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resistance and tumorigenesis of gastric cancer via PI3K/AKt pathway
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A B S T R A C T

Long noncoding RNAs (lncRNAs) serve as critical mediators of tumor progression and drug resistance in cancer.
Herein, we identified a lncRNA, LINC00665, associated with trastuzumab resistance and development in gastric
cancer (GC). LINC00665 was highly expressed in GC tissues and high expression of LINC00665 was correlated
with poor prognosis. LINC00665 knockdown was verified to suppress migration, invasion, and resistance to
trastuzumab in GC. Furthermore, we found that LINC00665 participates in the infiltration of naive B cells, mast
cells, and T follicular helper (Tfh) cells. Mechanistically, LINC00665 was confirmed to regulate tumorigenesis
and trastuzumab resistance by activating PI3K/AKt pathway. LINC00665 sponged miR-199b-5p to interact with
SERPINE1 expression, resulting in the increase of phosphorylation of AKt, thus participating in the PI3K/AKt
pathway. To summarize, LINC00665 facilitated the tumorigenesis and trastuzumab resistance of GC by sponging
miR-199b-5p and promoting SERPINE1 expression, which further activated PI3K/AKt signaling; this finding
reveals a new mechanism by which LINC00665 modulates tumor development and drug resistance in GC.

1. Introduction

Gastric cancer (GC), the third leading cause of cancer death and the
fifth most common malignancy in the world [1], is a major threat to
human health. Although great progress has been made in diagnosis and
therapeutics, the prognosis of GC patients remains unsatisfactory [2].
Chemotherapy combined with targeted therapy has been reported to
effectively prolong overall survival and improve the outcomes of GC
patients, especially patients with advanced stage disease [3]. Trastuzu-
mab, a monoclonal antibody against HER2, is the first-line agent for
targeted therapies. More than 20 % of gastric tumors harbor high
expression of HER2 receptors [4]. However, the emergence of drug
resistance eventually causes treatment failure and poor prognosis [5,6].
Therefore, exploring the mechanism of drug resistance and guiding the
development of promising targets are imperative for GC treatment.

Long noncoding RNAs (lncRNAs), which are more than 200 nucle-
otides in length, lack the capacity to encode proteins [7–9]. Accumu-
lating evidence has indicated that lncRNAs are involved in precise
cancer tratement and targeted therapy [10,11]. For example, the

lncRNA HOTAIR exerts its effect on cell growth, metastasis, and
apoptosis in breast cancer through the miR-20a-5p/HMGA2 pathway
[12]. Wu et al. found that lncRNA MEG3 is downregulated in prostate
cancer and influences the development of prostate cancer [13]. More-
over, lncRNAs play a critical role in mediating drug resistance in diverse
tumors [14–17]. LINC00665 has been identified as a key regulator that
is overexpressed in breast cancer and induces the tumorigenesis of
breast cancer [18]. Additionally, the increased expression level of
LINC00665 in ovarian cancer regulates the proliferative, migratory and
invasive functions of ovarian cancer cells and poor prognosis [19].
However, the role of LINC00665 in mediating progression and drug
resistance in GC has not been well investigated, making it a research
focus worthy of further exploration.

SERPINE1 (also known as PAI-1), a member of the serpin protease
inhibitor superfamily, serves as an essential inhibitor of plasminogen
activators and is associated with poor prognosis in many cancers
[20–22]. Moreover, SERPINE1 plays a critical role in mediating drug
resistance [23,24], which holds promise as a treatment strategy for GC.
According to previous studies, SERPINE1 is closely related to the
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phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKt) pathway,
which is involved in diverse physiological and pathological processes
[25]. The impact of SERPINE1 in GC, however, remains to be
ascertained.

