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Abstract: The UNited RESidue (UNRES) model of polypeptide chains was applied to study the
association of 20 peptides with sizes ranging from 6 to 32 amino-acid residues. Twelve of those were
potentially aggregating hexa- or heptapeptides excised from larger proteins, while the remaining
eight contained potentially aggregating sequences, functionalized by attaching larger ends rich in
charged residues. For 13 peptides, the experimental data of aggregation were used. The remaining
seven were synthesized, and their properties were measured in this work. Multiplexed replica-
exchange simulations of eight-chain systems were conducted at 12 temperatures from 260 to 370 K at
concentrations from 0.421 to 5.78 mM, corresponding to the experimental conditions. The temperature
profiles of the fractions of monomers and octamers showed a clear transition corresponding to
aggregate dissociation. Low simulated transition temperatures were obtained for the peptides, which
did not precipitate after incubation, as well as for the H-GNNQQNY-NH2 prion–protein fragment,
which forms small fibrils. A substantial amount of inter-strand β-sheets was found in most of the
systems. The results suggest that UNRES simulations can be used to assess peptide aggregation except
for glutamine- and asparagine-rich peptides, for which a revision of the UNRES sidechain–sidechain
interaction potentials appears necessary.

Keywords: peptide aggregation; molecular dynamics; replica exchange; UNRES model

1. Introduction

Peptides and peptidomimetics have since long been used as drugs, which act as
enzyme inhibitors, agonists or antagonists of hormones or neurotransmitters or induce
immunoresponse [1–3]. It is estimated that the Peptide Therapeutics Market is going to
reach $50.60 billion by 2026 [4]. Peptides as therapeutics have many advantages, including
high selectivity for target molecules and good biocompatibility with the human organism.
Moreover, owing to their smaller size, they exhibit better tumor penetration in comparison
to monoclonal antibodies [5].

Good solubility in water and disinclination to aggregation are often required for a
designed peptide to become a drug candidate [6–8]. Peptide solubility and tendency to
aggregation in water can be assessed quickly based on the fraction of polar and charged
residues and the estimated isoelectric point [9]. However, this method provides only a
cursory estimation and the actual peptide–peptide interactions should be considered to
determine whether the aggregates are stable under any given conditions.

Peptide aggregation can result in the formation of amyloid deposits in the nerve tissue,
causing a variety of neurodegenerative diseases, such as Parkinson’s and Huntington’s
diseases and familial amyloidoses [10].

In living organisms, the peptides formed by the enzymatic digestion of proteins
(e.g., the amyloid-beta, Aβ42 peptide cleaved from the amyloid-precursor protein [11],
polyglutamine chains cleaved from Huntington [10], the repeat domains of the Tau protein
(TauRD) [12], etc.) typically form amyloid deposits. Even though a number of measures
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have been attempted to prevent amyloidoses, including the use of nanoparticles [13], the
problem is far from being solved. On the other hand, the aggregation of designed peptides
can be beneficial, enabling us to design new materials [14] and gels [15].

Molecular-simulation methods have long been used to study peptide aggregation,
including both all-atom [16–18] and coarse-grained (CG) methodologies [19]. Of those,
the methods based on CG models offer much longer time- and size-scales, including the
possibility of simulating aggregation from scratch, even though this extension is achieved
at the inevitable expense of modeling accuracy. Many dedicated CG models, e.g., the
Bereau–Deserno model [20], have been developed to study aggregation, including those
dedicated to study the glutamine-rich systems [21]. The CG models also include minimal
ones, designed to study the general features of the aggregation process [22].

In this study, we used the physics-based UNRES coarse-grained model [23–26] devel-
oped in our laboratory to investigate the association of 16 peptides, whose aggregation
has already been studied experimentally [27–34], as well as of four new peptides. These
peptides have sizes ranging from 6 to 32 amino-acid residues and varying contents of
hydrophobic, polar and charged residues. Of those, 12 are hexa- or heptapeptides excised
from the β-sheet and loop regions of human cystatin C [27,34], the Tau protein [28,33], or
the Sup36 prion protein [29,30] and are potentially aggregation-prone.

The other ones contain potentially aggregating sequences merged with charged se-
quences with the intent of making functionalized gels or films or are signaling peptides [31,32].
Even though the aggressive coarse-graining has been implemented in UNRES (only two
sites per residue), it is capable of ab initio modeling the structure, dynamics, thermodynam-
ics and free-energy landscapes of small and medium-size proteins and bioninformatics-
and data-assisted modeling of large proteins, including oligomeric proteins [23,26].

It is regularly being tested in the biannual Community Wide Experiments on the
Critical Assessment of Techniques for Protein Structure Prediction (CASP) [35]; see Ref. [36]
for recent results. It has also been used with success to study the aggregation of the Aβ
amyloidogenic peptides [37–39] and the association of the Aβ and Tau peptides [40,41].

