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Abstract

Increasing evidence suggests that patients with pulmonary arterial hypertension (PAH) demonstrate abnormalities in the bone

marrow (BM) and hematopoietic progenitor cells. In addition, PAH is associated with myeloproliferative diseases. We have pre-

viously demonstrated that low-dose lipopolysaccharide (LPS) is a potent stimulus for the development of PAH in the context of a

genetic PAH mouse model of BMPR2 dysfunction. We hypothesized that the hematopoietic progenitor cells might be driving

disease in this model. To test this hypothesis, we performed adoptive transfer of BM between wild-type (Ctrl) and heterozygous

Bmpr2 null (Mut) mice. Sixteen weeks after BM reconstitution, mice were exposed to low-dose chronic LPS (0.5 mg/kg three times

a week for six weeks). Mice underwent right heart catheterization and tissues were removed for histology. After chronic LPS

dosing, Ctrl mice in receipt of Mut BM developed PAH, whereas Mut mice receiving Ctrl BM were protected from PAH. BM

histology demonstrated an increase in megakaryocytes and there was an increase in circulating platelets in Ctrl mice receiving Mut

BM. These findings demonstrate that the hematopoietic stem cell compartment is involved in the susceptibility to PAH in the Mut

mouse. The results raise the possibility that hematopoietic stem cell transplantation might be a potential treatment strategy in

genetic forms of PAH.
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Bone marrow (BM) disorders are recognized as a cause
of pulmonary hypertension (PH), currently classified in
group 5 PH.1 This can be mediated through associated
changes in thrombotic risk or by alternative mechanisms
not well understood.2 In patients with myelofibrosis it
has been reported that up to 36% of patients have evidence
of pulmonary arterial hypertension (PAH).3 In the
idiopathic form of PAH, Farha et al.4 identified a subclinical
myeloproliferative process and, unexpectedly, in non-
affected family members similar myeloid abnormalities
were described.

A number of studies have investigated the role of
BM-derived cells in PAH. Patients with PAH have higher
circulating numbers of CD133þ cells and CD34þ cells
compared with healthy controls.4,5 Studies of the peripheral
circulating CD133þ fraction from PAH patients suggest
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there are more multipotent progenitors which showed a
greater myeloid commitment.6 Furthermore, it was previ-
ously shown that mice infused with CD133þ cells from
PAH patients developed pulmonary vascular remodeling,
thromboses, and right ventricular hypertrophy.6 The poten-
tial importance of hematopoietic progenitors in the patho-
biology of PAH has been suggested in the Bmpr2 mutant
mouse overexpressing the human mutation, R889x.7 In this
severe loss of function model of BMPR2, transplantation of
R889x Bmpr2 BM cells was sufficient to induce PAH.

Mutations in the gene encoding the bone morphogenetic
protein type 2 receptor (BMPR2) are the commonest genetic
cause of PAH. More than 70% of patients with familial
PAH and up to 25% of patients with sporadic cases of idio-
pathic PAH carry a mutation in BMPR2. Dysfunction of
BMPR2 signaling has been shown by our group8,9 and
others10,11 to contribute to non-genetic forms of PH in
experimental animal models12,13 and in man.8 The BMPR2
pathway plays an important role in the inhibition of cellular
proliferation in pulmonary arterial smooth muscle cells and
fibroblasts.14,15 Several studies have shown that mutations
in BMPR2 promotes pulmonary artery endothelial cell
apoptosis, proliferation, and dysfunction.5,16,17

Intriguingly, Bmpr2 heterozygous null mice do not spon-
taneously develop PAH. In human heritable PAH, the pene-
trance of PAH in patients carrying heterozygous BMPR2
mutations is reduced (on average 20–30%) and the concept
that a ‘‘second hit’’ is needed has arisen. Inflammation has
been posited as one possible trigger for disease.15,18 Consistent
with a role for inflammation driving the development of PAH,
Bmpr2 heterozygous null mice developed marked PAH when
exposed chronically to low dose lipopolysaccharide (LPS) for
six weeks, whereas wild-type mice did.19

Since inflammation is known to mobilize hematopoietic
cells from the BM, we questioned whether transplantation
of hematopoietic stem cells would influence susceptibility to
PAH in Bmpr2 heterozygous mice exposed to chronic low-
dose LPS.

Methods

Description of mouse genetic models

Mice heterozygous for a null allele in Bmpr2 (Mut) gener-
ated on a C57BL/6J strain were kindly provided by
H. Beppu.20 Hereafter, these mice will be referred to as
Mut mice. The B6-tg CAG-EGFP mouse (Jax, USA) was
used in order to be able to identify the transplanted BM cells.