LncRNAs perform their regulatory function by sponging microRNAs
(miRNAs) as competing endogenous RNAs (ceRNAs), thereby partici-
pating in several processes [26]. As a key factor in tumor onset and
progression, inflammation has been confirmed to be associated with
various types of cancers [27,28] and interestingly, LINC00665,
miR-199b-5p, and SERPINE1 were all found to participate in inflam-
matory conditions [29–31]. Here, we found that LINC00665 is upregu-
lated in GC and sponges miR-199b-5p to affect SERPINE1 levels,
resulting in the induction of tumorigenesis and trastuzumab resistance
in GC. Together with previous findings, we identified that this axis exerts
its effect through the PI3K/AKt pathway. In conclusion, we revealed a
novel molecular mechanism for trastuzumab resistance and tumor pro-
gression in GC, which may provide evidence to develop new therapeutic
targets for GC patients with trastuzumab resistance.

2. Materials and methods

2.1. Clinical samples

A total of 30 paired GC tissues and adjacent normal tissues were
collected from patients who were diagnosed with GC and underwent
surgery at the Fourth Hospital of Hebei Medical University from April
2021 to July 2021, and informed consent was obtained from all patients.
All samples were preserved in lipid nitrogen and sorted at − 80 ◦C for
further use. Two experts confirmed histological and pathological diag-
nosis. The study was approved by the Ethics Committee of the Fourth
Hospital of Hebei Medical University (approval number 2019ME0039)
and was reported in accordance with the Declaration of Helsinki.

2.2. Prediction of downstream miRNAs and target genes

DownstreammiRNAs of LINC00665 were predicted through the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) and miRcode database
(https://cancergenome.nih.gov/) [32], and the target genes of
hsa-miR-199b-5p were obtained from the TargetScan database (www.
targetscan.org), DisGeNET database (https://www.disgenet.org/), and
GEPIA database (http://gepia.cancer-pku.cn/index.html) [33]. The
lncRNA‒miRNA-mRNA network was constructed using the miRDB
database (http://mirdb.org/) [34] and RNAhybrid database (http://bibi
serv.techfak.uni-bielefeld.de/rnahybrid) [35].

2.3. Construction of the trastuzumab-resistant NCI-N87/TR and MKN-
45/TR cell lines

The human gastric cancer cell line NCI-N87 and MKN-45 were pur-
chased from the National Infrastructure of Cell Line Resource (NICR)
and cultured in RPMI-1640 (Sigma, USA) supplemented with 10 % fetal
bovine serum at 37 ◦C in 5 % CO2. The induction of NCI-N87/TR cells
was described previously [36]. NCI-N87 and MKN-45 cells in the
exponential growth phase were seeded into 25 cm2 culture bottles, and
trastuzumab (12 μg/mL) was added during the mitotic phase. When the
cells exhibited stable growth, the concentration of trastuzumab was
gradually elevated until it reached 3500 μg/mL, which lasted for
approximately 150 days. Trastuzumab-resistant NCI-N87/TR cells and
MKN-45/TR cells were obtained and used in our study.

2.4. Transfection

The siRNA for LINC00665 was purchased from GenePharma Com-
pany (Shanghai, China), and transfection was performed using Lip-
ofectamine 2000 (Invitrogen). 60 nmol/L LINC00665-siRNAwas chosen
to perform further transfection. The miR-199b-5p mimic/inhibitor and

NC mimics/inhibitor were purchased from GenePharma Company
(Shanghai, China). LINC00665-shRNAs and NC-shRNAs were purchased
from GenePharma Company (Shanghai, China) for knockdown of
LINC00665 using Lipofectamine 2000 (Invitrogen, USA). Then, a
plasmid including psPAX2, pMD2G, and pcDNA3.1/LINC00665 was
cotransfected into 293T cells to generate lentivirus. Lentivirus was
harvested after 48 h of transfection.

2.5. qRT‒PCR

Total RNA was extracted using TRIzol method (Invitrogen, USA)
according to manufacturer’s instructions from either GC tissues or cells.
RNA was reversed-transcribed using RevertAid First Strand cDNA Syn-
thesis Kit (Thermo Scientific, USA). qRT-PCR was carried out through
Quantstudio™ DX system (Applied Biosystems, Singapore). The relative
amounts of transcript were calculated with 2-ΔΔCT method relative to
U6. The primer sequences were listed in Table 1.