2. Materials and Methods
2.1. Peptides Studied

The sequences of the peptides studied, together with the total charges at pH = 7
estimated by the peptcalc.com utility [42], grand hydropathy indices (GRAVY), estimated
based on the Kyte and Doolitle hydropathic indices [43] using the ExPasy [44] protparm
tool (https://web.expasy.org/protparam/ accessed on 8 August 2022), experimental con-
centrations, box-side lengths used in simulations, aggregation information, the types of
aggregates if formed and literature sources, if applicable, are collected in Table 1. As
shown, of the 20 peptides considered, only three did not precipitate after the up to 21-day
incubation period. The results of our simulations correspond to equilibrium ensembles, i.e.,
to an infinitely long incubation period.

2.2. Experimental Procedures

As shown in Table 1, the data of 13 of the peptides studies were taken from our
previous work [27,31,32,34]. Three peptides (Tau R2/wt, Tau R3/-P312 and Sup35(7-13)
were studied by other researchers [28,29,33]; however, we synthesized them and performed
measurements in this work. The remaining four peptides (CysZ14, QIVFFA, KGHK-KGHK
and IM-IM) have not been studied previously.

https://web.expasy.org/protparam/
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Table 1. The peptides studied in this work.

Short Name a n b Sequence Q c GRAVY d C [mM] e l [Å] f Assoc. g Source

CysZ1 6 H-ARKQIV-NH2 3.0 −0.233 4.210 146.7 no [27]
CysZ2 6 H-RKQIVA-NH2 3.0 −0.233 4.210 146.7 sf [27]
CysZ3 6 H-KQIVAG-NH2 2.0 0.450 4.888 139.5 sf [27]
CysZ4 6 H-QIVAGV-NH2 1.0 1.800 2.565 173.0 f [27]
CysZ5 6 H-IVAGVN-OH 1.0 1.800 5.257 136.2 sf [27]
CysZ8 6 H-GVNYFL-NH2 1.0 0.933 2.110 184.6 f [27]
CysZ13 6 H-QAGIVV-NH2 1.0 1.800 1.710 198.0 f [27]
CysZ14 6 H-QIGVAV-NH2 1.0 1.800 1.710 198.0 f h

QIVFFA 6 H-QIVFFA-NH2 1.0 2.100 1.384 212.5 f h

Tau R2/wt 6 H-VQIINK-NH2 2.0 0.383 5.784 131.9 f [28] h

Tau R3/-P312 6 H-VQIVYK-NH2 2.0 0.700 1.337 215.0 f [28,45] h

Sup35(7-13 ) 7 H-GNNQQNY-NH2 1.0 −2.743 1.196 223.1 sf [29,30] h

KGHK-KGHK 18 Ac-KGHKGGGAAPVGGGKGHK-NH2 4.2 −1.056 0.609 279.3 no h

IM-IM 22 Ac-RDKVYRGGGAAPVGGGRDKVYR-NH2 4.0 −1.055 0.421 316.0 no h

FC-GHK 19 Ac-GHKGGGAAPVGGGQAGIVV-NH2 4.0 0.374 0.614 278.7 f [31]
FC-KGHK 20 Ac-KGHKGGGAAPVGGGQAGIVV-NH2 2.1 0.160 0.569 285.8 f [31]
FC-IM 22 Ac-RDKVYRGGGAAPVGGGQAGIVV-NH2 2.0 0.050 0.470 304.5 f [31]
RADA-IM 32 Ac-(RADA)4-GGGAAPVGGGRDKVYR-NH2 2.0 −0.853 3.116 162.1 Fg [32]
RADA-GHK 28 Ac-(RADA)4-GGGAAPVGGGHK-NH2 1.1 −0.746 3.763 152.3 Fg [32]
RADA-KGHK 30 Ac-(RADA)4-GGGAAPVGGGKGHK-NH2 2.1 −0.840 3.518 155.7 Fg [32]

a CysZ1—CysZ5, CysZ8, CysZ13 and CysZ14: peptides excised from the human cystatin β-sheet or loop regions;
Tau R2/wt and Tau R3/-P312: peptides excised from the Tau protein; Sup35(7-13): the 7–13 fragment of the prion
Sup35 protein; KGHK-KGHK and IM-IM: signaling peptides; FC-GHK, FC-KGHK, FC-IM: functionalized human
cystatin fragments that form wound-healing films; RADA-IM—RADA-KGHK: potentially aggregating sequences
merged with charged sequences, which are signaling peptides that form gels; b Number of residues; c Total charge
at pH = 7, estimated using the peptcalc.com utility [42]; d Grand hydropathy index, estimated based on the Kyte
and Doolitle hydropathic indices [43], using the ExPasy [44] protparm tool (https://web.expasy.org/protparam/
accessed on 8 August 2022) ; e Experimental concentration; f Cubic box-side length applied in simulations,
corresponding to the experimental peptide concentration; g Form of association; no: no association; f: fibrils;
sf: small fibrils; Fg: the peptides form gels (immediately after dissolution), which show fiber structure in TEM
images; h This work.

The seven peptides mentioned above—CysZ14, QIVFFA, Tau R2/wt, Tau R3/-P312,
Sup35(7-13), KGHK-KGHK and IM-IM—were synthesized by means of the standard
solid phase method using a Liberty BlueTM automated microwave synthesizer (CEM
Corporation, Matthews, NC, USA). The syntheses were performed according to the Fmoc
chemistry methodology using N−Fmoc protected amino acids.