Hematopoietic stem cell transplantation

Bmpr2þ/þ C57/BL6 mice (Ctrl) (n¼ 22) were lethally BM
irradiated using two split doses of 5 Gy21 and transplanted
with BM from GFP-expressing Ctrl mice (1� 106 cells,
n¼ 11) or BM from GFP-expressing Bmpr2þ/� mice (Mut)
(n¼ 11) via a tail-vein injection.7 Mut mice (n¼ 8) were

lethally BM irradiated using two split doses of 5 Gy and
transplanted with whole BM from GFP-expressing Mut
mice or Ctrl mice (1� 106 cells) via a tail-vein injection.22

In order to prepare the BM cells for transplantation, the
femurs were flushed and the BM cells were put through a
40-um strainer to remove debris. Cells were incubated with
penicillin streptomycin, spun down at 100 rpm for 5min at
room temperature, and suspended in the desired volume of
phosphate-buffered saline (PBS). Both male and female mice
were used. All protocols and surgical procedures were
approved by the local animal care committee.

Assessment of bone marrow reconstitution

At four and 16 weeks post irradiation, the degree of BM
reconstitution was determined by flow cytometry. All mice
had a fully reconstituted BM determined by percentage GFP
expression in the BM, by 16 weeks post irradiation (Suppl.
Fig. 1). To assess the degree of BM reconstitution, periph-
eral blood was collected in EDTA-coated tubes (Sarstedt,
Germany), red blood cells were lysed in Pharmlyse (BD
Biosciences, USA), and samples were run on a flow cyt-
ometer (FACSCantoII, BD Biosciences, USA). To deter-
mine full blood counts, peripheral blood was collected in
EDTA-coated tubes and analyzed on a Wooley ABC
(mouse) analyzer (Bolton, UK).

LPS administration

Mice were exposed to LPS derived from Escherichia coli
O111:B4 (Sigma-Aldrich, St. Louis, MO, USA). Mice were
injected intraperitoneally three times per week with LPS
(0.5mg/kg) and humanely killed after six weeks, as previ-
ously described.23 In addition, control animals were injected
with PBS. In all figures, mice were treated with LPS, except
if explicitly stated.

Measurement of indices of pulmonary hypertension

At the end of six weeks exposure to LPS, mice were anesthe-
tized using fentanyl and medazalam before hemodynamic
assessment. Body weight was recorded and right heart cath-
eterization was performed to measure right ventricular sys-
tolic pressure (RVSP), as previously described.18 The degree
of right ventricular hypertrophy was determined from the
RV/(LVþS) ratio, as previously described.18

Lung tissue preparation

Following hemodynamic assessment, the left lung was fixed
in situ in the distended state by infusion of 4% paraformal-
dehyde (PFA):OCT (Sakura, Japan) into the trachea, and
then placed into 4% PFA for 2 h before embedding in OCT
by freezing on dry ice. Samples were subsequently embedded
in paraffin. The remaining lung lobes were frozen in liquid
nitrogen.
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Pulmonary vascular morphometry

Lung tissues were stained with anti-smooth muscle a-actin
(a-SMactin) (DakoCytomation, UK) as previously
described.24 To measure the medial thickness of small pulmon-
ary arteries associated with terminal bronchioles, vessels were
photographed at 400�magnification using MediaCybernetics
software (Bethesda, MD, USA). Percentage wall thickness was
determined using ImageJ and expressed as the percentage of
the average width of the tunica media to the average diameter
of the vessel (n¼ 10 arteries per animal), as previously
described.24 Peripheral muscularization was determined by
counting the number of non-muscularized, partially muscular-
ized, and fully muscularized vessels in each lung section.24

Bone marrow histology

Femurs were collected and placed in 10% paraformaldehyde
for 24 h and then transferred to 10% EDTA to soften and
decalcify the bone for histology.25 The EDTA was changed
daily for three weeks. The femurs were then embedded into
paraffin blocks and sectioned. Sections were stained with
hematoxylin and eosin (H&E). Immunohistochemistry was
performed for von Willebrand factor (vWF).

Spleen histology

The spleens were fixed in 10% paraformaldehyde, embedded
into paraffin blocks, and sectioned. Sections were stained
with H&E. Photographs were taken at 400�magnification
with MediaCybernetics software (Bethesda, MD, USA).

Statistical analysis

Where appropriate, whether data fitted a normal distribu-
tion were tested using the Kolmogorov–Smirnov method

(Prism, La Jolla, CA, USA). Where data did not conform
to a normal distribution, a non-parametric analysis was
applied. Data are presented as mean� standard error of
the mean (SEM) or median, where appropriate. Data were
compared using one-way ANOVA and a Tukey’s post-hoc
test, Student’s t-test (parametric), or Mann–Whitney test
(non-parametric) as appropriate.