2.6. Cell proliferation and trastuzumab sensitivity assays

CCK8 assays were performed to assess cell proliferation rates. Cells
that were cultured in 96-well plates at 37 ◦C for 24, 48, and 72 h in an
incubator containing 5 % CO2 were treated with different concentra-
tions of trastuzumab. Then, 10 μL CCK8 reagent (APExBIO, USA) was
added at different time points. Absorbance at 450 nm was recorded and
calculated with GraphPad Prism 8.0 Software.

2.7. Wound healing and Transwell assays

Wound healing and Transwell assays were conducted as previously
described [37].

2.8. Luciferase reporter assay

The 3′UTRs of LINC00665 and SERPINE1 were inserted into a pGL3
vector (Promega, USA). The luciferase reporter vectors pGL3-
LINC00665-3′ UTR mutant (LINC00665-MUT) and pGL3-SERPINE1-
3′UTR mutant (SERPINE1-MUT) were then synthesized at the same
position. GC cells were cotransfected with pGL3-LINC00665-3′UTR wild
type (LINC00665-WT) or LINC00665-MUT and miR-199b-5p mimic or
control mimic by Lipofectamine 2000. Meanwhile, pGL3-SERPINE1-3’
UTR wild type (SERPINE1-WT) or SERPINE1-MUT and miR-199b-5p
mimic or control mimic were transfected into GC cells. The trans-
fected cells were harvested 36 h after transfection, and the luciferase
activity was detected using the Dual-Luciferase Reporter assay system
(Promega, USA).

2.9. Western blot

Proteins extracted from tissues and cells were separated by SDS-
polyacrylamide gels and transferred onto PVDF membranes (Millipore,
USA). Then the membranes were treated with TBST at room temperature
for 1 h and incubated with primary antibodies overnight at 4 ◦C. After
washing with TBST, the membranes were incubated with secondary

Table 1
List for primers sequences used for qRT-PCR.

qRT-PCR primiers sequences

LINC00665 forward TGCTGGGATTACAGGTCCA
LINC00665 reverse TCTGGTCTTCAGGTCTCCTCAC
SERPINE1 forward ACTTCTTCAGGCTGTTCCG
SERPINE1 reverse TTGTGTGTGTCTTCACCCAG
miR-199b-5p forward CCCAGTGTTCAGACTACCTGTT
miR-199b-5p versus GTCGTATCCAGTGCAGGGT
U6 forward GAAACACCGTGCTCGCTT
U6 reverse TGCTAATCTTCTCTGTATCGTTCC
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antibodies for 2 h at room temperature and the signals were visualized
via Odyssey infrared scanner (Lincoln, USA).

2.10. Animal study

4–6 weeks old BALB/c nude mice were purchased from SPF
Biotechnology (Beijing, China) and randomly dived into two groups (n
= 3). We implanted male BALB/c nude mice with NCI-N87/TR cells
infected with LINC00665-shRNA or NC-shRNA. After two weeks, tumor
volumes were measured and calculated using Equation V= 0.5× length
× width2 every 4 days. After 24 days, mice were euthanized through
injection of amobarbital, and xenograft tumors were excised and
weighted. All animal experiments were conducted at the Experimental
Animal Center of the Fourth Hospital of Hebei Medical University ac-
cording to the ARRIVE guidelines and approved by the Committee on
the Ethics of Animal Experiments of Hebei Medical University (approval
number IACUC-4th Hos Hebmu-2022256).

2.11. Statistical analysis

The experimental results were analyzed by Student’s t-test (un-
paired, two tailed) and one-way ANOVA. The data conformed to normal
distribution and are presented as the mean ± standard deviation (SD). P
< 0.05 was regarded to indicate statistical significance. All statistical
analyses were performed using GraphPad Prism 8.0 Software. Biological
triplicate samples were required for each experiment.