The raw products were purified using semi-preparative column Jupiter Proteo C12
(Phenomenex, Torrance, CA, USA). The pure products were analyzed using analytical RP-
HPLC and mass spectrometry (BIFLEX III MALDI-TOF, Bruker, Germany and LC-MS ESI-
IT-TOF, Shimadzu, Japan). The detailed procedure of the synthesis steps, the concentrations
of the coupling and deprotection reagents we used, as well as the purification conditions
were described in our earlier work [31].

The peptides were dissolved by shaking the samples in water (applying ultrasound if
necessary) at the temperature of 37 ◦C (310 K). Under these conditions, all peptides were
soluble at the concentrations specified in Table 1.

Circular dichroism (CD) measurements were made for the peptide solutions before
and after incubation, except for RADA-IM—RADA-KGHK, which formed gels almost
immediately, and for the non-associating KGHK-KGHK and IM-IM peptides. After the
incubation period, the peptide precipitate was removed by centrifugation prior to recording
the CD spectra of the peptides remaining in solution.

The CONTIN program from the CDPro package [46] was used to estimate the fractions
of extended, α, turn and statistical coil peptides. The calculated fractions are summarized

https://web.expasy.org/protparam/
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in Table 2. Transmission Electron Microscopy (TEM) was used to determine the shapes of
the aggregates.

Table 2. Fractions of secondary structure of the solutions of the peptides studied before and after
incubation determined from CD measurements.

Peptide
Before Incubation After Incubation

fe
a fα

a ft
a fc

a fe
a fα

a ft
a fc

a

CysZ1 0.36 0.05 0.19 0.40 0.37 0.05 0.19 0.39
CysZ2 0.37 0.05 0.19 0.39 0.37 0.05 0.19 0.39
CysZ3 0.38 0.05 0.20 0.37 0.39 0.05 0.19 0.37
CysZ4 0.37 0.05 0.20 0.38 0.59 0.07 0.20 0.14
CysZ5 0.48 0.03 0.19 0.30 0.44 0.03 0.21 0.32
CysZ8 0.40 0.04 0.21 0.35 0.47 0.04 0.21 0.28
CysZ13 0.37 0.05 0.20 0.38 0.44 0.04 0.20 0.33
CysZ14 0.33 0.21 0.17 0.29 0.30 0.19 0.20 0.29
QIVFFA 0.59 0.01 0.18 0.22 0.59 0.01 0.18 0.22
Tau R2/wt 0.53 0.02 0.19 0.26 0.53 0.02 0.19 0.26
Tau R3/-P312 0.41 0.04 0.21 0.34 0.46 0.03 0.20 0.31
Sup35(7-13) 0.42 0.05 0.20 0.33 0.42 0.04 0.21 0.33
KGHK-KGHK b 0.25 0.06 0.23 0.46 – – – –
IM-IM b 0.47 0.02 0.21 0.30 – – – –
FC-GHK 0.38 0.04 0.20 0.38 0.34 0.10 0.26 0.30
FC-KGHK 0.44 0.04 0.20 0.32 0.39 0.05 0.21 0.35
FC-IM 0.40 0.05 0.20 0.35 0.49 0.03 0.20 0.28
RADA-IM c 0.48 0.05 0.21 0.26 – – – –
RADA-GHK c 0.45 0.06 0.22 0.27 – – – –
RADA-KGHK c 0.42 0.06 0.22 0.30 – – – –

a Fractions of extended (e), α, turn (t) and statistical-coil (c) structure, respectively, estimated based on CD spectra
using the CONTIN program of the CDPro package [46]; b CD measurements were not performed after incubation;
c These peptides form gels almost immediately, and therefore the CD measurements were made for gels.

2.3. Coarse-Grained Simulations

The coarse-grained simulations were conducted with the UNRES model of polypeptide
chains [23,26], using the scale-consistent NEWCT-9P variant of the UNRES force field
developed and parameterized in our recent work [24,25]. Briefly, UNRES is a highly coarse-
grained model, in which a polypeptide chain is represented as a sequence of α-carbon (Cα)
atoms, with united sidechains attached by virtual bonds to the respective Cα atoms and the
united peptide groups located in the middle between two consecutive Cα atoms. Only the
united peptide groups and united sidechains are interaction sites, with the Cαs serving to
define the backbone geometry.

The solvent is implicit in the interaction potentials. The sites and the corresponding in-
teraction potentials have axial and not spherical symmetry and multibody terms are present
to couple the backbone-local and backbone-electrostatic interactions, which is necessary for
the correct modeling of regular secondary structures. The present parameterization of the
sidechain–sidechain interaction potentials corresponds to physiological pH. The different
flexibility of glycine and of the proline residues is accounted for in the backbone-local and
backbone-multibody potentials [25]. UNRES can also handle dynamic formation and the
dissociation of disulfide bonds [47].