Results

The Bmpr2 status of transplanted hematopoietic stem
cells alters susceptibility to PAH

In order to determine whether the Bmpr2 status of hem-
atopoietic stem cells plays a role in the development
of PAH, adoptive transfer of BM was performed. Sixteen
weeks after adoptive transfer, mice were injected with low-
dose LPS three times per week for six weeks (Fig. 1).23 Ctrl
mice that received Mut BM demonstrated increases in
RVSP (P< 0.05) compared to their control counterparts
(Fig. 2a). Conversely Mut mice that received Ctrl BM
were protected from the development of PH during LPS
exposure (Fig. 2a), when compared to controls (P< 0.05).
Ctrl mice transplanted with Ctrl BM, as expected, did not
show any increase in RVSP following chronic LPS expos-
ure. There was no difference in the degree of right ventricu-
lar hypertrophy (Fig. 2b) or total heart weight (Fig. 2c)
between any of the groups. A separate cohort of mice
that had undergone adoptive transfer were injected with
PBS three times a week for six weeks (Suppl. Fig. 2).
The only significant difference between the PBS cohort
and the LPS cohort was that Ctrl mice transplanted with
Ctrl BM and treated with LPS showed a significant reduc-
tion in RVSP (P< 0.05). The number of Ctrl mice that
received Mut BM and treated with PBS was too low to
test for significance.

1000 rad γ irradia�on - 137Cs source

1X106 cells

Mice 7
wks old

γ Irradia�on
+ BM 
Recons�tu�on
1X106 cells/mouse

4 wks 
bleed

16 wks
bleed

Lung �ssue

RVSP
RV/LV+S

Blood
Spleen
Bone-marrow

LPS challenge
0.5mg/kg – 3X/week

or

6 weeks

+/+ (Ctrl)

+/-
(Mut)

+/+
(Ctrl)

Fig. 1. An example of the BM transplant protocol. Control (Ctrl) mice were irradiated and given a BM transplant from GFP-expressing Ctrl or

mutant (Mut) mice. Mut mice were irradiated and given a BM transplant from GFP-expressing Ctrl or Mut mice. Mice were bled for reconstitution

check at 4 and 16 weeks post irradiation. Mice were treated with LPS 3 times a week for 6 weeks. Mice then underwent right heart cath-

eterization and tissue was removed.
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Increased pulmonary vascular remodeling in mice
transplanted with Mut bone marrow

Mice that received adoptive transfer of Mut BM and LPS
exposure demonstrated an increase in medial thickness of
the pulmonary arterioles associated with terminal bronchi-
oles (Fig. 3a) (P< 0.05). Representative images are shown in
Fig. 3c. There were no differences in wall thickness between
the two groups of mice with Mut BM. In addition, mice that
received Mut BM exhibited a significant increase in the per-
centage of fully muscularized peripheral arterioles at the
level of the alveolar ducts, compared with mice receiving
Ctrl BM (Fig. 3b) (P< 0.05).

Mice with Mut bone marrow exposed to LPS exhibit
heavier spleens

There was a significant increase in spleen weight (P< 0.05)
in Ctrl mice receiving Mut BM and exposed to LPS
(Fig. 4a). In contrast, spleen weight did not increase in
mice receiving Ctrl BM and exposed to LPS. Since only
mice that received Mut BM exhibited an increase in spleen
weight, we compared the splenic histology between groups.
Spleen from mice transplanted with Mut BM exhibited
increased numbers of granulocytes, erythrocytes, and mega-
karyoctes than mice with wild-type BM. In a quantitative
analysis, mice transplanted with Mut BM exhibited more

megakaryocytes in the spleen compared with mice with
Ctrl BM (Fig. 4b). This was statistically significant in Mut
mice with Mut BM (P< 0.05) and narrowly failed to
reach significance in Ctrl mice with Mut BM (P¼ 0.055).
Figure 4c shows representative H&E images of the spleen.

Increased circulating platelets and bone marrow
megakaryocytes in mice receiving Mut bone marrow

There were no differences in the numbers of peripheral cir-
culating blood cells of all groups, except in the levels of
platelets (Fig. 5e). We consistently observed increases in
circulating platelet numbers (P< 0.05) in mice receiving
Mut BM exposed to LPS. Histological examination of the
femurs showed an increase in megakaryocyte numbers in
the femurs of Mut mice compared with Ctrl mice, and
Ctrl mice receiving Mut BM (Fig. 6a). In animals that
received LPS, there was a profound alteration of the BM,
with reduced hematopoietic cells and a replacement of BM
by expansion of adipocytes (Fig. 6b). This was seen in mice
with both Ctrl and Mut BM (Suppl. Fig. 3) and is therefore
predominantly an effect of LPS treatment.