3. Results

3.1. Construction of the LINC00665/miR-199b-5p/SERPINE1 axis

To identify the regulatory axis LINC00665/miR-199b-5p/SERPINE1,
we conducted a series of studies, as shown in Fig. 1A. We obtained GC-
related genes from GSE95667 and GSE109476 in the GEO database (htt
p://www.ncbi.nlm.nih.gov/geo/) and carried out principal component
analysis (PCA) to analyze the overall differences between the two
different gene datasets (Fig. 1B and C). Then, we utilized the package
“limma” and set the cutoff as P < 0.05 and |logFC| ≥ 1 to extract 1250
differentially expressed genes (DEGs) in GSE95667 and 1636 DEGs in
GSE109476 (Fig. 1C, D and Supplementary Tables 1 and 2). We took the
intersection of the 1250 DEGs in GSE95667 and 1636 DEGs in
GSE109476 and obtained 203 genes (Fig. 1E and Supplementary Table
3), including 25 lncRNAs (Supplementary Table 4). As mentioned
earlier, we obtained 114 gastric cancer-related miRNAs from GSE93415
(Supplementary Table 5) and 113 miRNAs from GSE78091 (Supple-
mentary Table 6) in the GEO database and took the intersection to
obtain 27 miRNAs (Fig. 1F and Supplementary Table 7).

To further explore the ceRNA network, the miRcode database
(https://cancergenome.nih.gov/) was utilized to predict the interaction
between the 114 GC-related lncRNAs and 1113 GC-related miRNAs,
which indicated the underlying interaction between 13 lncRNAs and 14
miRNAs (Fig. 1G and Supplementary Table 8). Next, we used the Tar-
getScan database (www.targetscan.org) to predict the downstream
genes of the 14 miRNAs and obtained 8751 genes (Supplementary Table
9). Furthermore, a total of 3720 genes associated with GC targets
(Supplementary Table 10) from the DisGeNET database (https://www.
disgenet.org/) and the 50 most differentially expressed survival genes
(Supplementary Table 11) from the GEPIA database (http://gepia.cance
r-pku.cn/index.html) intersected with the former 8751 genes, thereby
obtaining 7 genes (Fig. 1H): SERPINE1, ERBB4, NRP1, SLC52A3,
DYNC1I1, AKR1B1 and RAI14. Among them, we found that SERPINE1
was closely related to the prognosis of GC (Fig. 1I); thus, we speculated
that SERPINE1 was a core factor in GC progression.

Furthermore, we used the miRDB database (http://mirdb.org/) to
identify the upstream miRNAs of SERPINE1 and obtained 118 miRNAs
(Supplementary Table 12) that intersected with the 14 miRNAs

mentioned before, which ultimately resulted in 3 miRNAs (Fig. 1J): miR-
199a-5p, miR-199b-5p and miR-19a-3p. The subsequent analysis of the
RNAhybrid database (http://bibiserv.techfak.uni-bielefeld.de/rnahybri
d) proved that miR-199b-5p was most likely to bind to SERPINE1
(Fig. 1K). As shown in Figs. 1G and 7 lncRNAs were linked to miR-199b-
5p: FTX, LINC01133, LINC00665, LINC00486, SNHG20, LINC00378
and LINC00184. Among them, LINC00665 has been verified to be an
oncogene in diverse cancers and to participate in resistance to cisplatin
[37] and apatinib [38]. In total, these findings demonstrated the exis-
tence of the LINC00665/miR-199b-5p/SERPINE1 axis.

3.2. LINC00665 is overexpressed in GC and participates in drug
resistance

We first analyzed the expression of LINC00665 in GC from the GEPIA
database (http://gepia.cancer-pku.cn/index.html), and our results
demonstrated that LINC00665 was upregulated in GC (Fig. 2A). To
further explore the role of LINC00665 in GC, we detected LINC00665
levels in tumor and adjacent normal tissues through qRT‒PCR assays,
which indicated that LINC00665 was highly expressed in GC (Fig. 2B).
According to LINC00665 expression, we grouped TCGA data (http://ca
ncergenome.nih.gov/) into two groups and identified 300 DEGs (Sup-
plementary Table 13). GO and KEGG analyses showed that these DEGs
were associated with various processes (Fig. 2C and D). Subsequently,
further BP enrichment showed that those DEGs were enriched in the
drug response (Fig. 2E). Additionally, through the Cibersort database
(https://cibersortx.stanford.edu/), we found that LINC00665 was posi-
tively related to the infiltration of naive B cells and Tfh cells but nega-
tively correlated with mast cell infiltration (Fig. 2F, G, H), which may be
a potential mechanism underlying GC development [39]. Moreover, we
grouped TCGA data on the basis of SERPINE1 level into two groups and
obtained 225 DEGs. Further KEGG analysis showed that these DEGs
were involved in the PI3K/AKt pathway, JAK/STAT pathway, and IL17
signaling pathway (Fig. 2I). It is worth noting that the PI3K/AKt
pathway plays a crucial role in mediating resistance to trastuzumab
[40]. Thus, we speculated that LINC00665 participated in trastuzumab
resistance by targeting SERINE1 through the PI3K/AKt pathway.