The details of the model and the recent variant of the force field can be found in the
references cited [23–26]. We used the parallelized UNRES program [48], which was recently
heavily upgraded and optimized [49]. For each peptide, the simulations were conducted
for eight chains in a cubic periodic box at a constant volume. Consequently, the peptide
concentration was fixed at the respective experimental values for each system studied. The
side of a box corresponded to the experimental peptide concentration. The box-side lengths
are summarized in Table 1.
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We chose to simulate only eight-chain systems because achieving convergence of the
ensembles was critical in the determination of the aggregate-dissociation temperatures
and, therefore, in the assessment of whether a peptide aggregates at the experimental
sample-incubation temperature. This setup is similar to that of the protocol recommended
for all-atom simulations with GROMACS [50], in which six molecules are placed in a cubic
periodic box with the 100 Å side [17].

We conducted multiplexed replica exchange molecular dynamics (MREMD) [51]
simulations, using Lagrange molecular dynamics and the MREMD extension implemented
in UNRES [52–55], which were recently optimized in the revised UNRES package [49]. It
should be noted that MREMD is a method for searching the conformational space and,
consequently, to determine equilibrium conformational ensembles and ensemble averages,
which is sufficient for the purpose of the present study. On the other hand, because each
replica walks in the temperature space during the course of a simulation, MREMD is not
appropriate to study the time evolution of a system.

For each systems, the replicas were run at 12 temperatures equal to 260, 272, 279, 284,
288, 291, 294, 298, 308, 322, 341 and 370 K, which were determined using the Hansmann
algorithm [56] to provide the maximum number of walks in the temperature space. Each
replica was multiplexed by 4, this giving a total of 48 trajectories for each system.

All simulations were run in the Langevin-dynamics mode, which provides a canonical
ensemble, the time step being 9.78 fs. The viscosity of water was scaled by the factor of
0.02 to speed up the simulations. Replicas were exchanged every 10,000 MD steps, and
snapshots were saved at each exchange point. The number of MD steps of each trajectory
ranged from 40,000,000 to to 120,000,000 (from about 0.4 to 1.2 µs) for the hexapeptide
systems and from 80,000,000 to 320,000,000 (from about 0.8 µs to about 3.2 µs) for larger
peptides. Each trajectory was started from chains randomly placed in the box, with each
chain in a randomly-generated conformation, subject to the condition of non-overlap.

Each simulation was run until converged. The convergence was checked by monitor-
ing the temperature profiles of f8(T) (the fraction of octamers) (Equation (1)) averaged over
the consecutive 10,000,000-steps (1000-snapshot) windows, taking every eighth snapshot
from the respective trajectory window (a total of 48,000/8 = 6000 snapshots per window, for
all 48 trajectories). For each system, the standard deviations of f8(T) (σf8 ) at the subsequent
simulation windows (except for the last one) from the last window were calculated and
plotted in window index. A simulation was considered to be converged if σf8 stopped to
decrease. A sample plot for the CysZ3 and the RADA-KGHK systems is shown in Figure 1.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2  4  6  8  10  12

σ
f 8

window index

CysZ3
RADA-KGHK

Figure 1. Plots of the standard deviation of the fraction of octamers (σf8 ) of the subsequent simulation
window, except from the last one, from that of the last simulation window for the CysZ3 and
RADA-KGHK systems. The graph was drawn with gnuplot [57].
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It should be noted that, owing to the elimination of the fast degrees of freedom
in UNRES, a time unit of UNRES simulations corresponds to about 1000 time units of
all-atom simulations [49,53] and, consequently, the millisecond time scale was reached
in our simulations. Therefore, for each trajectory, the time covered by our simulations
is effectively 400–3200-times greater than that recommended in the GROMACS-based
all-atom protocol [17]. The search of the conformational space is further accelerated by
MREMD. Nevertheless, even with this extension, the simulation time-scale is far from the
experimental incubation time, and, consequently, the convergence of the ensembles could
only be achieved given the small number of chains.

2.4. Analysis of Simulation Results

After convergence was achieved, the last 1000 snapshots from each trajectory with
the sampling frequency of 8 (a total of 6000 snapshots) were taken for further analysis,
which was performed using our implementation [54] of the binless Weighted Histogram
Analysis Method [58]. WHAM enabled us to compute the temperature profiles of the
ensemble-averaged quantities and to determine the conformational ensembles at selected
temperatures, which were the room temperature, at which the CD measurements were
made and the incubation temperature, respectively.

The conformational ensembles were dissected into five clusters by means of Ward’s
minimum-variance method [59]. The clusters were ranked by the cumulative probabilities
of the constituent conformations, as described in our earlier work [54]. The structure
closest to the mean structure of the respective cluster was selected as the representative of
the entire cluster. Selected structures were converted to the all-atom structures using the
PULCHRA [60] and SCWRL [61] algorithms.

To analyze the dependence of peptide association on temperature, we computed the
temperature profiles of the fractions of isolated (monomeric) chains and chains in m-chain
oligomers, fm(T), where m = 1 for a monomer (Equation (1)).

fm(T) =
N

∑
i=1

wi(T) fmi (1)

where fmi is the fraction of chains in the m-chain oligomer in snapshot i, wi(T) is the weight
of snapshot i calculated with WHAM [54,58], and N is the number of snapshots in the
batch. For each temperature, the conformational weights are normalized to 1 (Equation (2)).