Discussion

We demonstrate that susceptibility to PAH can be
conferred onto a wild-type (Ctrl) animal by transplantation
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Fig. 2. (a) Bar graph showing right ventricular systolic pressure (RVSP), control mice with control BM (Ctrl/Ctrl) (n¼ 6) or with mutant BM

(Ctrl/Mut) (n¼ 7), mutant mice with control BM (Mut/Ctrl) (n¼ 4) or with mutant BM (Mut/Mut) (n¼ 4). (b) Right ventricular index (RV/LVþS),

Ctrl/Ctrl (n¼ 6), Ctrl/Mut (n¼ 8), Mut/Ctrl (n¼ 5), Mut/Mut (n¼ 5). (c) Total heat weight, Ctrl/Ctrl (n¼ 6), Ctrl/Mut (n¼ 8), Mut/Ctrl (n¼ 5),

Mut/Mut (n¼ 5). All mice were treated with LPS. Data are presented as mean� SEM. *P< 0.05.

4 | HSC transplantation in pulmonary hypertension Crosby et al.



of Bmpr2-deficient BM. We also demonstrate that trans-
planting Ctrl BM into Mut mice prevents the development
of PAH. An increase in pulmonary vascular remodeling,
enlarged spleens and an increase in circulating platelets

and an increase in megakaryocytes in the femurs were
observed in all animals with a reduction of Bmpr2 in the
BM. This demonstrates the importance of the BM in the
development of PAH.
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We note that the hemodynamic responses to BM trans-
plant alone are more modest than in our original description
of the Bmpr2þ/� LPS model.23 This is consistent with a role
for the immune system in development of PAH but high-
lights that there is likely an additive effect on top of loss of
BMPR2 in the pulmonary vasculature. In addition, these
mice underwent a BM transplant and a different lot
number of LPS was used in the current study. To some
degree this could also help explain the differences in pressure
between the studies.

The increase in spleen weight in Mut mice exposed to
LPS is particularly interesting. There have been previous
reports of splenomegaly in idiopathic PAH (IPAH).26 The
spleen plays an important role not only in the degradation
and storage of red blood cells but also plays a central role in
the mononuclear phagocytic system.27 The red pulp of the
spleen has been shown to be a reservoir that contains> 50%
of the body’s monocytes.27 It may be that extramedullary
hematopoiesis is occurring in the spleens of these mice, con-
tributing to the increase in circulating platelets observed.

In mice with Mut BM, not only was there an increase in
circulating platelets but also an increase in megakaryocytes
in the femurs and in the spleen. Megakaryocytes are hem-
atopoietic cells that account for approximately 0.05–0.1%
of all nucleated BM cells.28 Megakaryocytes produce plate-
lets, which bud off the pseudopodia in the BM sinusoids.
Each megakaryocyte can produce up to 1000–3000 platelets.
It is possible that altering BMPR2 expression in the BM
may affect megakaryocyte development or function.

We view it as surprising that the major difference in the
response of mice with Ctrl BM and Mut BM to LPS were in
the megakaryocytes and platelets. Platelets have not been
extensively studied in PAH; however, they are well described

as having a role in regulation of vascular homeostasis. They
are known to be a major regulator of angiogenesis releasing
a number of bioactive substances such as PDGF, serotonin,
and nitric oxide, which regulate vasoconstriction and throm-
bosis. In experimental models, platelets have been shown to
play a role in the development of PAH.29 It has recently
been shown that platelets from patients with IPAH have a
reduction in endothelial nitric oxide synthetase (eNOS)
compared with platelets from controls.30

An interesting question as to whether GFPþBM
cells were incorporated into the lung tissue remains.
Unfortunately, due to technical issues, we were unable to
demonstrate this. This information would lead to a further
mechanism for the development of PAH in these mice.

A working hypothesis is presented in Fig. 7. We have
clarified that the BM-mobilized response is critical for the
chronic LSP model of disease; however, we have not yet
delineated how this is mediated. We do note an unexpected
change in megakaryocytes and platelets with splenomegaly
and future work will focus on whether this is pathogenetic.

The importance of the BM in Bmpr2 mouse models has
previously been established in a mice overexpressing mutant
Bmpr27 and now we present data in the setting of Bmpr2
deficiency combined with a second hit. One obvious ques-
tion is whether donor-matched BM or even autologous
BMPR2 correction and transplantation can be a therapeutic
avenue in PAH. Genetic rescue of autologous hematopoietic
stem cells could be considered, reducing the need for
immunosuppression after transplantation. A note of caution
is appropriate given the example of scleroderma where BM
transplantation is being pioneered and PH is known to be a
risk factor for short-term complications.31 Any proposed
studies in PAH would have to carefully consider this. In
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addition, it should be noted that this is a prevention study
and not a reversal of existing disease.

In summary, the Bmpr2þ/� LPS mouse model of PAH is
partly driven by the BM-mobilized response and can be
abrogated by transplantation of normal BM. This opens
up potentially exciting questions about pathogenesis of the
disease and novel treatment avenues.
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