3.3. LINC00665 sponges miR-199b-5p and upregulates SERPINE1
expression

In the above results, we confirmed the existence of the LINC00665/
miR-199b-5p/SERPINE1 axis. However, we did not find sufficient evi-
dence to verify the regulatory relationship among them. As presented in
Fig. 2A, LINC00665 was overexpressed in GC, and we detected the levels
of miR-199b-5p and SERPINE1 in GC tissues and adjacent normal tis-
sues. As revealed by qRT‒PCR assay (Fig. 3A and B), miR-199b-5p was
downregulated in GC tissues, while the expression of SERPINE1 in GC
tissues was higher than that in adjacent normal tissues. Using the
RNAhybrid database (http://bibiserv.techfak.uni-bielefeld.de/rnahybri
d), we identified the potential binding sites of LINC00665 and miR-
199b-5p (Fig. 3C), and miR-199b-5p targeted SERPINE1, as demon-
strated in Fig. 1K. Correlation analysis demonstrated that LINC00665
was positively associated with SERPINE1 but negatively associated with
miR-199b-5p (Fig. 3D and E). In the luciferase assay, we found that miR-
199b-5p was the downstream target of LINC00665 in GC. LINC00665-
WT but not LINC00665-MUT suppressed the 3’ UTR reporter gene ac-
tivity of miR-199b-5p (Fig. 3F). In addition, miR-199b-5p inhibited
SERPINE1-WT but not SERPINE1-MUT, indicating that miR-199b-5p
was the upstream gene of SERPINE1 (Fig. 3G).

3.4. LINC00665 induces GC proliferation, migration, and invasion via
SERPINE1 through the PI3K/AKt pathway

Subsequently, we investigated the function of LINC00665 in GC. The
migration and invasion abilities of GC cells were obviously undermined
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Fig. 1. Identification of LINC00665/miR-199b-5p/SERPINE1 pathway. A Schematic diagram of the process design. B PCA shows overall differences between
normal tissue and GC in GSE95667. C PCA shows overall differences between normal tissue and GC in GSE109476. D Heatmap of DEGs from GSE95667. E Heatmap
of DEGs from GSE109476. F Venn diagram of common DEGs from GSE109476 and GSE95667. G The lncRNA-miRNA network predicted by the miRcode database. H
Venn diagram of target genes from GC-related genes, target mRNA, and TOP 50 most differential survival genes. I The correlation between the expression of target
genes and overall survival rate of GC patients: SERPINE1 is negatively related to the overall survival rate of GC patients. J Venn diagram of upstream gene of
SERPINE1 from the TargetScan and miRDB databases. K The potential binding site of SERPINE1 predicted by the RNAhybrid database.
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by silencing LINC00665 (Fig. 4A). PCNA and p16 are cell proliferation-
related proteins, while MMP-2, E-cadherin, and N-cadherin are proteins
related to cell migration and invasion. Furthermore, WB assays
demonstrated that LINC00665 knockdown increased the protein levels
of p16 and E-cadherin but decreased the protein levels of PCNA, MMP-2,

N-cadherin, Vimentin, SERPINE1, and p-AKt (Fig. 4B). Additionally, in
the next experiment, we explored whether LINC00665 could mediate GC
progression through miR-199b-5p.We divided the cells into four groups:
the control, NC-siRNA, LINC00665-siRNA, and LINC00665-siRNA
combined with miR-199b-5p inhibitor groups. Downregulation of