N

∑
i=1

wi(T) = 1 (2)

The oligomers were identified, and chains were assigned to the subsequent oligomers
using the following procedure. For a given snapshot, the search for oligomers was started
from the first peptide chain. Chains from 2 to 8 were examined, and the first one that
was found associated with chain 1 was added to form a dimer. Two peptide chains were
considered associated if the distance between any Cα atom of the first and any Cα atom of
the second chain was shorter than seven Å. If no chain was associated with the first one,
the search was restarted taking the chain with index 2 and the subsequent ones.

Once two chains were found associated, the remaining chains were looped over to find
the first one, which was associated with any of the two. The procedure continued until no
more peptide chains were found associated with any chain in the oligomer. This procedure
resulted in the identification of the first oligomer (which could be a monomer, if the first
chain was not associated with the other chains). The procedure was applied iteratively to
the peptide chains which were not included in the previously found oligomers, until all
chains were assigned to the respective oligomers or found to be isolated.

To determine the character of the aggregates, we computed the temperature profiles
of the content of statistical-coil ( fc(T)), β-sheet [ fβ(T)] and α-helical [ fα(T)] structure, as
defined by Equation (3).
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fs(T) =
N

∑
i=1

wi(T) fsij (3)

where s equals c, β or α and fsij is the fraction of residues in state s for chain j and snapshot
i. We used the algorithm of our earlier work [62] to determine, from the coarse-grained
geometry, if a residue is in the c, β or α state. This algorithm takes into account the
backbone-peptide-group-interaction pattern (identified with hydrogen-bond network) and
local main-chain geometry.

3. Results and Discussion
3.1. Peptide Aggregation

The temperature profiles of the fractions of monomers and associates from dimers to
octamers, obtained by MREMD simulations of eight-chain systems are shown, for selected
peptides (CysZ5, CysZ8 and RADA-IM), in Figure 2a,d,g. It can be seen from the figure that
octamers and monomers dominate before and after the transition temperature, respectively.
The dimers constitute a remarkable fraction of the ensemble after the transition temperature,
particularly for the RADA-IM—RADA-KGHK peptides.

For each system, the f8(T) curve has a sigmoidal shape with an inflection point
corresponding to the respective heat-capacity (Cv) peak (panels c, f and i of the figure)—
being indicative of the first-order melting transition. It must be noted that, because the
solvent is implicit in UNRES, the heights of the heat-capacity peaks are exaggerated.
Consequently, the Cv(T) curves can be analyzed only qualitatively.

The minor peaks at lower temperatures correspond to melting of the β-structure. The
oligomer-melting transition is particularly sharp for RADA-IM (Figure 2g), as well as for
RADA-GHK and RADA-KGHK. This result is in qualitative agreement with the experiment
because all three RADA-based peptides form gels immediately after dissolving, as opposed
to the other peptides for which aggregation can take up to 3 weeks (however, the fibrils
start to appear already after the first 3 days of incubation).
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Figure 2. Temperature profiles of the fractions of the oligomer and subsequent multimers ( fm, m = 1,
. . . , 8; a,d,g), fractions of β, α, and statistical-coil structure ( fs, s = α, β, c; b,e,h) and heat capacity
(c,e,i) of CysZ5 (a–c) CysZ8 (d–f) and RADA-IM (g–i) obtained from MREMD simulations of eight
peptide chains. The peptide names are shown above the middle graphs. The graphs were drawn
with gnuplot [57].
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The observation that the simulated aggregation of the peptides under study is effec-
tively an all-or-none transition is supported by the fact that the fractions of the secondary
structure of the peptide solution before and after incubation estimated from CD measure-
ments do not change significantly for all peptides under study but CysZ4 (Table 2), this
suggesting that monomers only are present in solution. For CysZ4, the amount of extended
structure increases remarkably after incubation, which suggests that some oligomers are
present in solution.

In Figure 3a, the mid-point temperatures of octamer dissociation (T8m) are shown
for all of the systems studied. The T8m values moderately correlate with the GRAVY in-
dices collected in Table 1. The respective plot is shown in Figure 4. Such a correlation
could be expected, because the propensity to association is largely determined by pep-
tide hydrophobicity. On the other hand, the RADA-based and the FC-based peptides,
which contain many charged residues and are prone to gel or fibril formation, respectively
(Table 1), exhibit significantly higher T8m than could be expected based on their hydropathic
indices. This observation suggests that our simulations could capture finer aspects of ag-
gregation propensity, such as the cooperativity between side-chain-contact and interstrand
backbone-hydrogen-bond formation and local chain structure.
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Figure 3. (a) Bar plot of the octamer half-melting temperatures (T8m) and the temperatures at
which the temperature dependence of the fraction of β-structure has an inflection point (Ti,β). The
dashed horizontal black and blue lines correspond to the incubation (310 K) and the room (298 K)
temperatures, respectively. (b) Stacked-histogram plot of the fractions of the monomer and the
oligomers. (c) Stacked-histogram plot of the fractions of β, α and coil structures for all peptides
studied. The graphs were drawn with gnuplot [57].
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Figure 4. Plot of the correlation between the GRAVY indices and the half−point octamer−melting
temperatures of the peptides studied. The correlation equation is T8m = 14.4 × GRAVY + 315. The
correlation coefficient and standard deviation in T8m are R = 0.7946 and σTm = 13.5 K, respectively.
The graph was drawn with gnuplot [57].

