A (C)
27_A4619 | A. A A Outbreak A (C)
28_A4613 | A. A A Outbreak A (C)
30_A4318 | A. A A Outbreak A (C)
33_54804 | A. A A Outbreak A (SC)
56_E4809 | A. A A Outbreak A (E)
57_E4810 | A. . A A Outbreak A (E)
38_M2261 A A A Qutbreak M (C
39_M2258 A A A Outbreak M (C
40_M2268 A A A Outbreak M (C
41_M2107 A . . . A A Outbreak M (C
42_M5132 A N A A Outbreak M (C
43_M4657 A . . . A A Outbreak M (C
44_M4945 . A A Outbreak M (C
45_M4703 A A A Outbreak M (C
46_M4704 A A A Outbreak M (C
48_M4732 * A A Outbreak M (C
50_M2475b A A A Outbreak M (C
51_M5033 A A A Outbreak M (C
58_E4692 A A A Outbreak M (E
59_E4696 A A A Outbreak M (E
60_E4720 A A . A Outbreak M (E
61_E4721 A A T A Outbreak M (E
62_E4742 A A A Outbreak M (E
63_E4743 A A A Outbreak M (E
64_E4499 A A A Outbreak M (E
65_E2330 A . A A Outbreak M (E)
54_N4956 A AL || Sporadic
1_N4472 A A Sporadic
22_N2054 A A Sporadic
31_N4583 A A Sporadic
32_N5047 . A A Sporadic
2_N4246 A . . . A A Sporadic
35_N4800 R A A A Sporadic
4_N4210 . A L Sporadic
37_N4954 T . . . Sporadic
67_N4799 T . . Sporadic
3_N2463 A C Sporadic
29_N4955 AT Sporadic
34_N4802 AT . . . Sporadic
36_N5175 AT X .l . Sporadic
52_N5064 A L (o] Sporadic
53_N5139a . . c . . Sporadic
55 N4714 | . . A . N . . . . . . . . . . . . T T Sporadic
‘tGenome position and reference nucleotide in S. Typhimurium LT2 (GenBank Accession No. NC 003197)
A This was an insertion before the reference nucleotide;
* There was no coverage for isolate 48_M4732 at this position
Isolates are labelled according to study number and epidemiological source. In the epidemiological source column, outbreak isolates are labeled as 'C' - case; 'E' - environmental; or 'SC' - secondary case
SNPs are coded according to the corresponding amino acid change as below:
Synonymous
Non-synonymous -
Fig. 2 Identification and characterisation of SNPs in the STM isolates. Nucleotides in the main table represent the change from the reference
isolate listed with the genome position. Two nucleotide variations represent insertions and are annotated with A in the reference position

consistent with a recent report examining 57 isolates of
STM across five outbreaks, where within-outbreak iso-
lates were genetically indistinguishable or differed by
one or two SNPs [25]. The findings also independently
confirmed those of another recent study that analysed
genomes of 12 STM isolates and similarly demonstrated
the presence of unique SNPs within outbreaks [21]. In

the latter study, however, isolates from distinct outbreaks
differed by more than 10 SNPs [21], unlike our two out-
breaks, which were more genetically similar. While the
isolates in the former study [25] were of the same phage
type, they represented five outbreaks in different geo-
graphical locations over a period of 3 years, with distinct
MLVA types.
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22_N2054
31 Nas83 29_N4955
32_N5047 37_N4954 34_N4802

67_N4799
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53_N5139a

Outbreak M
cluster

Fig. 3 Minimum spanning tree of SNPs identified from the 62 STM isolates. Each circle represents isolates with indistinguishable genome

(by SNPs excluding indels) and the size of circles corresponds to the number of isolates. Numbers above or on the left of the connecting lines
between circles are the number of SNPs while the SNPs as numbered in Fig. 2 were listed either below or on the right of the connecting lines. Labelling
of isolates is consistent with Fig. 2. The grey colour in the outbreak circles indicates the proportion of environmental isolates and the black colour indicates
the isolate from the secondary case. Outbreak A cluster included 24 out of 25 isolates (except 11) and Outbreak M cluster included 17 of 20 of the
outbreak isolates (except 42, 44, and 61) shown in Fig. 2




Phillips et al. BMC Microbiology (2016) 16:211

Our isolates were all of identical MLVA type and re-
covered from residents within a confined geographic
area of metropolitan Sydney, demonstrating the superior
discrimination offered by WGS over current MLVA-5
typing in highly clonal isolates. However, our previous
study showed that isolates from the same outbreak may
differ by up to 4 SNPs [25]. The low number of genetic
differences between outbreak isolates in this study sug-
gests that the two outbreaks may share a common
source of origin, such as a single egg manufacturer. The
number of SNP difference between isolates observed de-
pends on mutation rate and the evolutionary time that
has passed. The mutation rate estimates for S. Typhi-
murium are varied. The lowest rate is 1.9 x 10” substi-
tutions per site per year estimated from ST313
causing invasive infections in Africa, the intermediate
rate is 3.4 x 107 substitutions per site per year from
epidemic DT104 infections, and the highest rate is 12
x 107 substitutions per site per year from a DT135a
outbreak [21, 31, 32]. These rates correspond to an ac-
cumulation of approximately one to five SNPs per
genome per year. Therefore, the small number of SNP
differences observed between our isolates suggests
that it is highly likely that these isolates shared a very
recent common ancestor.