Fig. 2. LINC00665 is upregulated in GC tissues. A LINC00665 is overexpressed in GC tissues analyzed by the GEPIA-STAD database. B The mRNA level of
LINC00665 is higher in paired GC tumor (n = 30) than that in adjacent normal tissues (n = 30). C GO analysis shows that LINC00665 participated in multiply
processes (Biological Process, BP; Cellular Component, CC; Molecular Function, MF). D KEGG analysis indicates LINC00665 exerted its function in GC tumorgenesis
via various pathways. E Top 10 BP enrichment suggested that LINC00665 is involved in the drug resistance. F-H Correlation between the expression level of
LINC00665 And the infiltration levels of naive B cells, Tfh cells, and mast cells. I KEGG analysis shows that SERPINE1 was involved in diverse pathways. *P < 0.05;
****P < 0.0001.
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LINC00665 facilitated the inhibition of cell proliferation, migration and
invasion. Importantly, the suppressive effect of LINC00665 inhibition
was dramatically mitigated by the miR-199b-5p inhibitor (Fig. 4C, D, E).
Subsequent WB assays also verified that the regulatory effect of
LINC00665 on the related proteins mentioned earlier was strikingly

eliminated by the miR-199b-5p inhibitor (Fig. 4F). Overall, our results
suggested that LINC00665 sponged miR-199b-5p to elevate SERPINE1
expression and affect PI3K/AKt signaling, resulting in the promotion of
the proliferation, migration, and invasion of GC cells.

Fig. 3. LINC00665 targets miR-199b-5p to induce SERPINE1 level. A The level of miR-199b-5p is lower in paired GC tumor (n = 30) than that in adjacent normal
tissues (n = 30). B SERPINE1 is highly-expressed in GC tissues. C The biding site of LINC00665 and miR-199b-5p predicted by the RNAhybrid database. D Correlation
of the expression of LINC00665 and miR-199b-5p in clinical GC tissues. E Correlation of the expression of LINC00665 and SERPINE1 in clinical GC tissues. F A dual-
luciferase reporter assay was performed to verify that LINC00665 obviously inhibits the luciferase activity of the WT 3′-UTR but not the MUT 3′-UTR of miR-199b-5p.
G A dual-luciferase reporter assay was conducted to prove that miR-199b-5p significantly suppresses the luciferase activity of the WT 3′-UTR but not the MUT 3′-UTR
of SERPINE1. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Fig. 4. LINC00665 contributed to the tumorgenesis of GC via SERPINE1. A Scratch assay (scale bar, 200 μm) and Transwell assay (scale bar, 150 μm) evaluate
the migration and invasion ability of GC cells with LINC00665 knockdown. BWB assay show expression of tumour progression-related proteins (PCNA, p16, MMP-2,
E-cadherin, N-cadherin, and Vimentin) and PI3K/AKt signaling-associated proteins (p-AKt and AKt) in GC cells with LINC00665 knockdown or NC-siRNA or control.
C CCK-8 assay demonstrated miR-199b-5p inhibitor restore cell proliferation in LINC00665 knockdown cells. D Scratch assay indicated miR-199b-5p inhibitor
restored cell migration ability in LINC00665 knockdown cells. Scale bar, 200 μm. E Transwell assay showed that miR-199b-5p inhibitor restore cell invasion capacity
in LINC00665 knockdown cells. Scale bar, 150 μm. FWB assay revealed the expression of proteins mentioned above in cells transfected as indicated. *P < 0.05; **P
< 0.01; ***P < 0.001; ****P < 0.0001.
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3.5. LINC00665 enhances the trastuzumab resistance of GC cells via
SERPINE1 through the PI3K/AKt pathway