In panel b of Figure 3, the fractions of oligomers and that of the monomer at T = 310 K
(at which the peptide solutions were incubated) are shown in the form of stacked-histogram
plots. It can be seen that the mid-point temperatures are the lowest for CysZ1, Sup35(7-13),
KGHK-KGHK and IM-IM. Of those, CysZ1, KGHK-KGHK and IM-IM do not form any
precipitates (cf. Table 1), while Sup35(7-13) forms small fibrils and was also reported to
form microcrystals in the presence of Zn(II) or Cd(II) cations [29,30]. The T8m values are
also several degrees below the incubation temperatures for CysZ2 and CysZ3, which form
small fibrils after a long incubation period. The fractions of octamers at the incubation
temperatures follow the values of T8m, being zero for CysZ1, Sup35(7-13), IM-IM and
KGHK-KGHK.

From Figure 3 it can be concluded that MREMD simulations of eight-peptide systems
with UNRES give good predictions of the ability to association. The only exception is
Sup35(7-13), for which UNRES predicts a low octamer mid-point dissociation temperature,
while its sequence is a typical amyloid-forming sequence. The reason for this appears to be
the presence of many glutamine and asparagine residues in the sequence of this peptide
(cf. Table 1).

The UNRES sidechain–sidechain interaction potentials of these residues do not include
multibody effects—namely, the ability of their amide groups to form strong hydrogen bonds
with each other while dehydrated. This is likely to happen when many Gln or Asn residues
are close in the amino-acid sequence (as, e.g., in the peptide fragments excised from
huntingtin). Then, their side-chain amide groups can form close contacts and, consequently,
become screened from the solvent. The present UNRES treats the side chains of Asn and
Gln as polar non-associating side chains.

This observation strongly suggests that screening from the solvent and, likely, a
contribution from solvent polarization, should be introduced in UNRES to handle the
sidechain–sidechain interactions in systems with many glutamine and asparagine residues.
An attempt at introducing solvent screening to improve the treatment of backbone-peptide-
group interactions was made in our earlier work [63].
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3.2. Secondary Structure of Peptide Aggregates

The temperature profiles of the secondary-structure content of selected eight-peptide
systems (CysZ5, CysZ8 and RADA-IM) are shown in Figure 2b,d,f, respectively. The po-
sitions of the inflection points in the temperature profiles of the fractions of β structure
and the amounts of the β-sheet, α-helical and statistical-coil structure at the room temper-
ature (T = 298 K), at which the CD measurements were made, obtained from MREMD
simulations, are shown in Figure 3a,c, respectively. The temperatures of the inflection
points and not those of half-decay of the β-structure are reported because, as opposed to
the fraction of octamers, the fraction of β-structure never reaches 1, even at the lowest
simulation temperature.

From the temperature profiles (Figure 2b,e,h), it follows that the fraction of residues
forming β-structure decreases with temperature. From the plots of fβ(T) for the selected sys-
tems and from the Ti,β values, it can be seen that, except for the RADA-IM—RADA-KGHK
peptides and for those with low T8m, the amount of β-structure decays at temperatures
lower than the octamer-dissociation midpoint.

For some systems, e.g., CysZ5, the difference between the two temperatures is sig-
nificant (Figure 2a,b), while for most of the systems, e.g., for CysZ8 (Figure 2d,e), the
differences are smaller and the amount of β-structure at the room temperature is still signif-
icant. The different values of T8m and Tβ,i are reflected in the presence of two heat-capacity
peaks, one of which corresponds to the melting of β-structure and the other to octamer
dissociation (Figure 2c,f).

The RADA-IM—RADA-KGHK systems are different from the other ones because
the sharp decay of the amount of octamers nearly coincides with that of β-structure
(Figures 2g,h and 3). This feature is also reflected in the appearance of a single sharp
heat-capacity peak (Figure 2i). It can be seen from Figure 3c that the α-helical structure
is residual at the room temperature. For the RADA-IM—RADA-KGHK peptides, the
α-structure emerges in quite a significant amount near T8m, as displayed in Figure 2h for
RADA-IM.

It should be noted that the amounts of extended and α+turn structures estimated from
the CD spectra for dissolved peptides and for the RADA-IM— RADA-KGHK gels (Table 2)
are higher than those of the β and α structures obtained from simulations. However, it
should be noted that CD is sensitive to the local chain conformation and not to the actual
presence of secondary-structure elements stabilized by hydrogen bonds.