Other studies have found highly similar isolates within
individual outbreaks, along with greater variability be-
tween outbreaks, where eggs from the same source were
implicated [21, 33]. In NSW, investigation of eggs farms
is conducted by the NSW Food Authority and includes
MLVA typing of identified Salmonella strains. In future
investigations, WGS is likely to offer further insights that
could make public health investigations more targeted
and may allow trace back investigations for a possible
common source for outbreaks with closely related iso-
lates such as the outbreaks examined in this study.

Our case outbreak isolates were also largely indistin-
guishable from the environmental isolates from the same
outbreak. Many of our sporadic cases were also well dif-
ferentiated from the outbreak cases by WGS, and did
not carry the unique outbreak variations. However, some
sporadic cases showed only minimal differences from
the outbreak cases, including the four cases that differed
by only one SNP from outbreak A. In addition, one
sporadic isolate had the outbreak M insertion and sev-
eral sporadic isolates contained the 7-bp deletion.

The difference between the outbreak and sporadic
isolates was less pronounced than in the previous
studies, which demonstrated difference of between
75-100 SNPs [21] to up to several thousand [34] SNPs
between sporadic and outbreak isolates. While previ-
ous studies included isolates with greater underlying
variability, including STM of differing MLVA types
collected over a longer time period [21, 34], the small
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SNP differences between some of our sporadic and
outbreak isolates again suggest the possibility of a
common environmental (i.e. farm) source. While our
sporadic cases clustered separately from outbreak iso-
lates by WGS, the small differences highlight the im-
portance of interpreting epidemiological data
alongside WGS findings. The WGS findings suggest
that further public health investigation and trace back
may be necessary to identify the potential source of
both outbreak and sporadic cases.

Unexpectedly, within our sporadic cases, WGS
grouped isolates into several apparent and previously
undetected mini-clusters. For one of these clusters, epi-
demiological data indicated the cases were geographic-
ally linked. For the others, while the sequencing of these
genomes suggested that they were related to each other,
public health investigation have not been able to identify
any common links between the cases. These findings
highlight the need for further comparisons of clusters
defined by genomic and public health surveillance and
the role of sporadic cases in the natural evolution of
outbreaks.

Our report adds to the emerging evidence that WGS
challenges traditional epidemiological and typing ap-
proaches in the investigation of foodborne outbreaks.
For example, previous studies of Salmonella Enteriti-
dis and STM suggested the ability of WGS to detect
previously unidentified clusters [35] and in a recent
study of Shigella sonnei, WGS differentiated apparent
outbreak strains into three genomically distinct clus-
ters and revealed misclassification by traditional
methods [17]. In another recent study in NSW, WGS
was able identify STM isolates that were not originally
considered to be part of the outbreak [25].

However, genomic surveillance provides only one line
of evidence [15] which has be to synthesised with epide-
miologic approaches to identify suspected sources [21].
This method, described as ‘the ultimate stain typing sys-
tem’ [13], has the potential to improve the definition of
community outbreaks and assist in a more rapid and tar-
geted public health response through accurate microbio-
logical discrimination of outbreak cases. Recently, a
study in the US suggested that WGS of Salmonella iso-
lates was feasible for prospective surveillance [35]. In
outbreaks of gastroenteritis caused by enterohaemorrha-
gic Escherichia coli (EHEC) in Europe, WGS enabled
tracking of outbreak isolates in real-time through the
identification of four informative SNPs unique for out-
break isolates [18] and through web-based bioinformat-
ics analysis [14]. The United States Food and Drug
Administration, in collaboration with the National
Centre for Biotechnology Information and public health
laboratories are trialling a centralised surveillance system
for WGS data [36]. However, significant challenges in
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bioinformatics infrastructure, data governance and training
of epidemiologists have to be addressed to fully realise ben-
efits of genomics-guided improvements in the delivery of
public health surveillance and response [37-39]. A robust
and standardised approach to identify potential outbreaks
needs to be developed based on the range of SNP differ-
ences and the likelihood of those resulting from a recent
common ancestor.

A limitation of our study was that we relied on retro-
spectively well-defined outbreaks. Our epidemiological
data, while robust, did not provide sufficient detail for
some sporadic cases, which emerged as potentially clus-
tered only following WGS.

Conclusions

Whole genome sequencing of STM associated with
acute gastroenteritis can illuminate distinct foodborne
community outbreaks amongst groups of isolates sharing
the same MLVA profile. Genomic analyses can also fur-
ther differentiate sporadic from outbreak cases and clus-
ter sporadic isolates within endemic MLVA types of
STM, which can significantly improve the resolution of
public health laboratory surveillance. These findings
strengthen the case for the adoption of WGS-guided
public health surveillance of human salmonellosis and
outlines the challenges of distinguishing sporadic cases
with minimal differences from outbreak cases.
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Additional file 2: Figure S1. Phylogeny of the outbreak A and M
strains in the context of national and international STM isolates. Genome
data analysed in Octavia et al. representing five STM outbreaks in
Australia [25]; Kingsley et al. representing ST313 outbreak in Malawi [30];
Leekitcharoenphon et al. representing six STM outbreaks in Denmark [15]
and Hawkey et al. representing STM DT135a outbreak in Australia [21]
were also included as comparisons and marked as the corresponding
study/outbreak. Other branches that are not labelled are background
isolates from the above studies; draft genomes from Pang et al. [29]
which include five diverse Australian STM isolates; Fu et al. representing
Salmonella reference collection A; [28] and other fully sequenced STM
genomes available from GenBank including LT2 (Accession No. NC003197),
798 (Accession No. CP003386), DT2 (Accession No. HG326213), DT104
(Accession No. HF937208), 14028S (Accession No. CP001363), SL1344
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branches. (PPTX 74 kb)
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