To assess how LINC00665 exerts its effect on trastuzumab resistance
in GC, trastuzumab resistance assays were carried out in the NC-shRNA,
trastuzumab, NC-shRNA + trastuzumab, LINC00665-shRNA, and
LINC00665-shRNA + trastuzumab groups. The results showed that the
sensitivity to trastuzumab was significantly reduced in cells treated with
LINC00665-shRNA compared to that of cells in other groups (Fig. 5A).
Similar results were obtained from the tests in BALB/c nude mice. As
presented in Fig. 5B, the growth rate of subcutaneously transplanted
tumors in the LINC00665-shRNA group was distinctly lower than that in
the NC-shRNA group. The volume and weight of subcutaneously trans-
planted tumors in the LINC00665-shRNA group were also lower than
those in the NC-shRNA group (Fig. 5C and D). Moreover, compared to

the NC-shRNA group, silencing LINC00665 reduced the protein levels of
PCNA, MMP-2, SERPINE1, and p-AKt while increasing the level of p16
(Fig. 5E). Overall, these findings proved that LINC00665 contributed to
trastuzumab resistance in GC by affecting SERPINE1 levels to upregulate
p-AKt expression in the PI3K/AKt pathway.

4. Discussion

In GC patients, aggressive characteristics and drug resistance
severely exacerbate poor outcomes. It has been reported that the
average overall survival (OS) after chemotherapy is 7.5–12.0 months
[41]; therefore, molecular targeted therapy has gained widespread
attention in recent years. HER2, which belongs to the epidermal growth
factor receptor (EGFR) family, is the most widely used in the clinic and
performs its function through heterodimer and tyrosine kinase

Fig. 5. LINC00665 promotes trastuzumab resistance through PI3K/AKt pathway. A The cell viability of cells treated with trastuzumab with or without
LINC00665-shRNA. B Schematic diagram of subcutaneous xenograft model and representative images of tumors from nude mice inoculated with NCI-N87/TR cells. C
The volume of subcutaneously transplanted tumors in 2 groups: LINC00665-shRNA and NC-shRNA. D The weight of subcutaneously transplanted tumors in the 2
groups. E The protein level of the subcutaneously transplanted tumors in the 2 groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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autophosphorylation, thus ultimately influencing signal transduction
[42,43]. Hence, it is of great importance to reverse resistance to targeted
therapy and develop a corresponding therapeutic strategy. Here, we
identified a potential mechanism targeting trastuzumab resistance: the
LINC00665/miR-199b-5p/SERPINE1 axis regulated drug resistance and
tumorigenesis of GC through PI3K/AKt signaling.

We found that LINC00665 was overexpressed and positively corre-
lated with naive B-cell and Tfh cell infiltration but exhibited a negative
correlation with mast cell infiltration. Mounting evidence suggests that
LINC00665 has miRNA binding capacity and functions through the
ceRNA network [44,45]. Silencing LINC00665 restricted trastuzumab
resistance, cell proliferation, migration, and invasion in GC; however,
silencing LINC00665 in combination with miR-199b-5p significantly
undermined this suppressive effect. At the molecular level, we identified
that LINC00665 could bind to miR-199b-5p as a sponge to repress its
expression and therefore promote the expression of SERPINE1. Subse-
quently, LINC00665 knockdown reduced the protein level of p-AKt, the
key factor in PI3K/AKt signaling, which was previously reported to
affect p-AKt expression.

Although we explored the function of LINC00665 in GC, a major
limitation of this study is the lack of the combination treatment with
LINC00665 knockdown and trastuzumab to further prove the efficacy of
inhibiting LINC00665 on trastuzumab. Moreover, the molecular mech-
anism how LINC00665 influenced immune infiltration was still unclear.
Whether LINC00665 could be involved in GC immunity by regulating
immune infiltration remains to be further investigated.

5. Conclusion

In conclusion, we demonstrated that LINC00665 induced tumori-
genesis and trastuzumab resistance through LINC00665/miR-199b-5p/
SERPINE1 signaling. Thus far, no agent targeting lncRNAs has been
successfully applied for the clinical treatment of GC; however, the in-
terventions as antisense oligonucleotides (ASOs) and siRNA that retard
or degrade lncRNAs molecules make exploiting lncRNAs possible. Our
research sheds light on the theoretical basis for discovering novel agents
as the small-molecule inhibitor of LINC00665. It is our novel study that
LINC00665 facilitated tumor progression and targeted therapy resis-
tance via functioning as a ceRNA against miR-199b-5p and promoting
SERPINE1 expression, which led to trastuzumab resistance driven by
PI3K/AKt pathway. The discovery indicated LINC00665 as a candidate
treatment target to overcome trastuzumab resistance in the future.
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