Therefore, CD measurement suggest the presence of the extended structure even for
the hexa- and heptapeptides studied in solution (where they are presumably monomers),
which are unlikely to form intra-chain β-sheets. In our analysis of the simulated structures,
a residue is assigned the β state only when the peptide group next to it exhibits strong
mean-field interactions with another peptide group and belongs to a β-sheet pattern.

Similarly, the “helix” or “turn” conformation found by CD only indicates that a
residue belongs to the α regions of the Ramachandran map, while in our analysis a residue
is assigned the α structure only if the peptide group next to it belongs to the α-helix
pattern. Nevertheless, in agreement with the results of our simulations, the fraction of
extended structure from CD measurements exceeds that of α+turn structure for all of the
systems studied.

3.3. Spatial Structure of the Aggregates

From the results discussed in Section 3.2 it can be concluded that the association into
hydrogen-bonded β-sheets plays an important role in all systems that associate into oc-
tamers, except for CysZ5, for which the amount of β-structure is residual and, consequently,
association occurs through hydrophobic interactions. Inspection of the representative
strictures of the octamers of CysZ5 and CysZ8 at room temperature (Figure 5a,c) confirms
that this is indeed the case, and that a regular amyloid-like structure is formed for CysZ8
but not for CysZ5.
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Amyloid-like structures similar to that of CysZ8 were obtained at room temperature
for all hexa- and heptapeptides except for CysZ1 and Sup35(7-13), which did not associate
remarkably at this temperature. The scattered plots of the backbone φ and ψ angles shown
in panels b and d of the figure indicate that the residues of CysZ8 reside in the extended
region of the Ramachandran map, while those of CysZ5 are more scattered.

The φ and ψ angles were calculated from the all-atom structures converted to the all-
atom representation from the coarse-grained structures (cf. Section 2.4). These structures do
not, thus, result from explicit all-atom simulations. Nevertheless, for qualitative assessment
of the local conformational states of the amino-acid residues, they seem to be sufficient. It
should also be noted that all systems under study are highly flexible, especially with regard
to chain-packing topology. Consequently, the structures presented in Figures 5–7 represent
only the most populated families and not the entire ensembles.
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Figure 5. Representative structures of the octamers of CysZ5 (a) and CysZ8 (c) at T = 298 K obtained
in MREMD simulations of eight-chain systems and the corresponding plots of the backbone φ and ψ

angles collected from all five models obtained by the cluster analysis at this temperature (b,d). Each
chain in panels a and c is colored by a different color. Backbones are represented as ribbons and the
side chains are shown in the stick representation. The structures were obtained by converting the
UNRES chains into the all-atom representation. Each point in the (φ, ψ)-plots is colored according to
residue index (chain index ignored), from blue to red from the N- to the C-terminus. The drawings
were produced with PyMol [64] and gnuplot [57], respectively.

Except for RADA-IM—RADA-KGHK, the larger peptides (functionalized aggregating
sequences) form irregular aggregates. As an example, the structure of the octamer of
FC-GHK is shown in Figure 6a. As opposed to CysZ8 and CysZ5, the residues visit the
whole accessible regions of the Ramachandran map, which confirms that the chain structure
is flexible.
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Figure 6. A representative structure of the octamer of FC-GHK at T = 298 K obtained in MREMD
simulations of the corresponding eight-chain system (a) and a plot of the backbone φ and ψ angles
collected from all five models obtained by the cluster analysis at this temperature (b). Each chain in
panel a is colored by a different color. Backbones are represented as ribbons and the side chains are
shown in the stick representation. The structures were obtained by converting the UNRES chains
into the all-atom representation. Each point in the (φ, ψ)-plots is colored according to residue index
(chain index ignored), from blue to red from the N- to the C-terminus. The drawings were produced
with PyMol [64] and gnuplot [57], respectively.
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Figure 7. Representative structures of the octamers of RADA-IM at T = 298 K (a) and T = 310 K
(b) obtained in MREMD simulations of eight-chain systems and the corresponding plots of the
backbone φ and ψ angles collected from all five models obtained by the cluster analysis at these
two temperatures (b,d). Each chain in panels a and c is colored by a different color. Backbones are
represented as ribbons and the side chains are shown in the stick representation. The structures
were obtained by converting the UNRES chains into the all-atom representation. Each point in the
(φ, ψ)-plots is colored according to residue index (chain index ignored), from blue to red from the N-
to the C-terminus. The drawings were produced with PyMol [64] and gnuplot [57], respectively.
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At the room temperature, the RADA-IM—RADA-KGHK peptides form a β-sheet
structure, in which the (RADA)4 sections are involved in a surface β-sheet with the arginine
and aspartic-acid residues stretching outside (Figure 7a). The whole structure is a distorted
β-barrel. This structure can extend into a larger β-sheet accommodating a large amount of
water because of the presence of charged surface residues, which explains the propensity
of the RADA-IM—RADA-KGHK peptides to form gels [32].

At T = 310 K, the β-sheet becomes partially destroyed and part of the (RADA)4 sections
form α-helices (Figure 7c). This observation suggests that the aggregates form micelles and
the peptide solution turns into a sol as temperature increases. However, the experiment
demonstrates that the gel is stable even at higher temperature, although the secondary
structure becomes lost [32].

The observed changes of the tertiary structure resulting from heating the system
from T = 298 K to T = 310 K are reflected in the plots of the φ and ψ angles shown in
panels b and d of Figure 7. At T = 298 K, the extended region has the highest population,
although the peptide visits all accessible regions of the Ramachandran maps while, at
T = 310 K, the population of the helical region remarkably increases and that of the extended
region decreases.

To determine the flexibility of peptide chains in octamer aggregates, we calculated the
standard deviations of the Cα atoms of the consecutive residues of all chains and all five
models obtained by cluster analysis at T = 298 K from those of the mean chain structures
(averaged over all chains and all five models obtained at T = 298 K). We identify these
quantities with the Root Mean Square Fluctuations (RMSF) of the consecutive residues. The
plots of RMSF(T) are shown in panels a (for CysZ5 and CysZ8) and b (for FC-GHK and
RADA-IM) of Figure 8, respectively.
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Figure 8. Cα-atom root mean square fluctuations (RMSF) for CysZ5, CysZ8, FC-GHK and RADA-IM
plotted in residue index. The graphs for CysZ5 and CysZ8 are shown in panel (a), while those
for FC-GHK and RADA-IM are shown in panel (b). The RMSFs were calculated as the standard
deviations of the positions of the Cα atoms over all five models obtained in MREMD simulations of
eight-chain systems and subsequent cluster analysis at T = 298 K and all chains from those of the
mean chain structure The graphs were drawn with gnuplot [57].

It can be seen from the figure that CysZ8 exhibits the smallest fluctuations, which is
consistent with the formation of a tight amyloid-like structures. Small fluctuations from the
mean positions are also observed for CysZ5, although the amyloid-like aggregate is less
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organized. FC-GHK exhibits moderate fluctuations amounting to 4–6 Å except for chain
ends, while the biggest fluctuations are observed for RADA-IM, which seems to results
from the fact that some of the chains are in the outer distorted β-barrel and some do not
have organized structure (Figure 7a).

4. Conclusions

We tested the capability of the UNRES coarse-grained model of proteins to predict the
aggregation propensity of peptides with the examples of 20 peptides of different lengths
and compositions (Table 1). MREMD simulations were conducted for eight chains of each
peptide in a periodic box with sides corresponding to the respective experimental concen-
tration.

We used the experimental aggregation data of our previous work [27,31,32] of 13 pep-
tides, while seven peptides were synthesized and investigated in this work. In all but
one case (the 7–13 fragment of the Sup35 prion protein, with sequence H-GNNQQNY-
NH2), UNRES correctly predicted the octamer dissociation temperatures to be above the
experimental incubation temperature (310 K). For the three peptides that did not exhibit
any association, the simulated octamer-dissociation temperatures were well below the
incubation temperature (Figure 3a).

For CysZ2 and CysZ3, which reluctantly form small fibrils, the octamer-melting tem-
peratures were close to the incubation temperature (Figure 3a). Thus, UNRES qualitatively
correctly predicted the association propensity for 19 of the 20 peptides studied. For the asso-
ciating peptides, except for CysZ5, UNRES predicted a considerable amount of β-structure
resulting from inter-chain association.

For the 7–13 fragment of the Sup35 prion protein, UNRES predicted a low melting
temperature, even though this peptide forms small fibrils and has a typical amyloidogenic
sequence. One reason that UNRES does not predict its aggregation is that the sequence
of this peptide contains many glutamine and asparagine residues. UNRES treats the side
chains of these residues in a mean-field manner, ignoring the formation of specific hydrogen
bonds between their carboxyamide groups while forming aggregates.

This result suggests that the respective sidechain–sidechain potentials in UNRES need
to be revised (likely by introducing screening from the solvent and solvent polarization) to
handle the aggregation of glutamine- and asparagine-rich peptides. The results obtained
for the RADA-IM—RADA-KGHK peptides that begin with the (RADA)4 sequence, which
contains eight charged residues, suggest that UNRES can also be used to predict the
hydrogel-forming properties and the transition of a hydrogel into the sol phase. Below the
incubation temperature, the UNRES-simulated structures of the octamers had large β-sheet
sections formed between the (RADA)4 strands that expose the arginine and other charged
side chains to the surface (Figure 7a).

Consequently, water can easily be accommodated in the form of water bridges between
the layers of the β-sheets (there is a substantial amount of water-bridged arginine sidechains
in proteins [65]). At higher temperatures, the β-structure becomes destroyed and the
(RADA)4 sections form α-helices (Figure 7b), which suggests that the hydrogel melts and
that micelles are formed.
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also supported in part by PLGrid Infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CASP
Community Wide Experiment on the Critical Assessment of Techniques
for Protein Structure Prediction
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CG Coarse Graining

LC-MS ESI-IT TOF
Liquid Chromatography coupled with Mass Spectrometry
Electron-Spray Ionization Ion Trap, Time of Flight

Fmoc Fluorenylmethyloxycarbonyl protecting group
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GROMACS GROningen MAchine for Chemical Simulations
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